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ABSTRACT

Linear sensors very commonly display saturation at large in-
puts. Large information-carrying signals are thus distorted in
their transduction by such sensors. We show that purpose-
ful addition of noise, in various conditions, can be used as a
means of reducing the distortion experienced by large signals
in their transduction. This can occur when the noise plays
the role of a random bias to isolated sensors. This can oc-
cur also through a distinct mechanism of improvement by
noise, arising when the sensors are replicated in parallel ar-
rays providing enriched representation capability. Thesetwo
distinct mechanisms of improvement by noise, demonstrated
here with saturating sensors, can be viewed as extensions of
the phenomenon of stochastic resonance, both in isolated non-
linearities and in arrays of nonlinearities.

1. INTRODUCTION

When signal and noise interact nonlinearly, there exists a pos-
sibility for the noise to cooperate constructively with thesig-
nal. This can give way to an improvement of the performance
of some processing done on the signal thanks to the action
of the noise. This possibility is generically known under the
name of stochastic resonance [1, 2, 3]. Since its introduction
some twenty years ago in the context of geophysics [4, 5],
stochastic resonance has gradually been observed in a still-
increasing variety of processes, including electronic circuits
[6, 7], optical devices [8, 9], chemical reactions [10, 11],neu-
rons [12, 13].

Thus far, stochastic resonance has mainly been reported
with nonlinear systems incorporating thresholds or potential
barriers [14, 2, 15, 3, 16]. In these circumstances, the mech-
anism of improvement, qualitatively, is that the noise assists
small signals in overcoming the thresholds or barriers. Re-
cently, another form of stochastic resonance was proposed
in [17, 18], with parallel arrays of threshold devices, under
the name of suprathreshold stochastic resonance. This form
in [17, 18] applies to signals of arbitrary amplitude, which
do not need to be small and subthreshold, whence the name.
This suprathreshold stochastic resonance operates through a
distinct mechanism of improvement, based on independent
noises injected onto the devices, to induce more variability
and a richer representation capability in the individual re-
sponses collected over the array. Several extensions of this

form of suprathreshold stochastic resonance have been pro-
posed in [19, 20, 21, 22]. The name “suprathreshold” stochas-
tic resonance might suggest that the threshold is an essential
ingredient. In the present report, we will show that a compara-
ble effect of noise improvement in parallel arrays of sensors,
can be obtained with threshold-free devices representing sen-
sors linear for small to moderate inputs and saturating at large
inputs. The present results extend both on stochastic reso-
nance concerning isolated saturating nonlinearities [23]and
concerning arrays of threshold nonlinearities [17, 22].

2. SENSORS WITH SATURATION

We consider a generic sensor whose input–output character-
istic is modeled by the memoryless functiong(.). A central
concern in sensors design is often to realize a characteristic
g(.) which is as linear as possible, at least for inputs which
are not too large. At the same time, at large inputs, linear sen-
sors very commonly will display saturation. We will model
such sensors, alternatively, by the soft saturation

g(u) = tanh(βu) , (1)

or the hard-limiting saturation

g(u) =







−1 for βu ≤ −1
βu for − 1 < βu < 1
1 for βu ≥ 1 ,

(2)

with the sensitivity parameterβ > 0.
These saturating sensorsg(.) are used here for the trans-

duction of an input signalx(t). This inputx(t) is considered
of sufficiently large amplitude, so as to drive the sensors in
their saturating regions, at least on some occasions, in such
a way thatx(t) experiences a strong distortion in its trans-
duction. We will show that this distortion can be reduced by
addition of noise, via two distinct possible mechanisms of sto-
chastic resonance.

For this purpose, we introduce a parallel array ofN iden-
tical sensorsg(.) receiving the input signalx(t), according
to the configuration of Fig. 1, similar to the architecture also
considered in [24, 25, 17]. For the stochastic resonance, we
arrange for the possibility of a noiseηi(t), independent of
x(t), to be added tox(t) at each sensori. Accordingly, each
sensori produces the output signal

yi(t) = g[x(t) + ηi(t)] , i = 1, 2, . . .N . (3)



Fig. 1. Parallel array ofN identical sensorsg(.).

