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ABSTRACT
In nonlinear systems, signal and noise can cooperate con-
structively. To illustrate this possibility, this paper presents,
in a coherent perspective, various forms of stochastic reso-
nance or improvement by noise in nonlinear systems. Es-
pecially, it is shown that the constructive role played by the
noise can take place through several distinct mechanisms,
either in single nonlinearities or in nonlinear arrays.
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1 Introduction

In complex systems with nonlinear interactions, noise is
not necessarily a nuisance but can sometimes play a benefi-
cial role. Stochastic resonance is a nonlinear phenomenon
which expresses the possibility of exploiting the noise in
order to improve the transmission or the processing of a
signal [1, 2, 3]. This paradoxical phenomenon was intro-
duced some twenty years ago in the context of geophysi-
cal dynamics [4]. Stochastic resonance has since gradually
been observed in a growing variety of processes, includ-
ing electronic circuits [5, 6], optical devices [7, 8], chem-
ical reactions [9, 10], neurons [11, 12]. A stochastic res-
onance phenomenon usually occurs in the presence of an
information-carrying signal, associated to a noise, which
both interact with a nonlinear transmission or processing
system. An appropriate measure of performance is intro-
duced, and stochastic resonance takes place when the per-
formance measure can be improved by means of an in-
crease in the amount of noise.

Stochastic resonance has now been shown feasible with
various types of information-carryingsignals, includingde-
terministic periodic or nonperiodic signals, or random sig-
nals. Also, various types of nonlinear systems, interact-
ing with the information-carrying signal in the presence
of noise, have been shown to give way to stochastic reso-
nance. Essentially, stochastic resonance has been reported
in nonlinear systems incorporating thresholds or potential
barriers [1, 2]; here the mechanism of improvement, qual-
itatively, is that the noise will assist small signals in over-
coming the thresholds or barriers. More recently, another
form of stochastic resonance was reported for saturating
nonlinearities, where the noise is able to reduce the distor-

tion experienced by large signals [13]. Also recently, an-
other new form of stochastic resonance was reported with
arrays of nonlinear sensors [14, 15]; the mechanism of im-
provement here is that independent noises added on the
sensors induce more variability and a richer representation
capability in the individual responses collected over the ar-
ray.

In the present paper, we will consider the transmission
of a periodic information-carrying signal, in order to illus-
trate, in a coherent perspective, diverse forms of stochastic
resonance demonstrating various possible mechanisms of
improvement by noise. We will also focus on the more
recent forms of stochastic resonance, with saturating non-
linearities and with nonlinear arrays, and will provide new
examples in these conditions.

2 Nonlinear transmission of a periodic signal

An information-carrying signals(t), and a noiseη(t), form
the inputs to a nonlinear system which responds with the
output signaly(t), according to the setting of Fig. 1.signal s(t)

noise �(t) nonlinearsystem output y(t)
Figure 1: Nonlinear transmission process.

We will address here the situation where the
information-carrying inputs(t) is a periodic signal, trans-
mitted by a nonlinear system under the form of a static or
memoryless nonlinearityg(.) realizing

y(t) = g[s(t) + η(t)] . (1)

Our aim will be to quantitatively analyze the efficacy of
transmission of the periodic inputs(t) onto the outputy(t)
in the presence of the noiseη(t). We will investigate the
possibility of increasing the transmission efficacy through
an increase of the level of the noiseη(t), for various types
of nonlinearitiesg(.), i.e. stochastic resonance.

In the case of a periodic inputs(t), the classical mea-
sure [1] which is appropriate to quantify a stochastic res-
onance effect is a signal-to-noise ratio, defined in the fre-
quency domain, and which measures, in the output signal



y(t), the part contributed by the periodic input and the part
contributed by the noise [1, 16]. Whens(t) in Eq. (1) is de-
terministic periodic with periodTs, the output signaly(t)
of Eq. (1) generally is a cyclostationary random signal, with
a power spectrum containing spectral lines at integer mul-
tiples of 1/Ts emerging out of a continuous noise back-
ground [16]. A standard measure of similarity ofy(t) with
theTs-periodic inputs(t), is a signal-to-noise ratio (SNR)
defined as the power contained in the output spectral line
at the fundamental1/Ts divided by the power contained
in the noise background in a small frequency band∆B
around1/Ts.

