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Abstract—Laser Doppler flowmetry (LDF) technique is 
widely used in clinical investigations to monitor microvascular 
blood flow. It can be a very interesting tool to diagnose 
impairment in the microcirculation caused by pathologies. 
However, this can be done in an efficient way only if the 
processed signals are well understood. Therefore, in order to 
gain a better insight into LDF signals, this work presents 
numerically simulated data generated by a model based on 
nonlinear coupled oscillators. Linear and parametric couplings, 
as well as fluctuations are analyzed. Each simulated signal is 
processed to obtain its power spectrum in the frequency 
domain and a comparison with real data is proposed. The 
results show that the power spectra of the simulated signals 
reflect the presence of the cardiac, respiration, myogenic, 
neurogenic and endothelial related metabolic activities. 
However, their amplitude in the frequency domain are more 
pronounced than they are on real LDF signals. Moreover, the 
modeling of fluctuations is essential to reproduce the noise 
present on real data. Finally, linear couplings seem more 
adequate than parametric couplings to describe power spectra 
at frequencies higher than 1 Hz. This work will now serve as a 
basis to elaborate more powerful models of LDF data.  

I. INTRODUCTION 

L ASER Doppler flowmetry (LDF) is a noninvasive 
method to monitor microvascular blood flow [1]-[4]. 

LDF measurements from the skin reflect perfusion in 
capillaries, arterioles, venules, and dermal vascular 
plexa [5]-[7]. Some studies have shown that LDF signals 
have complex dynamics, with fractal structures and 
chaos [8].  

The LDF technique is now widely used in clinical and 
physiological investigations of blood microcirculation. 
Nevertheless, some efforts are still needed to model and 
numerically generate the signals. Such simulations could 
help in the diagnosis or prevention of pathologies. The 
knowledge of the processes giving rise to LDF signals is of 

course very important to build such simulations. Recent 
studies conducted on LDF oscillations have shown the 
existence of five characteristic frequencies, that reflect the 
heart beats, the respiration, the myogenic, neurogenic and 
endothelial related metabolic activities (frequencies 
respectively near to 1.1 Hz, 0.36 Hz, 0.1 Hz, 0.04 Hz, and 
0.01 Hz for healthy humans) [5], [6], [9]-[11]. 

 
Based on these results, the goal of our work is to go 

further into the simulation of LDF signals. For that purpose, 
we use a model of the cardiovascular system relying on 
nonlinear coupled oscillators [12]-[14]. We simulate the five 
above-mentioned activities, and we numerically generate 
LDF signals. To our knowledge, it is the first time that LDF 
signals are computed with five nonlinear coupled oscillators. 
This work also determines the power spectra of simulated 
and real LDF signals. A comparison between the two kinds 
of spectra is then proposed. Moreover, the influence of the 
couplings chosen in the model, and the presence of 
fluctuations, are analyzed in the frequency domain. To our 
knowledge, this work is also the first one to propose a 
comparison, in the frequency domain, of numerically 
simulated LDF data with real recordings. 

 

II. MODELING OF LDF SIGNALS 

A. Introduction 
It has recently been shown that, on the time scale of one 

average circulation period, the cardiovascular system 
behaves in many ways as a set of five coupled, autonomous, 
nonlinear oscillators of different frequencies [10], [13]-[16]. 
Indeed, on a time scale of around one minute there are five 
almost periodic oscillatory subsystems contributing to the 
regulation of blood flow. Each oscillation observed in the 
cardiovascular signals is therefore hypothesized to originate 
from a subsystem that can oscillate autonomously [14]. The 
subsystem can be described as an oscillator and the 
interactions between the subsystems as couplings between 
the oscillators [12]. Based on physiological understanding 
and analysis of measured time series, an oscillator that 
possesses a structural stability and robustness was proposed 
for the basic unit to model the cardiovascular system [13]. 
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( )554422222 xxxqyy θθω +++−=&           (15) Our study relies on this modeling; the two state variables 
xi and yi correspond to the blood flow and the velocity of the 
flow, respectively, where i = 1 is generated by the heart, i = 
2 by respiration, i = 3 by the myogenic oscillator, i = 4 by 
the neurogenic oscillator, and i = 5 by the metabolic 
oscillator. Each of the five oscillators generates or regulates 
the flow, the pressure or the resistance.  

