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1. ABSTRACT

A simple model of coherent imaging system is shown to ex-
hibit noise-assisted transmission with increasing level of a
multiplicative speckle noise. Such an effect is related to the
stochastic resonance phenomena where noise can assist signal
in its processing or transmission by nonlinear systems.

2. INTRODUCTION

Stochastic resonance (SR) is a nonlinear effect whereby the
transmission or processing of an information-carrying signal
can be improved by means of an increase of the noise level.
Stochastic resonance has been reported in various types of
physical systems, including electronic circuits, lasers, mag-
netic superconducting devices, or neural systems (for reviews
see [1] in physics, [2] in electrical engineering, and [3] in
signal processing). In all the above systems, stochastic reso-
nance is observed with a temporal (monodimensional) infor-
mation signal. Up to now, only a few studies have addressed
stochastic resonance with spatial (bidimensional) signals or
images. This type of stochastic resonance has been observed
in optical devices [4], in image perception by the visual sys-
tem (see [5] for the initial psychophysical experiment and see
[6] for a recent review), in super-resolution techniques for
imaging sensors [8, 7], and recently in image restoration [9].

We demonstrate here a new instance of stochastic reso-
nance applied, to our knowledge for the first time, to coherent
imaging (SONAR, SAR, or LASER). This takes the form of
a noise-assisted image transmission by a nonlinear sensor in
presence of a speckle noise. As we will recall here, speckle
noise can be viewed as a multiplicative noise. This feature
is, by itself, challenging in the framework of stochastic reso-
nance since most of the studies demonstrating noise-assisted
signal processing have considered additive coupling between
signal and noise. By contrast with the present report, the pos-
sibility of stochastic resonance with a multiplicative signal–
noise coupling has been demonstrated in [10, 11, 12, 13, 14,
15] for temporal signals exclusively.

3. A TRANSMISSION PROBLEM

Let us consider a gray-level image S(u, v) where the pixels
are indexed by integer coordinates (u, v) and have intensity
S(u, v) ∈ [0, 1]. We assume that image S(u, v) is large

enough so that a statistical description of the distribution of
intensities on the image is meaningful: image S(u, v) pos-
sesses an empirical histogram of intensities, the normalized
version of which defining the probability density pS(j) for
the intensity on image S(u, v). A noise N(u, v), statistically
independent of S(u, v), corrupts each pixel of image S(u, v).
The noise values are independent from pixel to pixel, and are
distributed according to the probability density pN (j). The
noise N is ergodic and pN (j) is the density, equivalently, at
a given pixel over successive realizations of N(u, v) or over
the ensemble of pixels of image N(u, v) in any given real-
ization. The input image S(u, v) and the noise N(u, v) are
coupled to produce an intermediate image X(u, v) which im-
pinges onto a nonlinear imaging detector producing the output
image Y (u, v) according to:

Y (u, v) = g[X(u, v)] , (1)

the input–output characteristic g(.) of the imaging system and
the image–noise coupling being, at this stage, arbitrary func-
tions.

4. QUANTIFICATION OF SR WITH IMAGES

We now introduce similarity measures between the information-
carrying input image S(u, v) and output image Y (u, v). One
possibility is provided by the normalized cross-covariance

CSY =
〈(S − 〈S〉)(Y − 〈Y 〉)〉√
〈(S − 〈S〉)2〉 〈(Y − 〈Y 〉)2〉 , (2)

where 〈.〉 denotes an average over the images. CSY is close to
one when images S and Y carry strongly similar structures,
and close to zero when the images are unrelated. Another
possibility is to define a mutual information ISY between the
pixels of images S(u, v) and Y (u, v), as

ISY = H(Y )−H(Y |S) , (3)

with standard definitions [18] for the entropies H(.) 1.

