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Abstract. The pair correlation integral is used to assess the intrinsic
dimensionality of the three-dimensional histogram of RGB color images.
For application in the bounded colorimetric cube, this correlation mea-
sure is first calibrated on color histograms of reference constructed with
integer dimensionality. The measure is then applied to natural color im-
ages. The results show that their color histogram tends to display a
self-similar structure with noninteger fractal dimension. Such a fractal
organization in the colorimetric space can have relevance for image seg-
mentation or classification, or other areas of color image processing.
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1 Introduction

In image processing, histograms of the pixel values are useful to many pur-
poses [1]. For instance, they can serve for the characterization and correction
of image acquisition, or for segmentation operations, or for indexing in image
data bases. For gray-level or monocomponent images, the histogram is a sim-
ple one-dimensional data structure, straightforward to visualize and to handle.
However, multicomponent images, including multispectral images, are becoming
more and more pervasive. The histogram of a multicomponent image, accord-
ingly, is a multidimensional data structure, and multidimensional data can ex-
hibit complex organization [2]. For multicomponent images, the approach which
is very often followed in current image processing, is to consider separately the
monodimensional marginal histogram of each component. This leads to simple
processing, but which may lose important information contained in the depen-
dence between components. The full multidimensional histogram contains richer
information, but it is more complicated to handle, and little is known concern-
ing the structure of the multidimensional histogram of multicomponent images,
starting with RGB color images. In the present paper, we are going to show
that the histograms of natural RGB color images tend to exhibit nontrivial mul-
tiscale organization, with self-similarity across scales, and a fractal character.
This seeks to contribute in the direction of better knowledge and more effective
exploitation of multidimensional histograms of images.
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Other fractal properties have already been reported for images, but these
essentially concerned the spatial organization of images. Especially, for natural
images, inherent multiscale structures and details existing in natural scenes, tend
to induce fractal properties detectable in the spatial organization of the images.
This is for instance conveyed by self-similar power-law evolutions observed for
the spatial-frequency spectra and the associated spatial correlation functions of
many natural images [3–7]. The fractal properties we are going to report here are
distinct. They are not observed in the spatial organization of the images, but
in their colorimetric organization, and these are new observations. The colors
that are present in an image, and the frequency of their occurrences, tend also
to distribute over the colorimetric space in a fractal, self-similar, way.

2 Pair correlation measures

We consider an RGB color image with N pixels. Each one of the three (R, G, B)
components can vary among Q possible values, from 0 to Q − 1. In the colori-
metric RGB space, each pixel, indexed by n, maps into a triplet defining a point
Xn = (R, G, B), for n = 1 to N . The N points Xn which distribute among
the Q3 colorimetric cells form the three-dimensional histogram we will be con-
sidering for the image. For a characterization of the histogram organization in
RGB space, we evaluate the number of pairs of points which are separated by a
distance ≤ r. It is defined as

C2(r) =

N∑

n=1

N∑

n′>n

Γ (r − ‖Xn − Xn′‖) , (1)

with the Heaviside function Γ (u) = 1 if u ≥ 0 and Γ (u) = 0 otherwise. We
can consider C1(r) = C2(r)/N which is the average number of pairs per pixel
of the image. This C1(r) reflects in the RGB space, for a typical pixel, the
average number of neighbors within a distance ≤ r in the three-dimensional his-
togram. The largest possible pixel separation in the colorimetric cube [0, Q−1]3

is rmax =
√

3(Q − 1) and accordingly, at r = rmax the value of C2(r) satu-
rates at N(N − 1)/2 which is the total number of pairs. Normalization by this
total number of pairs yields C0(r) = C2(r)/(N(N − 1)/2). This C0(r) is a non-
decreasing function which starts close to zero at r = 0 and saturates at 1 at
large r approaching rmax. For points in space, such a function C0(r) is known
as the correlation integral [8, 9]. It is a measure which is used to characterize
the organization of sets of points in space. For points uniformly scattered in the
three-dimensional space, the pair correlation integral C0(r), or any of its non-
normalized versions C1(r) or C2(r), would vary as r3. For more complex sets of
points, a remarkable feature is to register a power-law variation as rD with a
possibly noninteger exponent D differing from 3. Such a behavior characterizes
a nontrivial self-similar organization of the points. Self-similarity arises from in-
variance of the power-law under a change of scale: if the scale in r changes as
r → αr, a corresponding change of scale in C0 as C0 → αDC0 makes the whole
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structure look similar. The organization of the points in space, as characterized
by the correlations C0(r) versus r, has no characteristic scale and is self-similar
across scales. This confers to it a fractal character [10, 11].