The N sensor noisesηi(t) are white, mutually indepen-
dent and identically distributed with cumulative distribution
function Fη(u) and probability density functionfη(u) =
dFη(u)/du. The responsey(t) of the array is obtained by
averaging the outputs of all the sensors, as

y(t) =
1

N

N
∑

i=1

yi(t) . (4)

3. TRANSMISSION OF A PERIODIC SIGNAL

To illustrate the possibility of a noise-improved transmission
with the saturating sensors, we consider as our information-
carrying signal a deterministic periodic components(t) with
periodTs and “large” amplitude. This signals(t) is corrupted
by ξ(t) a stationary white noise, independent of boths(t) and
the ηi(t), and with probability density functionfξ(u). The
sensors thus receive at their input the signal-plus-noise mix-
turex(t) = s(t) + ξ(t).

An appropriate measure to assess the transmission of the
periodic signals(t) by the array, is a signal-to-noise ratio
(SNR), defined in the frequency domain, and which measures,
in the output signaly(t), the part contributed by the periodic
input and the part contributed by the noise [26, 2]. Whens(t)
is deterministic periodic with periodTs, the output signaly(t)
generally is a cyclostationary random signal, endowed witha
power spectrum containing spectral lines at integer multiples
of 1/Ts, emerging out of a continuous noise background [26].
The SNRRout is defined as the power contained in the out-
put spectral line at the fundamental1/Ts divided by the power
contained in the noise background in a small frequency band
∆B around1/Ts.

For the output signaly(t) of Eq. (4), the power contained
in the output spectral line at the frequency1/Ts is given [26]
by |Y 1|2, whereY 1 is the Fourier coefficient at the funda-
mental of theTs-periodic nonstationary output expectation

E[y(t)], i.e.

Y 1 =

〈

E[y(t)] exp
(

− ı
2π

Ts

t
)

〉

, (5)

with the time average defined as

〈...〉 =
1

Ts

∫ Ts

0

... dt . (6)

The magnitude of the continuous noise background in the
output spectrum is measured [26] by the stationarized output
variance〈var[y(t)]〉, with the nonstationary variance given by
var[y(t)] = E[y2(t)] − E[y(t)]2 at a fixed timet.

A signal-to-noise ratioRout, at the fundamental frequency
1/Ts in the ouputy(t), follows as

Rout =
|Y 1|2

〈var[y(t)]〉∆t ∆B
, (7)

where∆t is the time resolution of the measurement (i.e. the
signal sampling period in a discrete-time implementation),
throughout this study we take∆t∆B = 10−3.

At time t, for a fixed given valuex of the inputx(t), one
has, according to Eq. (4), the conditional expectations

E[y(t)|x] = E[yi(t)|x] (8)

and

E[y2(t)|x] =
1

N
E[y2

i (t)|x] +
N − 1

N
E2[yi(t)|x] (9)

which are independent ofi since theηi(t) are i.i.d. Further-
more, because of Eq. (3), one has for anyi,

E[yi(t)|x] =

∫ +∞

−∞

g(x + u)fη(u)du (10)

and

E[y2
i (t)|x] =

∫ +∞

−∞

g2(x + u)fη(u)du . (11)

Also, sincex(t) = s(t) + ξ(t), the probability density for
the valuex is fξ

(

x − s(t)
)

, yielding

E[y(t)] =

∫ +∞

−∞

E[y(t)|x]fξ

(

x − s(t)
)

dx , (12)

and

E[y2(t)] =

∫ +∞

−∞

E[y2(t)|x]fξ

(

x − s(t)
)

dx . (13)

Now, from these Eqs. (8)–(13), the output SNRRout of
Eq. (7) can be computed for the transmission ofs(t) by the
array. Especially, the SNRRout is obtained as a function of
the properties of the input noiseξ(t) and of the sensor noises
ηi(t) conveyed by the probability densitiesfξ(u) andfη(u),
and for arbitrary choices concerning the waveform of the pe-
riodic components(t), the sensor characteristicg(.), and the
array sizeN .



4. NOISE-IMPROVED TRANSMISSION

4.1. Enriched representation by noise

For the saturating sensors of Eqs. (1)–(2), we demonstrate
with the SNRRout in various representative conditions, that
the transmission of large input signalss(t) that saturate the
sensors, can be improved by addition of a nonzero amount of
the sensor noisesηi(t).

