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Abstract - In this paper, nonlinear phenomena appearing in

DC-DC converters are analyzed by using a discrete time non-

linear map (the A-switching map). We then propose a feed-

back control method improving switch-mode power supplies

electromagnetic compatibility (spectral peaks compliance).

To confirm the efficiency of this new and simple method, the

map is derived in closed form from the system of nonlinear

equations of a Buck converter.
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I. INTRODUCTION

DC-DC converters are widely used power electronics cir-

cuits. They stabilize a DC voltage to a higher (Boost), a

lower (Buck) or a generic (Buck-Boost) value. This is usu-

ally performed by pulse width modulating the input volt-

age.

These converters’ rapid switchings of high currents and

high voltages generate electromagnetic interference which

create significant difficulties to comply with new regula-

tions [DEA 99]. Various methods of interference emis-

sion reduction, by modulating the switching frequency of

power supplies, have been proposed, enabling to modify

noise emission spectrum [LIN 94] [STA 95].

Chaos, a phenomenon occurring in DC-DC converters

(switch-mode power supplies), might help reducing spec-

tral peaks [DEA 96] [DEA 99]; the usual goal has long

been its suppression (chaos control) [MOR 00] [MOR 02],

i.e. the transition between chaos to order. We are

now interested in studying the transition between order to

chaos [MOR 04] [MOR 05], sometimes called chaotifica-

tion or anticontrol of chaos.

The application of chaos anticontrol [CHE 97] [WAN 01]

to switch-mode power supplies leads the output voltage to

have an exaggerated output voltage ripple or an undesirable

spectrum [CHA 97] [WOY 03]. This is why we propose

here a simple feedback control method.

Finally, a two-dimensional A-switching map describing the

behavior of the controlled Buck converter is calculated (in-

cluding a new case of map impact) [BER 98] and [BER 00].

This map is necessary to determine the power spectrum of

the output voltage and to ensure that our controller im-

proves the electromagnetic compatibility and eliminates

the previous drawbacks.

Fig. 1. DC-DC Buck converter with feedback controls. The
nominal values of the fixed parameters are: L = 20 mH,
C = 47 µF, R = 22Ω, a = 8.4, Vref = 11.3 V, VL = 3.8 V,
VU = 8.2 V, T = 400 µs and E = 16 V.

II. THE BUCK CONVERTER

Fig. 1 shows the block diagram of a Buck converter that

uses a pulse width modulation voltage loop [FOS 96]. The

circuit has two states: when the switch S is (either) closed

or open. When S is closed, the input E provides energy to

the load R as well as to the inductor L. When S is open, the

inductor current, which flows through the diode D, trans-

fers some of its stored energy to the load R. The amplifier

A2 has a gain a. The most general and simplest form of

feedback of the converter is using the potentiometer P in

the zero position (Fig. 1). In this way, the control voltage

vc(t) can be written as

vc(t) = vc1(t) = a(v(t) − Vref ). (1)

The control voltage vc(t) is applied to the inverting input

of the comparator A1. The non-inverting input is connected

to an independently voltage ramp generater, which periodi-

cally rises from a low voltage VL to an upper voltage VU in

a time T , and then instantaneously returns to VL. The ramp

voltage can be expressed as:

vr(t) = VL + (VU − VL)
t mod T

T
. (2)

The switch S is open (and diode D conducts) when

vc(t) ≥ vr(t); otherwise S is closed (and D is blocked).



The systems is governed by two sets of linear differen-
tial equations pertaining to the on and off states of the
controlled switch. The voltage v(t) of the capacitor C
and the inductance current i(t) are taken as state vari-
ables [HAM 92].
The dynamic model can be written as

dv

dt
= − 1

C
i(t)− 1

RC
v(t), (3)

di

dt
= − 1

L
v(t) +

E

L
d(t), (4)

where E is a constant input voltage, and d(t) the modu-
lated signal which is zero when vc(t) ≥ vr(t) and one
when vc(t) < vr(t). If we fix a set of initial conditions
v0 = v(t0), i0 = i(t0) and t0=0, as the differential equations
are linear, the solutions of the system can be determined:

v(t) = e−kt

[
v0 cos(ωt) +

(
i0
ωC

− kv0

ω

)
sin(ωt)