( )554433333 xxyqxx γγω −+−−=&           (16) 
( )554433333 yyxqyy γγω −++−=&           (17) 
( )55332244444 xxxyqxx ρρρω −+−−−=&        (18) 
( )55332244444 yyyxqyy ρρρω −+−+−=&        (19) 
( )44332255555 xxxyqxx σσσω −−+−−=&        (20) 

The preliminary simulations of the model were restricted 
to the cardio-respiratory interactions, with only two 
oscillators i = 1, 2 taken into account [12], [17]. In our work 
we go further by taking into account the whole 
cardiovascular system. The five above-mentioned activities 
are thus numerically generated with five nonlinear coupled 
oscillators. Based on these simulations, we then propose to 
compute LDF data. Moreover, the first simulations of the 
cardio-respiratory interactions suggested that there is a 
mixture of linear and parametric couplings, but that the 
linear couplings seem to dominate [12]. However, it is 
essential to take into account the influence of stochastic 
effects resulting from the (unmodeled) rest of the 
system [12], [17]. In what follows, linear and parametric 
couplings are studied, and the influence of the rest of the 
system is modeled by introducing slight time variations for 
the characteristic frequencies. 

( )44332255555 yyyxqyy σσσω −−++−=&        (21) 
where ηi, θi, γi, ρi, et σi are coupling terms (1≤ i ≤ 5). 

iiiii ayxq −




 += 22α                (22) 

where iα , ai are constants, 
( )( )tisifsifi C ζπω ××+= __2

iζ

 with fi_s the characteristic 

frequencies, C a constant, and  a white Gaussian noise 

with mean 0 and variance 1. 

( )t

 

D. Couplings values and LDF signal computation 
For the linear and parametric couplings, the following 

values are chosen [12]: 
η3 = -0.5, ρ3 = 0.1, σ3 = 0.1, η2 = -η4 = η5 = 0.5, θ4 = θ5 = 0.1, 
γ4 = γ5 = 0.1, ρ2 = ρ5 = 0.1, and σ2 = σ4 = 0.1. αi = 1 for i = 1 
to 5, and finally a1 = a5 = 0.5; a2 = a3 = a4 = 1.  

In order to simulate LDF signals recorded on humans, the 
values of the characteristic frequencies are set as follows: 
f1 = 1.1 Hz, f2 = 0.36 Hz, f3 = 0.1 Hz, f4 = 0.04 Hz, and f5 = 
0.01 Hz. The influence of the rest of the system is studied by 
modifying the value of C. The latter is chosen equal to 0, 
0.1, 0.2, 0.3, or 0.4. Moreover, a sampling frequency of 
20 Hz is proposed for the computations.  

B. Linear couplings 
For this case, the modeling is chosen as [12]: 

5544332211111 xxxxyqxx ηηηηω +−−+−−=&     (1) 

5544332211111 xxxyxqyy ηηηηω +−−++−=&     (2) 

554422222 xxyqxx θθω ++−−=&           (3) 

554422222 xxxqyy θθω +++−=&           (4) No simulation of LDF data has ever relied on the five 
nonlinear coupled oscillators. In our work we propose to 
compute the blood flow as: 

554433333 xxyqxx γγω −+−−=&           (5) 

554433333 yyxqyy γγω −++−=&           (6) 

∑
=

=
5

1i
ixBloodFlow ,                (23) 55332244444 xxxyqxx ρρρω −+−−−=&       (7) 

55332244444 yyyxqyy ρρρω −+−+−=&       (8) 
and 21324 points of signals are simulated. Once the blood 
flow numerically computed, the data are processed in order 
to obtain their power spectra. 