Whereas the input noiseξ(t) is considered as a noise im-
posed by the external environment (and chosen Gaussian throu-
ghout), the sensor noisesηi(t) are considered as purposely
added noises applied to influence the operation of the array.
When the noisesηi(t) are distributed with a densityfη(u)
uniform over[−

√
3ση,

√
3ση], associated with the soft satu-

ration of Eq. (1), the integrals of Eqs. (10)–(11) give

E[yi(t)|x] =
1

2
√

3βση

ln

(

cosh
[

β
(

x +
√

3ση

)]

cosh
[

β
(

x −
√

3ση

)]

)

(14)

and

E[y2
i (t)|x] =

1

2
√

3βση

(

tanh
[

β
(

x −
√

3ση

)]

+

2
√

3βση − tanh
[

β
(

x +
√

3ση

)]

)

. (15)

For the transmission of a sinusoidal input signal

s(t) = A cos(2πt/Ts) , (16)

the SNRRout resulting from Eq. (7) is represented in Fig. 2.
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Fig. 2. Signal-to-noise ratioRout of Eq. (7) at the output of
the array of sensors, as a function of the rms amplitudeση

of the sensor noisesηi(t) chosen zero-mean uniform. The
periodic input iss(t) = 2 cos(2πt/Ts) buried in a zero-mean
Gaussian noiseξ(t) with rms amplitudeσξ = 2. The array
is made ofN identical sensorsg(.) with β = 1 and the soft
saturation of Eq. (1).

When the noisesηi(t) are distributed with a zero-mean
Gaussian densityfη(u) with standard deviationση, associ-
ated with the hard saturation of Eq. (2), the integrals of Eqs.
(10)–(11) give

E[yi(t)|x] = 1 − (1 + βx) Fη

(

− 1

β
− x
)

−

(1 − βx) Fη

( 1

β
− x
)

+

βσ2
η

[

fη

(

−
1

β
− x
)

− fη

( 1

β
− x
)

]

(17)

and

E[y2
i (t)|x] = 1 +

(

1 − β2x2 − β2σ2
η

)

[

Fη

(

− 1

β
− x
)

− Fη

( 1

β
− x
)

]

−

β2σ2
η

[

(

x +
1

β

)

fη

( 1

β
− x
)

−
(

x− 1

β

)

fη

(

− 1

β
− x
)

]

.(18)

For the transmission of the sinusoidal signals(t) of Eq. (16),
the SNRRout resulting from Eq. (7) is represented in Fig. 3.
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Fig. 3. Signal-to-noise ratioRout of Eq. (7) at the output of
the array of sensors, as a function of the rms amplitudeση

of the sensor noisesηi(t) chosen zero-mean Gaussian. The
periodic input iss(t) = 2 cos(2πt/Ts) buried in a zero-mean
Gaussian noiseξ(t) with rms amplitudeσξ = 2. The array
is made ofN identical sensorsg(.) with β = 1 and the hard
saturation of Eq. (2).

Figures 2–3 reveal similar features concerning the trans-
mission by the saturating sensors. The sinusoidal signals(t)
of Eq. (16), apart from its large amplitudeA that saturates the
sensors, is optimally centered in relation to the characteris-
tics of Eqs. (1)–(2). As a result, in Figs. 2–3, with a single
sensor (N = 1) no improvement of the output SNRRout oc-
curs as the levelση of the sensor noisesηi(t) is increased,



but a monotonic degradation ofRout asση grows. By con-
trast, when the sensors are replicated in arrays of moderate
size (N & 5), the added noisesηi(t) start to play a construc-
tive role, and an improvement of the output SNRRout occurs.
Thanks to the addded noisesηi(t), each sensor in the array
responds differently to the same input signalx(t), instead of
responding in unison. This allows a richer representation of
the inputx(t) when all the individual sensor outputsyi(t) are
collected over the array, and this translates into an enhance-
ment of the SNRRout which culminates at a maximimum for
an optimal nonzero amount of the sensor noises. Thanks to
this action of the noise enabling a richer represenation capa-
bility, the array with added noisesηi(t) performs better than
a single sensor with no added noise. Figures 2–3 also show
that the efficacy of enhancement of the output SNRRout gets
more pronounced as the array sizeN increases.

4.2. Biasing by noise

For the signals(t) of Eq. (16), which is optimally centered
in relation to the sensor characteristics of Eqs. (1)–(2), the
mechanism of improvement by addition of noise is, qualita-
tively, an enriched representation capability afforded bythe
sensor noisesηi(t) when the sensors are replicated in an ar-
ray. As a result, this mechanism does not operate with a single
sensor, as shown by the caseN = 1 in Figs. 2–3 where no im-
provement of the SNRRout takes place when the noise level
ση increases.