]
(5)

i(t) = e−kt

[
i0 cos(ωt) +

(
ki0
ω
− v0

ωL

)
sin(ωt)

]
(6)

if vc(t) ≥ vr(t). For the other case (vc(t) < vr(t)), the
solutions are:

v(t) = E + e−kt(v0 − E) cos(ωt)

+e−kt

(
i0 − E

R

ωC
− k(v0 − E)

ω

)
sin(ωt),(7)

i(t) =
E

R
+ e−kt

(
i0 − E

R

)
cos(ωt)

+e−kt

(
k

i0 − E
R

ω
− v0 − E

ωL

)
sin(ωt), (8)

with k = 1
2RC and ω =

√
1

LC − k2 (we assume that

1
LC−k2 > 0). Elementary converters are second-order sys-
tems since they have two energy storage elements. There-
fore, for any given switch condition, two first-order differ-
ential equations are required to describe the total behav-
ior of the system. For DC-DC converters, the switching
time depends nonlinearly on the history of the state vari-
ables: the system is effectively nonlinear. Hence, this kind
of piecewise model, at least in principle, satisfies the re-
quirements for chaos.
In general, these circuits produce an average DC output
voltage with periodic ripples (70mV Fig. 2). Fig. 3 repre-
sents the power spectrum of the output voltage v(t) when

Fig. 2. Time-domain waveform of the output voltage Buck con-
verter: fundamental periodic operation.

Fig. 3. Power spectrum of the output voltage v(t) for the cir-
cuit (1).

the converter is governed by the control law vc1(t) of
Eq. (1). The spectrum has a peak at the switching fre-
quency 1/T , with a magnitude of 250 V2/ Hz.
For the electromagnetic compatibility compliance reasons,
let us try to reduce the peak value of the spectrum while
maintaining a small ripple. Chaotifying a system supposes
to design a nonlinear controller c2 sin [ω2(v(t)− Vref )],
with a small amplitude c2 such that the non-chaotic dy-
namical system becomes chaotic [WAN 01] [CHE 97]. The
application of this method to switch-mode power supplies
leads the output voltage v(t) to have an exaggerated output
voltage ripple (i.e. with regards to electromagnetic compat-
ibility compliance) [CHA 97] [WOY 03]. Unfortunately,
this study with the classical method disables to choose the
coefficient c2 and the angular pulsation ω2 because of the
large ripple, which reduces the efficiency of the DC-DC
converter [MOR 04]. Even if many other spectral lines ap-
pear, on the process of chaotifying the system, the output
voltage ripple influences the amplitude of the power spec-
tral density.
One can wonder why we need to apply a method to gener-
ate chaos, when chaos is a phenomenon which can occur
naturally in switch-mode power supplies [FOS 96]. The
Buck converter is characterized by a chaotic behavior for



the input voltage E superior to 32.34V, governed by the
control law (1). The case is not acceptable also because
of a higher ripple [FOS 96] [BER 98] than in the previous
case. This is why we need to find another solution.

III. BOUNDING THE OUTPUT VOLTAGE RIPPLE

We introduce a new nonlinear controller, with the only tar-
get to obtain an output voltage v(t) with power spectrum
and ripple smaller than the converter is governed by the
control law (1). We proposed the new control law:

vc(t) = vc1(t) + vc2(t) (9)

where:

vc2(t) = c3v(t) sin(ω3t) = c3v(t) sin(2πf3t). (10)

is the new nonlinear controller proposed in this paper.
This time the expression (10) includes multiplication of the
feedback state converter and a sinus. The amplitude and
frequency of vc2 influence the number of switchings. Fur-
thermore, S switches many times during one period of the
ramp (Fig. 4), if for this nonlinear controller, we choose
the frequency f3 much greater than the frequency (1/T )
of the ramp generator. Because of these multiple switches,
the output voltage does not have enough time to rise or to
decrease too much.
Let us vary the pulsation ω3 and the amplitude c3, in or-
der to find the best possible power spectrum and ripple.
Choosing ω3 is very simple: it must be much greater than
the angular frequency (2π/T ) of the ramp generator and on
the other way, the switching frequency of the switch S is
limited to [80 kHz, 100 kHz], in practice. So, we can write:

2π

T
¿ ω3 < 80 kHz. (11)

[MOR 04] and [MOR 05] show very clearly that high fre-
quencies have no more influence on the ripple. Our choice
is f3 ≈40kHz.
The choice of coefficient c3 could only be done to minimize
the power spectrum.