44332255555 xxxyqxx σσσω −−+−−=&       (9) 

44332255555 yyyxqyy σσσω −−++−=&        (10) 
 where ηi, θi, γi, ρi, and σi are coupling terms (1≤ i ≤ 5). 

iiiii ayxq −




 += 22α                (11) III. RESULTS AND DISCUSSION 

where αi, ai are constants, ( )( )tisifCsifi ζπω ××+= __2  

with fi_s the characteristic frequencies, C a constant, and 
 a white Gaussian noise with mean 0 and variance 1. ( )tiζ

 

C. Parametric couplings 
For this other case, the modeling is chosen as [12]: 

( 5544332211111 xxxxyqxx )ηηηηω +−−+−−=&      (12) 
( 5544332211111 xxxyxqyy )ηηηηω +−−++−=&      (13) 

The power spectrum of a simulated signal is shown in 
Fig. 1. For each kind of coupling, and for each value of C, 
five peaks appear on the power spectra of the simulated 
data. For the linear couplings, and for C = 0, the peaks 
appear at the following frequencies: 1.1002 Hz, 0.3606 Hz, 
0.0910 Hz, 0.0385 Hz, and 0.0150 Hz. A comparison with 
the characteristic frequencies chosen in the model allows to 
conclude that these peaks correspond to the cardiac, 
respiratory, myogenic, neurogenic, and endothelial related 
metabolic activities, respectively. The simulated data thus 
reflect the underlying processes of the microcirculation (this 
is true for each coupling and for each value of C). These ( 554422222 xxyqxx )θθω ++−−=&           (14) 



 
 

 

results are meaningful to better appreciate the amount and 
impact of the couplings between the nonlinear oscillators. 
Strong couplings and nonlinearities would be expected to 
lead to broadband spectra. Meanwhile, both the simulated 
and experimental data reveal that the harmonic 
frequencies (peaks) of the underlying individual oscillators 
are relatively preserved in the spectra, suggesting a moderate 
impact of the couplings between the nonlinear oscillators. 
The computation of the power spectrum for a real LDF 
signal reveals that one broad peak is predominant for real 
data (see Fig. 2). It appears at 0.9131 Hz, and thus may 
reflect the cardiac activity. The other peaks seem to be 
hidden by "noise": respiration, myogenic, neurogenic, and 
endothelial related metabolic activities are difficult to 
distinguish from the power spectra of real data.  

Previous studies using a similar mathematical model to 
simulate the the cardio-respiratory interactions suggested 
that there is a mixture of linear and parametric couplings, 
but that the linear couplings seem to dominate [12]. The 
results of our work are in accordance with the authors 
conclusion. Indeed, we have shown that the linear couplings 
are more adequate than the parametric couplings to reflect 
power spectra of LDF signals at frequencies higher than 
1 Hz. Moreover, the same authors have shown that, in order 
to explain the variability of cardiac and respiratory 
frequencies, it is essential to take into account the rest of the 
system, i.e. to consider the effect of noise [12]. 
Physiological data recordings contain noise that can come 
from the instrument, from the quantization of analog signals 
or from physiological phenomena (interactions with the rest 
of the system). This implies a complex modulation of the 
natural frequency in  the   subsystem    under    study.   In 
the case of weak noise, the generalized phase 
 

Moreover, whatever the couplings chosen for the 
simulated data, we note that the higher the value of C, the 
more noisy the power spectra are (see Figs. 1 and 3). For the 
linear couplings and for C = 0.4, the peaks appear at 
1.0810 Hz, 0.3616 Hz, 0.0915 Hz, 0.0385 Hz, and 
0.0155 Hz. A comparison with the values mentioned above 
for C = 0 shows that the peak frequencies on the power 
spectra are only very slightly modified by the noise. As 
mentioned previously, noise is also present on power spectra 
of real LDF signals (see Fig. 2). Therefore, in order to 
simulate data behaving close to real LDF signals, we will 
choose C ≠ 0 in what follows.  
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An analysis of the power spectra obtained by each kind of 
coupling can also be made. For a given value of C (C ≠ 0), 
the power spectra of data obtained with linear couplings are 
more noisy at frequencies higher than 1 Hz than the spectra 
of data obtained with parametric couplings (see Fig. 4). We 
also note that the power spectrum of a real signal is very 
noisy at high frequencies (see Fig. 2). The linear couplings 
seem therefore more adequate than the parametric couplings 
to reflect power spectra of LDF signals at frequencies higher 
than 1 Hz. Moreover, the power spectra of real data are 
much more noisy in the lowest frequency band than the 
power spectra of simulated data. For the latter, at low 
frequencies, we can see that the five peaks generated by the 
five activities are present at the nearly same frequencies for 
the two kinds of coupling (see Fig. 4).  