Pair correlation measures similar to C0(r) or C1(r) or C2(r), have been used
to characterize fractal structures in various processes, for instance in chaotic
attractors, or in porous media, or in diffusion-limited aggregates, or in perco-
lation clusters, or in the distribution of stars and galaxies [8, 10, 11]. Here, we
shall use the measure C1(r) to exhibit a fractal organization in three-dimensional
histograms of color images.

3 Calibration of the measure for images

We want to use the average number of pairs C1(r) = C2(r)/N from Eq. (1), in
order to characterize the distribution of points of the histogram in the colori-
metric cube [0, Q − 1]3. First, for calibration purpose, it is appropriate to test
the evolution of the correlation measure C1(r) on reference images with known
statistical properties. This is especially useful because, when applied to images,
there are no simple a priori models to theoretically predict the evolutions of
C1(r). Even in the simple case, evoked above, of points uniformly scattered in
the three-dimensional space, the simple prediction C1(r) ∝ r3 is valid only in a
homogeneous unbounded space. But since the colorimetric cube [0, Q − 1]3 has
well defined boundaries, when it is uniformly filled with points one may expect
a deviation from C1(r) ∝ r3, due to boundary effects. Accordingly, one may
expect the behavior C1(r) ∝ r3 to be valid at small r and to gradually disrupt
as r approaches the linear size Q − 1 of the colorimetric cube.

For calibration of the correlation measure C1(r) = C2(r)/N from Eq. (1),
we start with the simple random image with size N = 256 × 256 pixels, for
which the color components R, G and B at each pixel are randomly picked
in [0, Q − 1 = 255] with uniform probability. A resulting realization of such a
random image is shown in Fig. 1. The corresponding pair correlation measure
C1(r) has been evaluated and is also presented in Fig. 1.

The log-log plot of Fig. 1 shows an evolution as C1(r) ∝ r3 which is well
verified, except at large and small r. At large distance r approaching rmax =√

3(Q − 1), there is a saturation of the count C1(r) which tends to grow more
slowly than r3 due to the boundary effect. At small r close to r = 1, the count
C1(r) which operates on the discrete grid of the colors in the histogram, deviates
from the model C1(r) ∝ r3 which assumes a continuous distribution of points.
At small r, the average number of neighbors on the discrete grid differs slightly
from the volume of the sphere of radius r, and produces fluctuations of the count
around a straight line behavior in log-log coordinates. These fluctuations become
rapidly negligible as r increases above 1, as visible in Fig. 1. Also at small r, the
statistical estimation is less accurate, due to the low average density of neighbors
at small r, with the random uniform model of Fig. 1. There is a total of N = 216

pixels in the image, for 224 colorimetric cells in the histogram; this leads to a
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Fig. 1. Left: RGB color image with size 256 × 256 pixels and three random R, G and
B components uniform in [0, Q−1 = 255]. Right: Average number of pairs C1(r) in its
three-dimensional histogram, as a function of the colorimetric distance r; the dashed
line has slope 3.

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

10
5

colorimetric distance

av
er

ag
e 

nu
m

be
r 

of
 p

ai
rs

2

Random 2D
10

0
10

1
10

2
10

2

10
3

10
4

10
5

colorimetric distance

av
er

ag
e 

nu
m

be
r 

of
 p

ai
rs

1

Random 1D

Fig. 2. Average number of pairs C1(r) in the color histogram, as a function of the
colorimetric distance r, when the histogram lies in a plane (left), or on a line (right),
in the colorimetric cube [0, Q − 1 = 255]3. The dashed lines have slope 2 and 1.

(low) uniform density of 2−8 point per colorimetric cell of side 1, yielding the
order of magnitude of 10−2 for the average number of neighboring points at
r = 1 in Fig. 1. Yet, within these limits at large and small r, the evolution as
C1(r) ∝ r3 is well identified in the results of Fig. 1, and provides a consistent
characterization of the uniform color histogram as a three-dimensional manifold.

We also tested the correlation measure C1(r) on another random test image
whose color histogram is deliberately chosen as a two-dimensional manifold. This
is achieved with a random image with size N = 256 × 256 pixels, for which the
components R and G at each pixel are randomly picked in [0, Q − 1 = 255]
with uniform probability; then the remaining component is constructed as B =
(R +G)/2. This ensures that, in the colorimetric cube [0, Q− 1]3, the histogram
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of the random image lies in a plane: the principal diagonal plane with a vertex at
(0, 0, 0) and a vertex at (Q− 1, Q− 1, Q− 1) in the colorimetric cube [0, Q− 1]3.
The corresponding pair correlation measure C1(r) is presented in Fig. 2(left).

The log-log plot of Fig. 2(left) shows an evolution of the pair correlation
measure as C1(r) ∝ r2, within the limits at large and small r. This again provides
a consistent characterization of the uniform color histogram as a two-dimensional
manifold here.