H(Y ) =
∫

j

−dj pY (j) log2[pY (j)] , (4)

1Obvious alternative standard formulas written with probabilities instead
of densities will replace Eqs. (4)–(5) if Y happens to take discrete rather than
continuously distributed values.
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and

H(Y |S) =
∫

s

ds pS(s)
∫

j

−dj pY |s(j) log2[pY |s(j)] (5)

with the conditional density defined by pY |s(j)dj = Pr{Y ∈
[j, j+dj) |S = s}, and the marginal density which is pY (j) =∫

s
ds pS(s) pY |s(j).
In principle, when pS(j), pN (j) and g(.) are all three

given, it is possible to theoretically predict the input–output
similarity measures CSY and ISY . By such means, one has
thus in principle access to measures CSY and ISY . Once in
their possession, one can then check whether these measures
experience nonmonotonic evolutions culminating at a maxi-
mum when the level of the noise N is raised, this identifying
a stochastic resonance effect. For illustration of the capabil-
ity of measures CSY and ISY to quantify a stochastic reso-
nance effect in image detection, we shall consider a simple
case where CSY and ISY , in addition to their experimental
evaluation through pixels counting on the images, can also be
explicitly predicted theoretically, thus providing a basis for
comparison and assessment of the method.

To have an easy description of the statistical properties
of input image S(u, v) conveyed by the gray-level distrib-
ution pS(u), we shall consider in the sequel a binary im-
age with intensities S(u, v) ∈ {R0, R1}. For illustration we
have considered in Figs. 1 and 2 a 300 × 273 image con-
sisting of the shape of an airplane, for which the probabil-
ity of the bright pixels is Pr{S = R1} = p1 = 0.27 and
Pr{S = R0} = 1 − p1 for the dark pixels. The imaging
detector g(.) is taken as a hard limiter with threshold θ, i.e.

g[X(u, v)] =
{

0 for X(u, v) ≤ θ
1 for X(u, v) > θ .

(6)

This hard limiter constitutes a very basic model for imaging
systems when they operate, in the low flux domain, close to
their threshold. In addition, this nonlinear model presents the
advantage of being completely tractable analytically. Alter-
natively, the hard limiter in Eq. (6) can also be viewed as a
single step in a multilevel quantizer or a threshold in a high
level image processing task like segmentation or detection.

5. APPLICATION TO COHERENT IMAGING

In coherent imaging systems, a coherent illumination of a
scene with inherent irregularities induces scattered waves hav-
ing their phases which interfere very rapidly over the returned
wave front. On an imaging detector, this produces images
with very irregular variations of intensity with a noise-like
grainy appearance called speckle. The effect can be modeled
[17] as a multiplicative noise N(u, v), that when acting on the
input image S(u, v), produces on the detector of Eq. (6) the
nonlinear multiplicative mixture

X(u, v) = S(u, v)×N(u, v) , (7)

with a probability density pN (j) of the speckle noise N(u, v)
given by

pN (j) =
1

σN
exp

(
− j

σN

)
, j ≥ 0 (8)

with mean and standard deviation σN and rms amplitude
√

2σN .
S(u, v) corresponds to an image of the reflectivity of the scene
with two homogeneous regions object and background char-
acterized by {R0, R1}. Equations (7) and (8), constitute the
simplest model of speckle noise which is valid if the detector
pixel size is smaller than the speckle grain size [17].

We have a possibility of a theoretical description of the
imaging detector of Eq. (6) through an explicit theoretical
derivation of CSY and ISY . We introduce the conditional
probability p1k = Pr{Y = 1 |S = Rk} which amounts to
Pr{N > θ/Rk} = 1 − FN (θ/Rk), with k ∈ {0, 1}, where
FN (j) =

∫ j

−∞ pN (j′)dj′ is the cumulative distribution of the
noise N . When the probability density pN (j) of the speckle
noise is given by Eq. (8), we have

FN (j) = 1− exp
(
− j

σN

)
, j ≥ 0 . (9)

Similarly, we define Pr{Y = 1} = q1 with probability
q1 expressable as q1 = p1p11 + (1 − p1)p10. With Eqs. (2)–
(3), we shall quantify the similarity between the output im-
age Y (u, v) and a binary reference image S′(u, v) similar to
S(u, v) but with R0 = 0 (background) and R1 = 1 (object).