Fig. 1.  Power spectrum of a simulated LDF signal              
obtained with five nonlinear coupled oscillators.                                        

Linear coupling is used and C = 0. 
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 Our study relies on a mathematical model based on 
nonlinear coupled oscillators. Linear and parametric 
couplings have been tested. In reality, each oscillator of the 
model represents a whole set of oscillators which are 
spatially distributed. Moreover, couplings change with the 
state of the system. It has been shown that better-trained 
subjects have stronger couplings, whereas weak couplings 
lead to some pathological stages (subjects in coma for 
example, have almost no couplings) [18]. Understanding the 
physical and physiological nature of these couplings is 
therefore essential to gain a better insight into the 
functioning of the whole system. Furthermore, several 
observations demonstrated clearly that different states of the 
organism may correspond to different regimes of 
synchronization (see [12], and references therein). This can 
be of clinical significance.  

Fig. 2.  Power spectrum of a LDF signal recorded                         
on a healthy subject at rest. 



 
 

 

difference (relative phase), corresponding to the 
synchronization, fluctuates in a random way around a 
constant value. For strong noise, phase slips may occur. Our 
study on power spectra of simulated data leads to the same 
conclusion: in order to simulate data behaving close to real 
LDF signals, the constant C  have to be set to a value 
different from 0.  

ACKNOWLEDGMENT 
The authors would like to thank A. Stefanovska and 

P. V. E. McClintock for their helpful comments on the 
model used. 

REFERENCES 
An improvement in the understanding of the couplings is 

now necessary for the construction of more complex 
mathematical models of LDF signals that will provide 
relevant physiological information. For that purpose, we 
could add a part of parametric couplings to the linear 
couplings, or find other more appropriate couplings. Once 
the knowledge on these couplings adequate, it will become 
possible to reverse the process, i.e. to diagnose the state of 
the system from a single measurement of the peripheral 
blood flow.  

[1] A. Humeau, W. Steenbergen, H. Nilsson, and T. Strömberg, "Laser 
Doppler perfusion monitoring and imaging: novel approaches," Med. 
Biol. Eng. Comput.. DOI: 10.1007/s11517-007-0170-5, 2007. 

[2] G. E. Nilsson, T. Tenland, and P. Å. Öberg, "A new instrument for 
continuous measurement of tissue blood flow by light beating 
spectroscopy," IEEE Trans. Biomed. Eng., vol. BME-27, pp. 12-19, 
1980.  

[3] G. E. Nilsson, T. Tenland, and P. Å. Öberg, "Evaluation of a laser 
Doppler flowmeter for measurement of tissue blood flow," IEEE 
Trans. Biomed. Eng., vol. BME-27, pp. 597-604, 1980.  

[4] D. W. Watkins and G. A. Holloway, "An instrument to measure 
cutaneous blood flow using the Doppler shift of laser light," IEEE 
Trans. Biomed. Eng., vol. BME-25, pp. 28-33, 1978.  

[5] H. D. Kvernmo, A. Stefanovska., K. A. Kirkerboen, and K. Kvernebo, 
"Oscillations in the human cutaneous blood perfusion signal modified 
by endothelium-dependent and endothelium-independent 
vasodilators," Microvasc. Res., vol. 57, pp. 298-309, 1999. 

10-4 10-3 10-2 10-1 100 101
10-8

10-6

10-4

10-2

100

102

104

Frequency (Hz)

Po
w

er
 s

pe
ct

ru
m

 (a
.u

.)

