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ABSTRACT form of suprathreshold stochastic resonance have been pro-

Linear sensors very commonly display saturation at large in Posedin[19, 20, 21, 22]. The name “suprathreshold” stochas
puts. Large information-carrying signals are thus disin tic resonance might suggest that the threshold is an eakenti
their transduction by such sensors. We show that purposeingredient. Inthe presentreport, we will show that a corapar
ful addition of noise, in various conditions, can be used as able effect of noise improvement in parallel arrays of ses;sor
means of reducing the distortion experienced by large t8gna ¢an be obtained with threshold-free devices representing s

in their transduction. This can occur when the noise plays SOrs linear for small to moderate inputs and saturatinggela
the role of a random bias to isolated sensors. This can oc/NPuts. The present results extend both on stochastic reso-
cur also through a distinct mechanism of improvement by hance concerning isolated saturating nonlinearities &)
noise, arising when the sensors are replicated in paraflel a concerning arrays of threshold nonlinearities [17, 22].

rays providing enriched representation capability. These

distinct mechanisms of improvement by noise, demonstrated 2. SENSORSWITH SATURATION

here with saturating sensors, can be viewed as extensions of

the phenomenon of stochastic resonance, both in isolated no We consider a generic sensor whose input—output character-
linearities and in arrays of nonlinearities. istic is modeled by the memoryless functigf). A central
concern in sensors design is often to realize a charadterist
¢(.) which is as linear as possible, at least for inputs which
are not too large. At the same time, at large inputs, linear se
sors very commonly will display saturation. We will model
such sensors, alternatively, by the soft saturation

1. INTRODUCTION

When signal and noise interact nonlinearly, there existssa p
sibility for the noise to cooperate constructively with #ig-
nal. This can give way to an improvement of the performance g(u) = tanh(fu) , 1)
of some processing done on the signal thanks to the action I .

! ) e . or the hard-limiting saturation
of the noise. This possibility is generically known undeg th

name of stochastic resonance [1, 2, 3]. Since its introdncti -1 for Bu < —1
some twenty years ago in the context of geophysics [4, 5], gluy=¢ Pu for —1<pPu<l (2)
stochastic resonance has gradually been observed in-a still 1 for Su>1,

increasing variety of processes, including electronicuits
[6, 7], optical devices [8, 9], chemical reactions [10, I§u-
rons[12, 13].

Thus far, stochastic resonance has mainly been reporte
with nonlinear systems incorporating thresholds or padént

ba_rrlers [;4’ 2,15, 3, 16]. In_ thgse cireumstances, the mgch a way thatz(t) experiences a strong distortion in its trans-
anism of improvement, qualitatively, is that the noise stssi

. ) ) . duction. We will show that this distortion can be reduced by
small signals in overcoming the thresholds or barriers. Re-

. (?ddition of noise, via two distinct possible mechanismsof s
cently, another form of stochastic resonance was propose

) ; . hasti .
in [17, 18], with parallel arrays of threshold devices, unde ¢ a;g(r:tﬁzonjngese we introduce a parallel arrayolden-
the name of suprathreshold stochastic resonance. This forn?. purpose, P

. ) : . . . ical sensorg)(.) receiving the input signat(t), according
in [17, 18] applies to signals of arbitrary amplitude, which to the configuration of Fig. 1, similar to the architectursaal
do not need to be small and subthreshold, whence the name

This suprathreshold stochastic resonance operates thieu Considered in [24, 25, 17]. For the stochastic resonance, we
IS sup . . pera 9 arrange for the possibility of a noisg(¢), independent of
distinct mechanism of improvement, based on independent , :
. o . . . x(t), to be added ta:(t) at each sensar Accordingly, each
noises injected onto the devices, to induce more varigbilit

. . L Sl sensot produces the output signal
and a richer representation capability in the individual re P putsig
sponses collected over the array. Several extensionsf thi yi(t) = glz(t) + ni(1)] i=1,2,...N. (3

with the sensitivity parametet > 0.

These saturating sensar§) are used here for the trans-
éiuction of an input signal(¢). This inputz(t) is considered
of sufficiently large amplitude, so as to drive the sensors in
their saturating regions, at least on some occasions, im suc



> Yy
ng —]|9¢/
"g(.) vz,
ng —
S T ‘ y3 E Yy
é‘ g — a(-) >
> YN
n —| 97

Fig. 1. Parallel array ofV identical sensorg(.).