IV. DESCRIPTION OF THE DYNAMIC SYSTEM BY A
MAP

An iterative map consists in calculating the output voltage
v, the inductance current i, or time t at the moment m + 1
in function of the same variables at the moment m.

(vm, im, tm) → (vm+1, im+1, tm+1). (12)

Such a map, applied to the state space, will give the state of
the system at an A-switching instant in terms of the previ-
ous one. The A-switching instants result from the intersec-
tion between the ramp voltage vr(t) and the control volt-
age vc(t) waveforms, rejecting the time instants multiple of

Fig. 4. Triangular wave vr(t) and control signal vc(t) for the
circuit with the control laws (10) and (1).

ramp voltage period T , if they exist. The A-switching mo-
ments are defined by the equality of the control law (10) (1)
and the ramp voltage vr(t):

a [v(t)− Vref ] + c3v(t) sin(ω3t) =

= VL +
VU − VL

T
(t mod T ). (13)

We now detail how [BER 98] constructs the A-switching
map. Let us indicate the solution of (5-6), from the A-
switching instant tm to the next one tm+1 as

vm+1 = e−k∆vm cos(ω∆) +

+ e−k∆

(
im
ωC

− kvm

ω

)
sin(ω∆), (14)

im+1 = e−k∆im cos(ω∆) +

+ e−k∆

(
k

im
ω
− vm

ωL

)
sin(ω∆). (15)

The solutions of (7-8), between the instants tm and tm+1

are:

vm+1 = E + e−k∆ (vm − E) cos(ω∆) +

+ e−k∆

(
im − E

R

ωC
− k(vm − E)

ω

)
sin(ω∆),(16)

im+1 =
E

R
+ e−k∆

(
im − E

R

)
cos(ω∆) +

+ e−k∆

(
k

im − E
R

ω
− vm − E

ωL

)
sin(ω∆), (17)

where ∆ = tm+1 − tm.



Fig. 5. Different typical behaviors of the control voltage between
two A-switchings.

Fig. 6. New case of impact between two A-switchings.

Thus, we obtain the desired map, which can be written as:
{

vm+1 = fv(vm, im, tm, tm+1)
im+1 = fi(vm, im, tm, tm+1)

(18)

The explicit form (14), (16) or (15), (17) of the functions
fv and fi depend on the voltage, current and time at the
moment m and at the moment m + 1. Since tm and tm+1

are the A-switching instants, we can write:

vm +
c3

a
vm sin(ω3tm) = α + β(tm mod T ) (19)

vm+1 +
c3

a
vm+1 sin(ω3tm+1) = α + β(tm+1 mod T ) (20)

which results (1-2) at each moment m. α and β have the
following expressions

α = Vref +
VL

a
, β =

VU − VL

aT
. (21)

The explicit expression of vm and vm+1 are reduced to the
simplest form, function of time:

vm =
α + βtm mod T

1 + c3
a sin(ω3tm)

= g(tm), (22)

Fig. 7. Superposition of two output voltage waveforms issued
from simulation and A-switching map for c3 = 0.2.

vm+1 =
α + βtm+1 mod T

1 + c3
a sin(ω3tm+1)

= g(tm+1). (23)

Let us apply (22) to (18). im+1 has the explicit form:

im+1 = fi(g(tm), im, tm, tm+1) (24)

For the moment tm+1, the unknown vm+1 can be elimi-
nated, using (22) (23) and (18):

g(tm+1) = fv(g(tm), im, tm, tm+1). (25)

So, (tm+1, im+1) is calculated only using (tm, im), and
there is a direct mathematical relation given by (24)
and (25) linking these two pairs. The closed-loop A-
switching iterative bi-dimensional map can then be ob-
tained, considering the pairs:

(tm, im) → (tm+1, im+1). (26)