 

[6] H. D. Kvernmo, A. Stefanovska, M. Bracic, K. A. Kirkerboen, and K. 
Kvernebo, "Spectral analysis of the laser Doppler perfusion signal in 
human skin before and after exercise," Microvasc. Res., vol. 56, pp. 
173-182, 1998. 

[7] A. Bollinger, A. Yanar, U. Hoffmann, and U. K. Franzeck, "Is high-
frequency flux motion due to respiration or to vasomotion activity?," 
in Vasomotion and flow motion. Progress in Applied 
Microcirculation, C. Allegra, M. Intaglietta, K. Messmer, Basel, 
Karger, vol. 20, 1993, pp. 52-58. 

[8] D. Popivanov, A. Mineva, and J. Dushanova, "Dynamic characteristics 
of laser-Doppler flux data," Technology and Health Care, vol. 7, pp. 
205-218, 1999.  

[9] T. Söderström, A. Stefanovska, M. Veber, and H. Svensson, 
"Involvement of sympathetic nerve activity in skin blood flow 
oscillations in humans," Am. J. Physiol. Heart Circ. Physiol., vol. 284, 
pp. H1638-H1646, 2003. 

Fig. 3.  Power spectrum of a simulated LDF signal              
obtained with five nonlinear coupled oscillators.                     

Linear coupling is used and C = 0.4. 

[10] A. Stefanovska, M. Bracic, and H. D. Kvernmo, "Wavelet analysis of 
oscillations in the peripheral blood circulation measured by laser 
Doppler technique," IEEE Trans. Biomed. Eng., vol. 46, pp. 1230-
1239, 1999. 

[11] A. Humeau, A. Koïtka, P. Abraham, J. L. Saumet, and J. P. L'Huillier, 
"Spectral components of laser Doppler flowmetry signals recorded on 
healthy and type 1 diabetic subjects at rest and during a local and 
progressive cutaneous pressure application: scalogram analyses," 
Phys. Med. Biol., vol. 49, pp. 3957-3970,  2004. 

10-4 10-3 10-2 10-1 100 101
10-10

10-8

10-6

10-4

10-2

100

102

104

Frequency (Hz)

P
ow

er
 s

pe
ct

ru
m

 (a
.u

.)

 

[12] A. Stefanovska, D. G. Luchinsky, and P. V. E. McClintock, 
"Modelling couplings among the oscillators of the cardiovascular 
system," Physiol. Meas., vol. 22, pp. 551-564, 2001. 

[13] A. Stefanovska, M. Bracic Lotric, S. Strle, and H. Haken, "The 
cardiovascular system as coupled oscillators?," Physiol. Meas., 
vol. 22, pp. 535-550, 2001. 

[14] A. Stefanovska, S. Strle, M. Bracic, and H. Haken, "Model synthesis 
of the coupled oscillators which regulate human blood flow 
dynamics," Nonlinear Phenomena in Complex Systems, vol. 2, pp. 72-
87, 1999. 

[15] A. Stefanovska and M. Bracic, "Physics of the human cardiovascular 
system," Contemporary Physics, vol. 40, pp. 31-55, 1999. 

[16] M. Bracic Lotric, A Stefanovska, D. Stajer, and V. Urbancic-Rovan, 
"Spectral components of heart rate variability determined by wavelet 
analysis," Physiol. Meas., vol. 21, pp. 441-457, 2001. 

[17] P. V. E. McClintock and A. Stefanovska, "Noise and determinism in 
cardiovascular dynamics," Physica A, vol. 314, pp. 69-76, 2002. Fig. 4.  Power spectra of simulated LDF signals, when linear 

couplings are chosen (full line), and when parametric couplings are 
chosen (dotted line). C = 0.1 for both couplings. 

[18] M. Bracic and A. Stefanovska, "Reconstructing cardiovascular 
dynamics," Control Eng. Pract., vol. 7, pp. 161-172, 1999. 

 


	INTRODUCTION
	Modeling of LDF Signals
	Introduction
	Linear couplings
	Parametric couplings
	Couplings values and LDF signal computation

	Results and Discussion