Another distinct mechanism is possible for improvement
by addition of noise. This mechanism will operate in the pres-
ence of a signals(t) not optimally centered in relation to the
sensor characteristics of Eqs. (1)–(2). On the contrary, the sig-
nals(t) will be strongly offset towards the saturating regions
of the sensors, for instance according to the model

s(t) = S0 + A cos(2πt/Ts) , (19)

whereS0 is a “large” DC component of the sinusoidal input
s(t).

In such condition, Fig. 4 shows the resulting SNRRout

from Eq. (7) at the output of an array of hard-saturation sen-
sors as in Eq. (2).

In the condition of Fig. 4, because of the strong offset
S0 = 3, the input signals(t) = 3 + 2 cos(2πt/Ts) evolves
permanently above the saturation level1/β = 1 of the sen-
sors with the hard characteristic of Eq. (2). Consequently,s(t)
alone would only elicit a constant responseyi(t) = 1 from the
sensors, and any information concerning the temporal varia-
tion of s(t) would be lost at the output. This would translate
into a zero SNRRout at the output. The presence of the in-
put noiseξ(t) induces a cooperation withs(t), so as to bring,
on some occasions, the input signals(t) + ξ(t) back into the
linear part of the characteristic of the sensors of Eq. (2). This
produces a responseyi(t) at the sensor output, which bears
some correlation with the coherent inputs(t). This translates
into a nonzero output SNRRout thanks to the action of the
native input noiseξ(t), which is visible in Fig. 4 atση = 0
when no sensor noisesηi(t) are added. This action of the
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Fig. 4. Signal-to-noise ratioRout of Eq. (7) at the output of
the array of sensors, as a function of the rms amplitudeση

of the sensor noisesηi(t) chosen zero-mean Gaussian. The
periodic input iss(t) = 3 + 2 cos(2πt/Ts) buried in a zero-
mean Gaussian noiseξ(t) with rms amplitudeσξ = 0.5. The
array is made ofN identical sensorsg(.) with β = 1 and the
hard saturation of Eq. (2).

noise can be viewed as a form of biasing by noise: addition
of noise moves the operating zone of a nonlinearity towards
a region more favorable, on average, to the processing of the
coherent signal.

This beneficial action of the noise persists when more
noise is added through injection of the sensor noisesηi(t).
This is specifically observed atN = 1 in Fig. 4, with a single
sensor, where the SNRRout can be increased by purposeful
application of the noiseη1(t). This injected noiseη1(t) adds
up to the native noiseξ(t), and reinforces the favorable effect
of the biasing by noise, the efficacy of which culminates for
an optimal nonzero rms level ofη1(t) maximizingRout. At
N = 1 with a single sensor, the array effect of Section 4.1
does not take place, and it is the distinct mechanism of bias-
ing by noise which is responsible for the enhancement of the
output SNRRout observed in Fig. 4 when the noise levelση

is raised above zero.
At N > 1 in Fig. 4, in genuine arrays, both mechanisms

of improvement by noise can operate: the array effect of en-
riched representation as in Section 4.1, and the effect of bias-
ing by noise already occuring atN = 1.

Both mechanisms also apply, in a similar way, with arrays
of soft-saturation sensors as in Eq. (1), as illustrated by Fig. 5.

5. CONCLUSION

The present results illustrate the possibility of two distinct
mechanisms by which the noise can play a part in improving
the transduction of an information-carrying signal by saturat-
ing sensors. Both mechanisms can also operate, in similar



0 1 2 3 4 5 6 7

10
0

10
1

10
2

10
3

array noise rms amplitude ση

ou
tp

ut
 S

N
R

N=1 

N=2 
N=5 

N=15 

N=63 

N=255 

N=∞

Fig. 5. Signal-to-noise ratioRout of Eq. (7) at the output of
the array of sensors, as a function of the rms amplitudeση

of the sensor noisesηi(t) chosen zero-mean uniform. The
periodic input iss(t) = 5 + cos(2πt/Ts) buried in a zero-
mean Gaussian noiseξ(t) with rms amplitudeσξ = 0.5. The
array is made ofN identical sensorsg(.) with β = 1 and the
soft saturation of Eq. (1).

ways, in other types of nonlinearities like for instance thresh-
old nonlinearities.

The first mechanism is an effect of biasing by noise. It can
operate in isolated nonlinearities, where added noise some-
how shifts the operating zone towards a region more favor-
able to the signal. This mechanism is also known as a form of
stochastic resonance, especially reported and analyzed onthe
occasion of threshold nonlinearities [27, 26, 3]. The present
results illustrate that this mechanism also applies with satu-
rating nonlinearities.