The N sensor noises;(t) are white, mutually indepen-
dent and identically distributed with cumulative disttiloun
function F, (v) and probability density functiorf,,(u)
dF,(u)/du. The responsg(t) of the array is obtained by
averaging the outputs of all the sensors, as

o) = 5 Do) @

3. TRANSMISSION OF A PERIODIC SIGNAL

To illustrate the possibility of a noise-improved transsios
with the saturating sensors, we consider as our information
carrying signal a deterministic periodic componeft with
periodT; and “large” amplitude. This signalt) is corrupted

by £(t) a stationary white noise, independent of bafh and

the n;(¢), and with probability density functiotfe(u). The
sensors thus receive at their input the signal-plus-noige m
turex(t) = s(t) + £(¢).

E[y(t)], i.e.

— 2
V= (Blolen(~ 57) ) ©
with the time average defined as
1%
oy =— oodt (6)
-7,

The magnitude of the continuous noise background in the
output spectrum is measured [26] by the stationarized dutpu
variance(var[y(t)]), with the nonstationary variance given by
var[y(t)] = E[y?(t)] — E[y(t)]? at a fixed timer.

A signal-to-noise rati®,;, at the fundamental frequency
1/Ts in the ouputy(t), follows as

Y1 [?

Fout = (var[y(t)]) At AB ’

()

whereAt is the time resolution of the measurement (i.e. the
signal sampling period in a discrete-time implementation)
throughout this study we tak&tAB = 1073,

At time t, for a fixed given value: of the inputz(¢), one
has, according to Eq. (4), the conditional expectations

Ely(t)|z] = Elyi(t)|] (8)

and
Bl (0] = 5 Bl?Ole] + ~ Bln(le] @)

which are independent éfsince they;(¢) are i.i.d. Further-
more, because of Eq. (3), one has for any

400
HMWﬂ:[ oo +w)fy(wda  (10)
and o
E[yf(t)|:c] = /_ g2(:c +u) fr(u)du . (11)

Also, sincez(t) = s(t) + £(t), the probability density for

An appropriate measure to assess the transmission of thene valuer is fe(z — s(t)), yielding

periodic signals(t) by the array, is a signal-to-noise ratio

(SNR), defined in the frequency domain, and which measures,

in the output signal(t), the part contributed by the periodic
input and the part contributed by the noise [26, 2]. Whén

is deterministic periodic with peridfl;, the output signaj(¢)
generally is a cyclostationary random signal, endowed with
power spectrum containing spectral lines at integer mekip
of 1/Ts, emerging out of a continuous noise background [26].
The SNRR,,; is defined as the power contained in the out-
put spectral line at the fundamentdll’; divided by the power

E[y(t)] (12)

[
[

Now, from these Eqgs. (8)—(13), the output SKR, Of
Eq. (7) can be computed for the transmissiors@) by the

Ely(t)|z] fe(x — s(t))dz
and

E[y°(t)] El*(t)|z]fe(z — s(t))dz . (13)

contained in the noise background in a small frequency bandarray. Especially, the SNR, is obtained as a function of

AB aroundl/Ts.

For the output signaj(t) of Eg. (4), the power contained
in the output spectral line at the frequendyT’s is given [26]
by |Y1|2, whereY is the Fourier coefficient at the funda-
mental of theT-periodic nonstationary output expectation

the properties of the input noigét) and of the sensor noises
7;(t) conveyed by the probability densiti¢is(v) and f,, (u),

and for arbitrary choices concerning the waveform of the pe-
riodic componens(t), the sensor characterisg¢.), and the
array sizeN.



4. NOISE-IMPROVED TRANSMISSION

4.1. Enriched representation by noise

For the saturating sensors of Egs. (1)—(2), we demonstrat
with the SNRR,,; in various representative conditions, that

the transmission of large input signal§&) that saturate the

When the noises;(t) are distributed with a zero-mean
Gaussian density, (u) with standard deviatiow,,, associ-
ated with the hard saturation of Eq. (2), the integrals of.Eqs
(10)—(11) give

€

Bl (O] = 1 - (14 ) By~ = 1) -

sensors, can be improved by addition of a nonzero amount of B

the sensor noisesg (t).
Whereas the input noiggt) is considered as a noise im-

posed by the external environment (and chosen Gaussian thro
ghout), the sensor noiseg(¢) are considered as purposely
added noises applied to influence the operation of the array.