Next, we have tested C1(r) on a histogram constructed as a one-dimensional
manifold. For the histogram, N = 256 × 256 points are distributed at random
with uniform density on the principal diagonal line joining vertices (0, 0, 0) and
(Q−1, Q−1, Q−1) of the colorimetric cube [0, Q−1 = 255]3. This corresponds to
images with random uniform components R, G and B constrained by R = G =
B. The log-log plot of Fig. 2(right) shows an evolution of the pair correlation
measure as C1(r) ∝ r1, providing, as before, a consistent characterization of the
uniform color histogram as a one-dimensional manifold here.

Together, the results of Figs. 1–2 demonstrate the ability of the correlation
measure C1(r) to provide a consistent identification of the dimension of the
manifold formed by the color histogram in the colorimetric cube. These results,
obtained with random test images, will serve to us as reference in order to
interpret the behavior of C1(r) measured on natural color images.

4 Characterization of natural color images

We have considered various common RGB color images, with size N = 256×256
pixels and Q = 256 levels, and represented in Fig. 3. For illustration, two three-
dimensional color histograms are depicted in Fig. 4.

For each of the color images of Fig. 3, we have computed the average number
of pairs C1(r) = C2(r)/N from Eq. (1), in order to characterize the distribution
of points of the histogram in the colorimetric cube [0, Q − 1]3. The resulting
evolutions of C1(r) are reported in Fig. 5.

For each log-log plot in Fig. 5, a dashed line with slope D is indicated which
provides a fit to the data. This corresponds for the pair correlation measure
C1(r) to a power-law model as C1(r) ∝ rD. The linear fits in Fig. 5 best apply
at intermediate range of r where the practical implementation of the correlation
integral is known to be best suited for dimensionality estimation [9]. In Fig. 5,
noninteger values are observed for the power-law exponent D. Such power-law
behavior of the pair correlation integral, with noninteger exponent D, identifies
a nontrivial self-similar organization characterizing a fractal structure [9–11].
For the three-dimensional color histograms, this reveals an organization with no
characteristic scale. The points in the histogram tend to form clusters with no
characteristic size, but clusters with many sizes occurring in a self-similar way,
and assessed by a noninteger fractal dimension D. In association, voids with no
points may be expected to exist at all scales in the fractal histogram.
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Fig. 3. Six RGB color images with size 256 × 256 pixels, and Q = 256 levels.

Fig. 4. Color histogram in the RGB colorimetric cube [0, Q − 1 = 255]3 for image
“Yacht” (left) and image “Mandrill” (right) from Fig. 3.
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Fig. 5. Average number of pairs C1(r) in the color histogram, as a function of the
colorimetric distance r, for the six RGB color images of Fig. 3. The slope is indicated
of the dashed line fitted to the data.

5 Discussion

In this study, we have used the pair correlation integral estimated via Eq. (1), in
order to assess the intrinsic dimensionality of the three-dimensional histogram
of RGB color images. For application in the bounded colorimetric cube, the
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correlation measure has been first calibrated on color histograms of reference
constructed with integer dimensionality. The pair correlation integral has then
been evaluated on natural color images. Our observation is that for natural
images with sufficient colorimetric variability, the three-dimensional histogram
tends to display a self-similar structure with a noninteger fractal dimension which
is specific to a given image. The registration of possible fractal structures in the
color distribution of natural images is a new feature. The preliminary results
presented here open a way in this direction. Additional observations and analy-
ses are needed, in order to confirm the colorimetric fractal properties on more
extensive surveys of natural images, and in order to appreciate the conditions
of existence and the possible origins of them. Other approaches or estimation
methods can also be used for alternative characterizations of fractal colorimetric
properties in images. We currently have complementary studies under way in
this direction.

We again emphasize that the present fractal properties observed in the color
distribution of natural images are different from, but possibly related to, other
fractal properties previously reported for natural images in their spatial organi-
zation [3–7]. Briefly stated, previous results [3–7] dealt with fractal distribution
of the pixels in space, while the present results deal with fractal distribution of
the pixels in the colorimetric cube.

The registration of possible fractal structures in the colorimetric organiza-
tion of natural images may have several significant consequences for color image
processing. Estimating the intrinsic dimensionality of data sets, as done here for
color images, is helpful to determine the possibility of new coordinate systems
allowing more parsimonious representation. Also, a self-similar fractal organi-
zation with no characteristic scales, may have bearing for various processing
performed with the color histograms: for instance, when implementing segmen-
tation methods defining classes by looking for peaks in the color histogram, or
when implementing subquantization of the color components or color reduction
operations. In addition, the fractal dimension D may serve as a useful index for
various image processing tasks, such as image characterization, classification or
indexing. All these issues related to a possible fractal organization of the colors,
may form interesting areas to explore for color image processing [12] and enlarge
the applications of fractal geometry to imaging [13].
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