The second mechanism of improvement by noise is an ef-
fect of enriched representation in nonlinear arrays. Added
noises force devices replicated in a parallel array to respond
differently to a common input signal, henceforth producing
a richer signal representation at the global level of the array.
When applied to threshold nonlinearities, this mechanism was
presented under the name of suprathreshold of stochastic res-
onance in [17]. Our results here demonstrate that this mech-
anism is not restricted to threshold nonlinearities. It is essen-
tially a collective effect in nonlinear arrays, which does not
require a threshold, but can in fact occur in many types of
smooth, threshold-free, nonlinearities.

Also, the two mechanisms of improvement by noise in
saturating sensors were shown here in the transduction of a
periodic signal measured by the SNRRout of Eq. (7), but
based on previous studies of stochastic resonance, it is likely
that similar effects will carry over to the transmission or proc-
essing of other (nonperiodic) signals with other measures of
performance.

Beyond the case of the saturating nonlinearities that we
have tested here, it is important to bear in mind that these two

distinct mechanisms of improvement by noise, can possibly
apply to improve the performance of many different types of
nonlinear sensors. This will be specially relevant when no full
control is available on a nonlinear sensor characteristic,and
when henceforth purposeful addition of noise can be envis-
aged as a means of improving the performance.

Also, the reported mechanisms of improvement by noise
are relevant to a class of natural processes involved in com-
plex information processing tasks, namely, neuronal processes.
These processes incorporate in a prevalent way the basic in-
gredients lying at the root of the reported effects (noise, ar-
rays, nonlinearities, saturation, threshold, . . . ), from which,
and by which, very efficient information processing ensues.
This can suggest the development of new generations of non-
linear sensing arrays, with neural inspiration, for intelligent
information processing benefiting from their ability to exploit
the noise.
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“Noise-enhanced propagation in a dissipative chain
of triggers,” International Journal of Bifurcation and
Chaos, vol. 12, pp. 1–5, 2002.

[17] N. G. Stocks, “Suprathreshold stochastic resonance in
multilevel threshold systems,”Physical Review Letters,
vol. 84, pp. 2310–2313, 2000.

[18] N. G. Stocks, “Information transmission in parallel
threshold arrays: Suprathreshold stochastic resonance,”
Physical Review E, vol. 63, pp. 041114,1–9, 2001.

[19] N. G. Stocks and R. Mannella, “Generic noise-enhanced
coding in neuronal arrays,”Physical Review E, vol. 64,
pp. 030902,1–4, 2001.

[20] M. D. McDonnell, D. Abbott, and C. E. M. Pearce, “A
characterization of suprathreshold stochastic resonance
in an array of comparators by correlation coefficient,”
Fluctuation and Noise Letters, vol. 2, pp. L205–L220,
2002.

[21] D. Rousseau, F. Duan, and F. Chapeau-Blondeau,
“Suprathreshold stochastic resonance and noise-
enhanced Fisher information in arrays of threshold
devices,”Physical Review E, vol. 68, pp. 031107,1–10,
2003.

[22] D. Rousseau and F. Chapeau-Blondeau, “Suprathresh-
old stochastic resonance and signal-to-noise ratio im-
provement in arrays of comparators,”Physics Letters A,
vol. 321, pp. 280–290, 2004.

[23] D. Rousseau, J. Rojas Varela, and F. Chapeau-Blondeau,
“Stochastic resonance for nonlinear sensors with satura-
tion,” Physical Review E, vol. 67, pp. 021102,1–6, 2003.

[24] E. Pantazelou, F. Moss, and D. Chialvo, “Noise sampled
signal transmission in an array of Schmitt triggers,” in
Noise in Physical Systems and1/f Fluctuations(P. H.
Handel and A. L. Chung, eds.), pp. 549–552, New York:
AIP Conference Proceedings 285, 1993.

[25] J. J. Collins, C. C. Chow, and T. T. Imhoff, “Stochastic
resonance without tuning,”Nature, vol. 376, pp. 236–
238, 1995.

[26] F. Chapeau-Blondeau and X. Godivier, “Theory of sto-
chastic resonance in signal transmission by static non-
linear systems,”Physical Review E, vol. 55, pp. 1478–
1495, 1997.

[27] L. Gammaitoni, “Stochastic resonance and the dithering
effect in threshold physical systems,”Physical Review
E, vol. 52, pp. 4691–4698, 1995.