Theoretically, for a binary image S′(u, v), we have the
average 〈S′〉 = 1×Pr{S′ = 1}+0×Pr{S′ = 0}, thus 〈S′〉 is
simply p1 = Pr{S′ = 1}. In the same way we have 〈S′Y 〉 =
1 × 1 × Pr{Y = 1 ; S′ = 1} = p1p11. The numerator of
Eq. (2) is expressable as 〈S′Y 〉 − 〈S′〉〈Y 〉. The denominator
of Eq. (2) is nothing else than the product of the standard
deviations sd(S′) × sd(Y ), with [sd(S′)]2 = 〈S′2〉 − 〈S′〉2
and 〈S′2〉 = 12×Pr{S′ = 1}+02×Pr{S′ = 0} = p1. Also
[sd(Y )]2 = 〈Y 2〉 − 〈Y 〉2 with 〈Y 2〉 = q1. Collecting these
results, we have for the cross-covariance of Eq. (2)

CS′Y =
p1p11 − p1q1√

(p1 − p2
1)(q1 − q2

1)
. (10)

Using the function h(u) = −u log2(u), the entropies are

H(Y ) = h[p1p11 + (1− p1)p10]
+ h[p1(1− p11) + (1− p1)(1− p10)] ,(11)

and

H(Y |S′) = (1− p1)[h(p10) + h(1− p10)]
+ p1[h(p11) + h(1− p11)] , (12)

and IS′Y of Eq. (3) follows.
As visible in Fig. 1, the two similarity measures CS′Y and

IS′Y undergo a resonant evolution as the noise level is raised,
and culminate at a maximum for an optimal noise level. The
theoretical predictions for measures CS′Y and IS′Y shown in



Fig. 1 closely match their experimental evaluations and re-
produce the nonmonotonic characteristics of stochastic res-
onance. The cooperative effect quantitatively illustrated in
Fig. 1 can also be visually appreciated in Fig. 2. Another
important feature to notice in Fig. 1 is that the cooperative
effect of the noise is robustly preserved for all values of the
hard limiter threshold θ. This is in contrast with the standard
stochastic resonance mechanism acting with additive noise in
nonlinear systems with thresholds, for which the information
carrying signal has to be subthreshold to benefit from an in-
jection of noise.
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Fig. 1. Input–output similarity measures CS′Y of Eq. (2),
IS′Y of Eq. (3) versus the rms amplitude of speckle noise N .
The solid lines are theoretical predictions. The discrete data
points are experimental evaluations through pixels counting
on images for various values of the hard limiter threshold
θ with 4,×, ◦ respectively for θ = 0.4, 0.8, 1.6 for image
S(u, v) intensities {R0 = 1/2, R1 = 1}.

Fig. 2. Output image Y (u, v) of the hard limiter for increas-
ing rms amplitude

√
2σN of the speckle noise N(u, v). From

left to right
√

2σN = 0.6, 1.8 (optimal value), 6 with thresh-
old θ = 1.6 and {R0 = 1/2, R1 = 1} as in Fig. 1.

In practice, real scenes may be more complex than binary
images. We now consider the case where the reflectivity of
the background and the object in S(u, v), instead of being
represented by two fixed values {R0, R1}, are both distrib-
uted over their own ranges of possible values. If the object or
background reflectivity is not constant, the probability density
function of the noise in these regions will no longer corre-
spond to Eq. (8). Consider R the random variable represent-

ing the distribution of reflectivity in each region, the probabil-
ity density function of the speckle in the intermediate image
X(u, v) is then given by

pX(j) =
∫

1
r
pN (j/r)pR(r)dr , (13)

with pN (.) the probability density function of Eq. (8) [17].
For illustration, we have considered, in Figs. 3 and 4, R uni-
formally distributed around minimum and maximum values
(Rm, RM ) with RM −Rm = ∆R. In this case, it is possible
to have an exact analytical expression for pX(.) with

pX(j) =
1

σN∆R

∫ j/(σN Rm)

j/(σN RM )

1
r
× exp(−r)dr , (14)

and using a special function which is the exponential integral
function E1(j) =

∫ +∞
1

1
j′ × exp(−jj′)dj′, we have

pX(j) =
1

σN∆R

[
E1

(
j

σNRM

)
− E1

(
j

σNRm

)]
.