For the input–output relationship of Eq. (1), the power
contained in the output spectral line at the frequencyn/Ts

is given [16] by|Y n|
2, whereY n is the ordern Fourier

coefficient of theTs-periodic nonstationary output expec-
tationE[y(t)], i.e.

Y n =

〈

E[y(t)] exp
(

− ın
2π

Ts

t
)

〉

, (2)

with the time average defined as

〈...〉 =
1

Ts

∫ Ts

0

... dt . (3)

From Eq. (1), it follows that the output expectationE[y(t)]
at a fixed timet is computable as

E[y(t)] =

∫ +∞

−∞

g(u)fη[u − s(t)]du , (4)

with fη(u) the probability density function ofη(t).
The magnitude of the continuous noise background in

the output spectrum is measured [16] by the stationarized
output variance〈var[y(t)]〉, with the nonstationary vari-
ancevar[y(t)] = E[y2(t)] − E[y(t)]2 at a fixed timet, and

E[y2(t)] =

∫ +∞

−∞

g2(u)fη[u − s(t)]du . (5)

An SNRRn, for the harmonicn/Ts in the ouputy(t),
follows as

Rn =
|Y n|

2

〈var[y(t)]〉∆t ∆B
, (6)

where∆t is the time resolution of the measurement (i.e. the
signal sampling period in a discrete-time implementation);
we take here throughout∆t ∆B = 10−3.

3 Nonlinear sensors

A first example of stochastic resonance, or noise-improved
signal transmission, can be obtained with the simple case
of a two-state quantizer with threshold unity realizing the
nonlinearity

g(u) = sign(u − 1) =

{

−1 for u ≤ 1 ,
1 for u > 1 ,

(7)
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Figure 2: Various forms for the nonlinearityg(u) in Eq. (1):
(a) two-state quantizer of Eq. (7), (b) threshold-linear non-
linearity of Eq. (10), (c) linear-saturating nonlinearityof
Eq. (11), (d) smooth saturating nonlinearity of Eq. (12).

as depicted in Fig. 2(a).
For the nonlinearity of Eq. (2(a)), equations (4) and (5)

lead to
E[y(t)] = 1 − 2Fη[1 − s(t)] , (8)

and

var[y(t)] = 4Fη[1 − s(t)]
{

1 − Fη[1 − s(t)]
}

, (9)

with Fη(u) the cumulative distribution function ofη(t).
The signal-to-noise ratioR1 that follows from Eq. (6)

is represented in Fig. 3 in the case of the transmission of
the periodic inputs(t) = A cos(2πt/Ts). In the regime
of a small amplitude0 < A < 1, the input signals(t)
alone is unable to trigger transitions of the ouputy(t) of the
quantizer of Fig. 2(a). The presence ofs(t) at the input is
therefore completely invisible at the output. This translates
into a zero output SNRR1 at zero noise in Fig. 3. When
some input noiseη(t) is added, a cooperative effect can
take place where the noiseη(t) is able to assist the small
signal s(t) so as to overcome the quantization threshold
and elicit transitions in the outputy(t). This gives way to
an output SNRR1 which increases as the levelση of the
input noiseη(t) is raised. The output SNRR1 culminates
at a maximum for a nonzero optimal level of the input noise
η(t), where the cooperative behavior is at its best efficacy.
When more noise is further added, the detrimental influ-
ence of the noise resumes to degrade the output SNRR1

down to zero for very high noise levels. This is an instance
of the stochastic resonance effect, with no transmission at
zero noise and a nonzero optimal amount noise that maxi-
mizes the transmission efficacy.