When the noises); (t) are distributed with a density, (u)
uniform over[—+/30,,v/30,], associated with the soft satu-
ration of Eq. (1), the integrals of Egs. (10)—(11) give

(Plg] = 1 N cosh [6($+\/§an)]

Elys(t)la] = 2 Vo, L <Cosh e —v5or)] (14)
and

E[y; (t)]2] = ﬁ ( tanh [3(z — V30,)] +

2380, — tanh [B(z + v30,)] > . (15)

For the transmission of a sinusoidal input signal
s(t) = Acos(2nt/Ty) , (16)

the SNRR,,+ resulting from Eq. (7) is represented in Fig. 2.
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Fig. 2. Signal-to-noise rati®R,,; of Eq. (7) at the output of

the array of sensors, as a function of the rms amplitzge

of the sensor noiseg;(t) chosen zero-mean uniform. The

periodic inputiss(t) = 2 cos(2nt/Ty) buried in a zero-mean

Gaussian nois€(t) with rms amplitudes; = 2. The array

is made ofN identical sensorg(.) with 8 = 1 and the soft
saturation of Eq. (1).
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and

B2 ()] = 1+
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For the transmission of the sinusoidal sigs@) of Eq. (16),
the SNRR,.+ resulting from Eq. (7) is represented in Fig. 3.
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Fig. 3. Signal-to-noise ratidR,,; of Eq. (7) at the output of
the array of sensors, as a function of the rms amplittigle
of the sensor noiseg (t) chosen zero-mean Gaussian. The
periodic inputiss(t) = 2 cos(2nt/Ts) buried in a zero-mean
Gaussian nois€(t) with rms amplitudes; = 2. The array

is made ofN identical sensorg(.) with 5 = 1 and the hard
saturation of Eq. (2).

Figures 2—3 reveal similar features concerning the trans-
mission by the saturating sensors. The sinusoidal sigal
of Eq. (16), apart from its large amplitudethat saturates the
sensors, is optimally centered in relation to the charaster
tics of Egs. (1)—(2). As a result, in Figs. 2—3, with a single
sensor {V = 1) no improvement of the output SNR,,; 0C-
curs as the levet, of the sensor noises;(t) is increased,



but a monotonic degradation &,,; aso, grows. By con-

trast, when the sensors are replicated in arrays of moderate

size (V 2 5), the added noiseg (t) start to play a construc-
tive role, and an improvement of the output SIRR,,; occurs.
Thanks to the addded noisegt), each sensor in the array
responds differently to the same input sign&l), instead of
responding in unison. This allows a richer representatfon o
the inputz(t) when all the individual sensor outpufg(t) are
collected over the array, and this translates into an erdanc
ment of the SNRR . which culminates at a maximimum for

an optimal nonzero amount of the sensor noises. Thanks to

this action of the noise enabling a richer represenatioa-cap
bility, the array with added noiseg(t¢) performs better than

a single sensor with no added noise. Figures 2—-3 also show

that the efficacy of enhancement of the output SRIR; gets
more pronounced as the array si¥encreases.

4.2. Biasing by noise

For the signaks(t) of Eqg. (16), which is optimally centered
in relation to the sensor characteristics of Eqgs. (1)—(#, t
mechanism of improvement by addition of noise is, qualita-
tively, an enriched representation capability affordectoy
sensor noises; (t) when the sensors are replicated in an ar-
ray. As a result, this mechanism does not operate with aesing|
sensor, as shown by the ca$e= 1 in Figs. 2—-3 where no im-
provement of the SNFR,,,.; takes place when the noise level
o, increases.

Another distinct mechanism is possible for improvement
by addition of noise. This mechanism will operate in the pres
ence of a signad(¢) not optimally centered in relation to the
sensor characteristics of Egs. (1)—(2). On the contragysity
nal s(t) will be strongly offset towards the saturating regions
of the sensors, for instance according to the model

s(t) = So + Acos(2nt/Ts) , (19)

wheresSj is a “large” DC component of the sinusoidal input

s(t).

In such condition, Fig. 4 shows the resulting SFR.;

from Eq. (7) at the output of an array of hard-saturation sen-

sors as in Eq. (2).