(15)
The primitive function Φ(j) of function E1(j) is expressable
as Φ(j) = j × E1(j)− exp(−j) and the cumulative distribu-
tion function FX(.) of pX(.) is then following as

FX(j) =
1

∆R

{
j

σN

[
E1

(
j

σNRM

)
− E1

(
j

σNRm

)]

−RM

[
exp

(
− j

σNRM

)
− 1

]

+ Rm

[
exp

(
− j

σNRm

)
− 1

] }
. (16)

As illustrated in Figs. 3 and 4, the nonmonotonic evolution of
the similarity measures, observed in Fig. 1, is preserved when
the reflectivity of the background and the object in S(u, v)
are distributed. This noise-assisted image transmission with
speckle noise occurs in Figs. 3 and 4, even when the distribu-
tions in the two regions are overlapping.

6. DISCUSSION

We have demonstrated the possibility of a noise-assisted im-
age transmission with multiplicative speckle noise in a co-
herent imaging system with a hard limiter. The evolution
of input–output similarity measures in Figs. 1, 2, 3, 4 as a
function of the level of the speckle noise shows the signa-
ture of stochastic resonance. In this study the information
carrying signal does not have to be subthreshold to benefit
from the noise. This is an important difference with stochas-
tic resonance in nonlinear systems with additive signal–noise
coupling. Another difference with usual stochastic resonance
studies is the speckle noise standard deviation which is equal
to its mean value. Therefore, when the standard deviation of
the speckle noise is increased, the mean value of this noise
is increased in the same way. This is not the case in usual
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Fig. 3. Input–output normalized cross-covariance CS′Y of
Eq. (2) versus the rms amplitude of speckle noise N . The
solid lines are theoretical predictions. The discrete data points
are experimental evaluations for various values of the re-
flectivity distribution with 4,×, ◦ respectively for ∆R =
0, 0.2, 0.3 being identical in the background and the object
regions. We take Rm = 1/2 in the background and RM = 1
in the object (the distributions in the two regions are not over-
lapping when ∆R = 0.2 and overlapping when ∆R = 0.3).
The hard limiter threshold θ is fixed to 0.4.

stochastic resonance studies involving additive noise with a
mean kept constant when the standard deviation of the noise
is raised.

A question arising, when a novel noise–assisted signal
processing effect is uncovered, is how to tune the noise level.
Here, the standard deviation of the speckle noise in Eq. (8)
is related to the reflected intensity of the coherent wave [17]
with

σN = Ii ×R , (17)

where Ii is the intensity of the incident wave and R the re-
flection coefficient on the scattering surface 2. The reflection
coefficientR often depends on the wavelength of the incident
wave. It is therefore possible to adjust the level of the speckle
noise by tuning two macroscopic deterministic parameters:
intensity or wavelength of the incident wave.

The noise model chosen here can be considered as the
simplest model of speckle and it could be interesting to pur-
sue this work with more sophisticated models like general
Gamma law distribution with a realistic model for reflectivity
[19], or like speckle models taking into account the Poisson
distribution at low flux [17]. The simple threshold detector
chosen here could be replaced by a multilevel quantizer to as-
sess the influence of speckle noise level on the quantization

2R takes different values in the background and in the object (this is at
the root of the contrast between the two regions). As a consequence, the
standard deviation of the speckle noise takes different values in these two
regions. The noise level in Fig. 1, 2, 3 and 4 corresponds to the common
reference ofR = 1 before action of the multiplicative coupling by the object
or background.
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Fig. 4. Same as Fig. 3 with the input–output mutual informa-
tion IS′Y of Eq. (3).

distorsion. Other image processing tasks like segmentation or
detection could be studied in this framework. Finally, other
imaging systems involving nonlinear signal–noise coupling
also constitute perspectives of this work.
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