Another example of stochastic resonance can be ob-
tained with the nonlinearity

g(u) =







u + 1 for u ≤ −1 ,
0 for − 1 < u < 1 ,

u − 1 for u ≥ 1 ,
(10)
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Figure 3: Output signal-to-noise ratioR1 from Eq. (6) as
a function of the rms amplitudeση of the input noiseη(t)
chosen zero-mean Gaussian, for the transmission of the pe-
riodic inputs(t) = A cos(2πt/Ts) by the two-state quan-
tizer of Fig. 2(a).

depicted in Fig. 2(b).
The corresponding SNRR1 from Eq. (6) is represented

in Fig. 4 in the case of the transmission of the periodic in-
puts(t) = A cos(2πt/Ts). Again, in the regime of a small
amplitude0 < A < 1, the input signals(t) alone is un-
able to induce variations of the outputy(t). It is only when
the noiseη(t) is applied at the input that a transmission of
s(t) can take place, with a maximum efficacy for a nonzero
amount of noise, as expressed by the resonant evolution of
the output SNRR1 in Fig. 4.
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Figure 4: Output signal-to-noise ratioR1 from Eq. (6) as
a function of the rms amplitudeση of the input noiseη(t)
chosen zero-mean Gaussian, for the transmission of the pe-
riodic input s(t) = A cos(2πt/Ts) by the nonlinearity of
Fig. 2(b).

It can be noted in Figs. 3 and 4 that the optimal noise
level maximizing the SNRR1 is usually different in every

condition of signal amplitudeA and nonlinearityg(.). Yet,
in each condition, the present theory allows an explicit
computation of the optimal noise level.

In addition to threshold nonlinearities in the style of
Figs. 2(a) and 2(b), stochastic resonance can also take place
with saturating nonlinearities. We consider for illustration
the nonlinearity, very common for sensors with saturation,

g(u) =







−1 for u ≤ −1
u for − 1 < u < 1
1 for u ≥ 1 ,

(11)

as depicted in Fig. 2(c).
The resulting SNRR1 from Eq. (6) is represented in

Fig. 5 for the transmission of the periodic inputs(t) =
A + cos(2πt/Ts) with an offsetA. When this offsetA
is large relative to1 (here whenA ≥ 2), the input signal
s(t) alone solicits the nonlinearity of Fig. 2(c) always in
its positive saturation region. In this case, the outputy(t)
remains stuck at+1; no variation ofy(t) is ever induced
by s(t), and therefore the variations ofs(t) at the input are
completely invisible at the output. When the noiseη(t) is
added at the input, again a cooperative effect can take place
betweens(t) andη(t). Here the mechanism is that the fluc-
tuations of the noise are able, on occasions, to bring the
nonlinearity of Fig. 2(c) to operate in its linear part. This
enables some transmission of information between the in-
puts(t) and the outputy(t) with assistance from the noise
η(t). This cooperative mechanism translates in Fig. 5, into
a resonant evolution of the output SNRR1 as the levelση

of the noiseη(t) is raised, with a maximum ofR1 at a
nonzero optimal noise level. This is a form of stochas-
tic resonance, or noise-aided signal transmission through
saturating nonlinearity, with a novel example in Fig. 5 not
treated in [13].
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Figure 5: Output signal-to-noise ratioR1 from Eq. (6) as
a function of the rms amplitudeση of the input noiseη(t)
chosen zero-mean Gaussian, for the transmission of the pe-
riodic inputs(t) = A+cos(2πt/Ts) by the saturating non-
linearity of Fig. 2(c).



Another example of stochastic resonance with saturat-
ing nonlinearities can be obtained with the smooth nonlin-
earity

g(u) = tanh(u) (12)

depicted in Fig. 2(d).
The resulting output SNRR1 from Eq. (6) is repre-

sented in Fig. 6 for the transmission of the periodic input
s(t) = A + cos(2πt/Ts). At zero noise in Fig. 6, the out-
put SNRR1 is infinite. This is due to the smooth char-
acter of the saturating nonlinearity of Fig. 2(d) as opposed
to that of Fig. 2(c). For large offsetA, although the peri-
odic component is very small in the outputy(t), the noise
component is absent, whence the infinite SNRR1. When
some noiseη(t) is added at the input, Fig. 6 shows that the
output SNRR1 starts to degrade rapidly. Yet, this degra-
dation does not develop monotonically. When more noise
is added, a constructive action of the noise is recovered.
This is conveyed in Fig. 6 by a range of the noise levelση

