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Abstract : We propose a model which generates a
random signal with long-range correlations character-
ized by a power-law decay. The model takes the form of
a first-order recurrence. This form is especially suited
for on-line synthesis of long-range correlations that will
exist over potentially unlimited ranges. Both theoret-
ical arguments and numerical estimations are given to
establish the power-law form of the correlations. The
definition of the model incorporates a nonstationary
gain, and we focus on how the specification of this gain
provides control over the exponent of the power-law
decay of the correlations.

1 Introduction

Long-range correlations in random signals are identi-
fied by a slow decay, slower than exponential. Typ-
ically, these correlations decay according to a power
law, confering statistical self-similarity and a fractal
character to the signals [1, 2]. Such types of random
signals are experimentally observed in a large vari-
ety of physical processes, some of them with currently
very acute technological interest, and among which are
data traffic in computer networks, motorway traffic,
fluctuations of financial indices, turbulence, noise in
semiconductor devices, neuron activities [2, 3]. The
theoretical modeling of such signals with long-range
corrrelations remains an important issue, not fully re-
solved. Relatively few models exist to theoretically
construct random signals with long-range correlations
and to synthesize actual realizations of them. Frac-
tional Brownian motions [4, 5], or white noises submit-
ted to fractional integration operators [6], offer models
for random signal with long-range correlations. Yet,
such models are in principle of infinite order, and for
practical synthesis of actual realizations, they usually
have to be truncated. This generally yields recursive
algorithms of high, but finite, order, but synthesizing
long-range corrrelations that exist only over a limited
range. Other methods, like Cholesky decomposition or
wavelet synthesis [7, 8], perform block synthesis instead
of recurrent synthesis. When a realization of N points
is synthesized, the subsequent addition of one more
point with long-range correlations usually requires a

new synthesis of a complete block of N 4+ 1 points from
scratch.

Here we present a model which defines a signal with
long-range correlations and which takes the form of
a simple first-order recurrence. Under this form, the
model is especially convenient for on-line synthesis of
long-range correlations that will exist over potentially
unlimited ranges. In its present form, the model is an
extension to a simpler version introduced in [9, 10].
This previous version was able to produce correlations
with a power-law decay of the form 7=7 in the lag 7,
with the exponent § limited to the value 1/2. The
present extension of the model allows to continuously
span values of 8 between 0 and 1/2.

2 The model

We consider the dynamical system defined by the first-
order recurrence

X(k) = X(k—1)+ g(k)z(k) (1)
Y(k) = max[Y(k—1), X(k)], (2)
y(k) = Y(k)-Y(k-1), (3)

for any integer k& > 0, with initial condition X(0) =
Y(0) = 0. The quantities z(k) form the input sequence
and are independent and identically distributed ran-
dom variables with zero mean. The sequence y(k) is
the output signal that we show to exhibit long-range
correlations with a power-law decay measured by an
exponent . The quantity g(k) plays the role of a non-
stationary gain applied to the input z(k). In the earlier
versions of the model [9, 10] we had g(k) = 1 for all
k, restricting the power-law correlations to 3 = 1/2.
Here, we shall introduce and analyze forms of the non-
stationary gain g(k) that preserve the long-range cor-
relations in y(k) and allow to reach power-law decay
with an exponent 3 adjustable between 0 and 1/2. We
shall specially examine the control over the exponent

B via g(k).

The random signal y(k) defined by Eqgs. (1)—(3) rep-
resents the successive increments of the running max-
imum of a random walk having increments g(k)z(k).



In the case where g(k) = 1 for all k, these input incre-
ments are stationary as they reduce to z(k). It is then
possible to theoretically prove [10] that the autocorre-
lation function of y(k) verifies

Ely(k)y(k + )] o< &~

R(k,7) = 1/2,-1/2 ,

k, T large.

(4)
This power-law decay of R(k,7) identifies long-range
correlations in y(k), especially the power law 77 in
the integer lag 7, with exponent § = 1/2. Similar to
the asymptotic properties of standard random walks
[11], the long-term structure of R(k, ) (at k, 7 large)
is unaffected by the type of the statistical distribution
of the input, or elementary increments, (k). Binary,
Gaussian, Laplacian, uniform distributions for z(k)
have been tested in [9, 10] and shown to preserve the
long-range correlations as in Eq. (4), and especially the
exponent § = 1/2.

Yet, for a richer model of random signal, it is
desirable to depart from the exponent 8 = 1/2 while
preserving the long-range correlations. We show next
that this is possible through the use of a nonstationary

gain g(k) in Eqgs. (1)—(3).

3 Nonstationary gain

A class of nonstationary gains that we found suitable
comes under a power-law form as g(k) = (k — ko).
The exponent b of the gain is the parameter that will
provide control over the exponent 3 of the correlations.
The origin kg has to be adequately handled: kg has to
be set to k whenever y(k) > 0, in order to provide a
gain g(k) that regularly grows in a (self-)similar way
over each episode where y(k) (the running maximum
of the walk Y (k)) remains frozen to zero. The explicit
implementation of the gain function is realized as
exposed in Fig. 1.

X(0) =Y(0

k=1; kg =

Repeat
g(k) = (k — k)"
X(k)=X(k—1)4+ g(k)x(k)
Y(k) = max[Y(k — 1), X(k)]
y(k) = Y(k) = Y (k— 1)
If y(k) > 0 then ko <+ k End If
k—k+1

Until an exit condition is true

)
0

Figure 1: Implementation of the model with nonsta-
tionary gain g(k).