With the value of tm+1, we can calculate vm+1 using (18).
The structure of fv and fi changes according to the two
successive A-switchings [BER 00]. We need to identify
these functions according to the desired map. Fig. 5 shows
the trajectory of the system: the possible cases of the suc-
cessive impacts a), b), c) and d).
Case a) (which corresponds to the ON phase) considers the
relations (16) and (17). The expression of ∆ is:

∆ = tm+1 − tm + sON · T (27)

where sON is the number of skipped cycles in the ON
phase.
Case b) (valid for the OFF phase) considers the rela-
tions (14) and (15). The expression of ∆ is:

∆ = tm+1 − tm + sOFF · T (28)

where sOFF is the number of skipped cycles in the OFF
phase.



Fig. 8. Superposition of two output voltage waveforms issued
from simulation and A-switching map for c3 = 0.6.

Fig. 9. Power spectrum with control laws (10) and (1) using the
A-switching map.

For the cases c) and d), we need to calculate the interme-
diary point n. For the ON phase, we apply the same rela-
tions (16) and (17), and obtain the pair (vn, in). Then, the
expression of ∆ is:

∆ = sON · T − tm. (29)

For the last case, we apply (14) and (15), with the beginning
point (vn, in). Then:

∆ = sOFF · T + tm+1. (30)

It is important to point out the presence of another case of
impact (Fig. 6), where vc is tangent to the ramp voltage. In
this case, the expression (27) can be applied consecutively
twice.
The discrete model enables one to avoid numerical com-
putation of the phase space orbit from the continuous time
model.
Fig. 7 and 8 show the time-domain waveform. This clearly
show that the generated iterative map and the simulated
wave-form have the same dynamics.
Fig. 9 shows the power spectrum (obtained as the Fourier
transform of the autocorrelation) of the output voltage vm,
in function of c3. The power contained in the peak of

Fig. 10. Power spectrum of the output voltage obtained with
c3=0.71 using the A-switching map.

Fig. 11. Time wave-form of the output voltage obtained with
c3=0.71 using the A-switching map.

the switching frequency 1/T decreases when c3 increases,
whereas lower frequencies give high amplitudes of the
power spectrum. The minimum value of the power spec-
trum amplitude is obtained for c3=0.71. It represents the
minimum of all the maxima of the power spectrum when
c3 varies.
Fig. 10 presents the power spectrum of the output voltage
v(t), for c3 = 0.71 and ω3 = 250000 rad/s: min(maxFFT) is
equal to 0.56 V2/ Hz. We can observe that this spectrum
is no more composed of a unique peak at the switching
frequency 1/T (or at its harmonics): many spectral lines
appear at lower frequencies, therefore widening the band.
Fig. 11 finally presents the temporal representation of the
output voltage v(t) and shows that the ripple is 55 mV. Bi-
furcation diagram derived from the A-switching map in
function of c3 shown in Fig. 12.
The vc2(t) proposed here is introduced to maintain a small
ripple of the output. Indeed, the two control laws vc(t) =
vc1(t) and vc(t) = vc1(t) + vc2(t) almost lead to the same
ripple amplitude (70 mV, respectively 55 mV). vc2(t), as
system feedback, is able at the same time to reduce the
power contained in the peaks of the switching harmon-
ics of the DC-DC converter. We can say that vc(t) =



Fig. 12. Bifurcation diagram derived from the iterative map in
function of c3.

vc1(t)+vc2(t) has better performances than vc(t) = vc1(t).
The new (non chaotical) nonlinear feedback controller
improves the frequency-domain (spectrum) performance,
without deteriorating the time-domain (ripple) perfor-
mance.

V. CONCLUSION

We proposed an improvement of switch-mode power sup-
plies electromagnetic compatibility by a feedback control
method. The controller proposed in this paper improves
the time-domain (ripple) performance and the frequency-
domain (spectral) performance. Finally, a two-dimensional
A-switching map describing the behavior of the controlled
Buck converter is calculated (including a new case of
map impact). This map is necessary to determine the
power spectrum of the output voltage and to ensure that
our controller improves the electromagnetic compatibility
and eliminates the previous drawbacks (exaggerated output
voltage ripple or undesirable spectrum).
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