where the output SNRR1 improves asση grows. This non-
monotonic evolution ofR1, as the noise grows, instead of
a monotonic degradation, is another form of stochastic res-
onance, or improvement by noise. When a small amount
of noise pre-exists, further addition of noise may bring im-
provement to the transmission near saturation. A qualita-
tive explanation is again that the added noise, on average,
has the ability to shift the operating zone of the nonlinearity
of Fig. 2(d) away from the saturating part and towards the
linear region more favorable to an efficient transmission of
the signals(t).
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Figure 6: Output signal-to-noise ratioR1 from Eq. (6) as
a function of the rms amplitudeση of the input noiseη(t)
chosen zero-mean Gaussian, for the transmission of the pe-
riodic inputs(t) = A + cos(2πt/Ts) by the smooth satu-
rating nonlinearity of Fig. 2(d).

4 Nonlinear arrays

The forms of improvement by noise we have shown in Sec-
tion 3 essentially involve an input signals(t) which is by

itself not optimally positioned in relation to a transmitting
nonlinearity. In such condition, the beneficial role of noise
can be described as a means of displacing the operating
zone of the nonlinearity into a region more favorable to the
signal transmission. We shall now illustrate another mech-
anism of improvement by noise, which applies also when
the input signals(t) is optimally positioned in relation to
the nonlinearity. This new form of stochastic resonance
takes place when the nonlinearities are replicated and asso-
ciated in a parallel array [14, 17] as in Fig. 7.

An input signalx(t) is applied onto a parallel array of
N identical nonlinear sensorsg(.) as in Fig. 7. Arrays as in
Fig. 7 can serve as models for various existing systems such
as flash analog-to-digital converters, sonar arrays, networks
of sensory neurons, and also for future intelligent sensing
networks, possibly with neuronal inspiration [14, 15, 17].
A noiseηi(t), independent ofx(t), can be added tox(t) at
each sensori so as to produce the output

yi(t) = g[x(t) + ηi(t)], i = 1, 2, . . .N . (13)

The N noisesηi(t) are white, mutually independent and
identically distributed (i.i.d.) with probability density func-
tion fη(u). The responsey(t) of the array is obtained by
averaging the outputs of all the sensors, as

y(t) =
1

N

N
∑

i=1

yi(t) . (14)

Figure 7: Parallel array ofN identical nonlinearitiesg(.).

The inputx(t) is formed by the signal-plus-noise mix-
ture x(t) = s(t) + ξ(t), where s(t) is our determin-
istic periodic component as in Section 3, andξ(t) is a
stationary white noise, independent of boths(t) and the
ηi(t), and with probability density functionfξ(u). At
time t, for a fixed given valuex of the inputx(t), one
has, according to Eq. (14), the conditional expectations
E[y(t)|x] = E[yi(t)|x] andE[y2(t)|x] = E[y2

i (t)|x]/N +
E2[yi(t)|x](N − 1)/N which are independent ofi since
theηi(t) are i.i.d. Sincex(t) = s(t) + ξ(t), the probability



density for the valuex is fξ

(

x− s(t)
)

, and Eqs. (4) and (5)
become

E[y(t)] =

∫ +∞

−∞

E[y(t)|x]fξ

(

x − s(t)
)

dx , (15)

and

E[y2(t)] =

∫ +∞

−∞

E[y2(t)|x]fξ

(

x − s(t)
)

dx . (16)

Because of Eq. (13), one has for anyi,

E[yi(t)|x] =

∫ +∞

−∞

g(x + u)fη(u)du (17)

and

E[y2
i (t)|x] =

∫ +∞

−∞

g2(x + u)fη(u)du . (18)

From the above equations, the output signal-to-noise ra-
tio Rn of Eq. (6) can be computed for transmission ofs(t)
by the array.