A typical evolution of the signal y(k) produced

according to Fig. 1, with b = 0.2, is represented in
Fig. 2, over intervals of increasing duration. Figure 2
reveals the self-similar structure of y(k), with bursts
of activity with y(k) > 0 separated by intervals of
inactivity with y(k) = 0, this occuring in a similar
way at all scales. In Fig. 2 we took the input
z(k) = %1 equiprobably, and we stick to this choice
everywhere in this paper, since, as we said, the long-
range correlations are unaffected by the detail of the
distribution of z(k).
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Figure 2: A typical evolution of y(k) produced

according to Fig. 1, with b = 0.2 and z(k) = +1
equiprobably, over intervals of increasing duration
revealing the self-similar structure of y(k).

In contrast to the stationary case where g(k) = 1,
with a nonstationay gain g(k) = (k — ko)® it is much
more difficult to establish an analytical expression for
the autocorrelation function R(k, ) = E[y(k)y(k + 7)]
in order to characterize the long-range dependence.
Yet, the recurrent form of Egs. (1)-(3) allows on-line
generation of the signal y(k) over potentially unlimited
range, making it easy to perform numerical estimation
of the autocorrelation function.

Figure 3 shows, for the nonstationary case, the
autocorrelation function of y(k) numerically estimated
by the empirical average N1 Ei\;l y(k)y(k + 7) over
one realization and with N = 107, as it was done in
[10] for the stationary case. Different values of the
exponent b of the gain were tested and it was observed,
as exemplified by Fig. 3, that the power-law evolution
of the autocorrelation function is preserved for any b
between 0 and 1/2.

From numerical estimations of the autocorrelation
function as in Fig. 3, we measured the slope —f of
the regression line, for different values of the exponent
b. This yielded the evolution of the exponent 3 of
the power-law correlations, as a function of the control
parameter provided by the exponent b of the gain g(k).
This evolution is represented in Fig. 4. The results of
Fig. 4 evidence that the exponent § of the power-law
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Figure 3: Normalized autocorrelation function of y(k)
from Egs. (1)-(3) numerically estimated for different
values of the exponent b of the gain function g(k) of
Fig. 1 (solid lines): b = 0 (bottom), b = 0.2 (middle),
b = 0.4 (top), together with the regression lines
(dashed) of slope —f = —0.50 (bottom), —3 = —0.33
(middle) and —F = —0.19 (top), revealing the power-
law decay of the correlations.

correlations can be adjusted over a continuous range
between 0 and 1/2 by means of the parameter b.

As the parameter b moves above 0.5, we have ob-
served on the numerical estimations, that the autocor-
relation function of y(k) tends to gradually depart from
a straight line in a log-log plot similar to that of Fig. 3
and tends to give way to a convex curve (U) instead
of a straight line. This trend is illustrated in Fig. 5.
Such a behavior still identifies long-range correlations
in the signal y(k), but of a more complicated nature
this time, characterized by an autocorrelation function
that tends to decay more slowly than a power law.

It is to note that the power-law form of the gain
function g(k) = (k — ko)?, implemented as described
in Fig. 1, is a key element for obtaining power-
law evolutions of the autocorrelation function with a
variable exponent 3, as depicted in Fig. 3. Especially,
the resetting of ko whenever y(k) > 0, as expressed in
Fig. 1, is an essential ingredient. Failing to implement
this resetting, by just using instead a power-law gain
under the form g(k) = k° for all k, results in a
power-law decay of the autocorrelation that invariably
occurs with an exponent # = 0.5, independent of b, as
illustrated by Fig. 6. Also, as visible in Fig. 6, for the
gain g(k) = k® without resetting, the input g(k)z(k),
and therefore y(k), can assume large values at large
k’s, whence the higher variance in the estimation of
the autocorrelation of y(k), compared to the case
of g(k) = (k — ko)® with resetting which limits the
excursion of y(k).
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Figure 4: Evolution of the exponent § of the power-
law correlations, as a function of the control parameter
provided by the exponent b of the nonstationary gain

g(k) of Fig. 1.
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Figure 5: Autocorrelation function of y(k) from
Egs. (1)-(3) numerically estimated with the exponent
b = 0.6 for the gain function g(k) of Fig. 1 (solid),
together with the line of slope —0.11 (dashed).
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Figure 6: Normalized autocorrelation function of y(k)
from Egs. (1)-(3) numerically estimated for different
forms of the gain function g(k) (solid lines): g(k) =
(k — ko)** as specified by Fig. 1 (top), g(k) = k4
for all k£ (bottom), together with the regression lines
(dashed) of slope —3 = —0.19 (top) and —3 = —0.5
(bottom).

4 Conclusion

We have introduced a nonstationary model that was
shown capable of generating a random signal y(k)
with power-law correlations. A very appealling feature
is that this model takes the form of a simple first-
order recurrence, with a straightforward numerical
implementation, allowing on-line synthesis of long-
range correlations over potentially unlimited ranges.
Through a numerical study, we have established the
possibilty of controlling the exponent of the power-
law correlations, by means of a single parameter of
the nonstationary model. A theoretical validation
aiming at obtaining an explicit analytical expression
for the autocorrelation function of y(k) is currently
being sought, especially to derive a theoretical form
for the “experimental” control law realized by the
curve of Fig. 4. Other interesting potentialities lie in
the possibility of using y(k) to trigger or modulate
secondary stochastic processes, in order to obtain
increased flexibility in the long-range dependent signals
so produced.
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