In the condition of Fig. 4, because of the strong offset
So = 3, the input signak(t) = 3 + 2 cos(2nt/Ts) evolves
permanently above the saturation lev¢3 = 1 of the sen-
sors with the hard characteristic of Eq. (2). Conseques(iy,
alone would only elicit a constant respongg) = 1 from the

output SNR

=
o
N
T

1
10 I I
0 1

4
array noise rms amplitude oy

5

Fig. 4. Signal-to-noise ratidR,; of Eq. (7) at the output of
the array of sensors, as a function of the rms amplituigle
of the sensor noises (t) chosen zero-mean Gaussian. The
periodic input iss(t) = 3 + 2 cos(2nt/Ts) buried in a zero-
mean Gaussian noig¢t) with rms amplituder, = 0.5. The
array is made ofV identical sensorg(.) with 8 = 1 and the
hard saturation of Eq. (2).

noise can be viewed as a form of biasing by noise: addition
of noise moves the operating zone of a nonlinearity towards
a region more favorable, on average, to the processing of the
coherent signal.

This beneficial action of the noise persists when more
noise is added through injection of the sensor noigés).
This is specifically observed &f = 1 in Fig. 4, with a single
sensor, where the SNR,; can be increased by purposeful
application of the noise; (¢). This injected noise; (t) adds
up to the native noisg(t), and reinforces the favorable effect
of the biasing by noise, the efficacy of which culminates for
an optimal nonzero rms level of (¢) maximizingRou. At
N = 1 with a single sensor, the array effect of Section 4.1
does not take place, and it is the distinct mechanism of bias-
ing by noise which is responsible for the enhancement of the
output SNRR,.+ observed in Fig. 4 when the noise levs|
is raised above zero.

At N > 1in Fig. 4, in genuine arrays, both mechanisms
of improvement by noise can operate: the array effect of en-
riched representation as in Section 4.1, and the effectasf bi

sensors, and any information concerning the temporalvaria ing by noise already occuring af = 1.

tion of s(¢) would be lost at the output. This would translate
into a zero SNRR,,; at the output. The presence of the in-
put noiseg(t) induces a cooperation witf(t), so as to bring,
on some occasions, the input sigrél) + £(¢) back into the
linear part of the characteristic of the sensors of Eq. (Rjs T
produces a respongg(t) at the sensor output, which bears
some correlation with the coherent inpt). This translates
into a nonzero output SNRR,,.; thanks to the action of the
native input noise (¢), which is visible in Fig. 4 at,, = 0
when no sensor noiseg(¢) are added. This action of the

Both mechanisms also apply, in a similar way, with arrays
of soft-saturation sensors as in Eq. (1), as illustratedigy3-

5. CONCLUSION

The present results illustrate the possibility of two disti
mechanisms by which the noise can play a part in improving
the transduction of an information-carrying signal by satu
ing sensors. Both mechanisms can also operate, in similar
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Fig. 5. Signal-to-noise rati®R,,; of Eq. (7) at the output of
the array of sensors, as a function of the rms amplitzigle
of the sensor noiseg;(t) chosen zero-mean uniform. The
periodic input iss(t) = 5 + cos(2nt/Ts) buried in a zero-
mean Gaussian noig¢t) with rms amplituder: = 0.5. The
array is made ofV identical sensorg(.) with 5 = 1 and the
soft saturation of Eq. (1).

ways, in other types of nonlinearities like for instancestr-
old nonlinearities.

The first mechanismis an effect of biasing by noise. It can
operate in isolated nonlinearities, where added noise some
how shifts the operating zone towards a region more favor-
able to the signal. This mechanism is also known as a form of
stochastic resonance, especially reported and analyzédon
occasion of threshold nonlinearities [27, 26, 3]. The pnése
results illustrate that this mechanism also applies withi-sa
rating nonlinearities.

The second mechanism of improvement by noise is an ef-
fect of enriched representation in nonlinear arrays. Added
noises force devices replicated in a parallel array to nedpo
differently to a common input signal, henceforth producing
a richer signal representation at the global level of thayarr
When applied to threshold nonlinearities, this mechanism w
presented under the name of suprathreshold of stochastic re

distinct mechanisms of improvement by noise, can possibly
apply to improve the performance of many different types of
nonlinear sensors. This will be specially relevant whenulo f
control is available on a nonlinear sensor characteriatid,
when henceforth purposeful addition of noise can be envis-
aged as a means of improving the performance.

Also, the reported mechanisms of improvement by noise
are relevant to a class of natural processes involved in com-
plex information processing tasks, namely, neuronal (peese
These processes incorporate in a prevalent way the basic in
gredients lying at the root of the reported effects (noise, a
rays, nonlinearities, saturation, threshold, ...), froimick,
and by which, very efficient information processing ensues.
This can suggest the development of new generations of non-
linear sensing arrays, with neural inspiration, for ingglht
information processing benefiting from their ability to é&ip
the noise.
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