For an array ofN identical two-state quantizers as
in Fig. 2(a), transmitting the periodic inputs(t) = 1 +
cos(2πt/Ts), Fig. 8 shows the output SNRR1 from
Eq. (6). In these conditions, the inputs(t) = 1 +
cos(2πt/Ts) is optimally positioned in relation to the
threshold1 of the quantizers;s(t) by itself is exactly cen-
tered at the threshold and is no longer permanently sub-
threshold as it was in Fig. 3. As a consequence, with a sin-
gle quantizerN = 1 in Fig. 8, the ouput SNRR1 degrades
monotonically as the levelση of the array noiseη1(t) is in-
creased. Noise addition here brings no improvement to the
transmission of the optimally positioned inputs(t). Yet,
as soon asN ≥ 2 in Fig. 8, it is observed that the output
SNRR1 can be improved by increasing the levelση of the
array noisesηi(t), with a nonzero optimal value ofση that
maximzesR1. An array ofN ≥ 2 nonlinearities in parallel
with added noisesηi(t), is more efficient than a single non-
linearity with no added noise, for the transmission of the
noisy inputs(t). A qualitative explanation is that the in-
dependent noisesηi(t) injected in the array, bring diversity
to the individual responsesyi(t) over the array, which oth-
erwise would act in unison. This diversity translates into
a richer representation of the inputs(t), whence the im-
proved transmission performance revealed in Fig. 8.

A similar behavior is observed in Fig. 9, for an array of
N identical saturating nonlinearities as in Fig. 2(c), trans-
mitting the periodic inputs(t) = 3 cos(2πt/Ts). In this
case, the inputs(t) is also exactly centered, in the linear
part of the nonlinearity of Fig. 2(c), but sinces(t) is large it
saturates the nonlinearity and it is thus strongly distorted in
its transmission. Figure 9 reveals that, thanks to the added
array noisesηi(t), moderately large arrays (N & 5) per-
form better than a single nonlinearity with no added noise.
An optimal nonzero amount of the array noisesηi(t) max-
imizes the output SNRR1, and the improvement by noise
gets more pronounced as the array sizeN increases. This

0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

noise rms amplitude ση

ou
tp

ut
 S

N
R

N=1

N=∞

N=2

N=3

N=7

N=15

N=31

N=63

 

Figure 8: Output signal-to-noise ratioR1 from Eq. (6)
as a function of the rms amplitudeση of the array noises
ηi(t) chosen zero-mean Gaussian. The periodic input is
s(t) = 1 + cos(2πt/Ts) buried in a zero-mean Gaussian
noiseξ(t) with rms amplitudeσξ = 1. The array is made
of N identical two-state quantizers as in Fig. 2(a).

form of stochastic resonance in array of saturating nonlin-
earities in order to reduce the distortion of a strong signal,
is a novel feature, not previously reported. It can be veri-
fied that it is also observed, in a comparable way, with the
smooth nonlinearities of Fig. 2(d).

5 Conclusion

We have shown various possible forms of stochastic reso-
nance, or improvement by noise, in nonlinear systems. Two
distinct mechanisms apply: In single nonlinearities, noise
can play the role of a “random bias”, displacing the oper-
ating zone into a region more favorable to the transmission
of a signal not optimally positioned. In arrays, noise can
bring variability and hence further enhanced representation
capability of a signal otherwise optimally positioned. Im-
provement by noise have been shown here in the transmis-
sion of a periodic signal assessed by a signal-to-noise ratio;
yet it is known that a similar effect can occur with other
types of signals involved in other types of processing, with
other measures of performance improvable by the noise
[18, 19, 14, 3, 20, 21, 15]. Stochastic resonance stands as
an emergent phenomenon in the realm of complex systems,
and the details of its various forms and properties largely
remain to be explored, especially for the novel form in ar-
rays addressed here. Also, the nonlinear situations that are
involved are quite reminiscent of those encountered in neu-
ronal systems, where stochastic resonance could play a part
to contribute to the performance in information processing,
under detailed modalities that also remain to be elucidated.
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Figure 9: Output signal-to-noise ratioR1 from Eq. (6)
as a function of the rms amplitudeση of the array noises
ηi(t) chosen zero-mean Gaussian. The periodic input is
s(t) = 3 cos(2πt/Ts) buried in a zero-mean Gaussian
noiseξ(t) with rms amplitudeσξ = 1. The array is made
of N identical saturating nonlinearities as in Fig. 2(c).
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