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Motivations pour le quantique

pour le traitement de 1’information :

1) Quand on utilise des systémes ¢lémentaires (photons, électrons, atomes,
nanodevices, .. .).

2) Pour bénéficier d’effets purement quantiques (parallelisme, intrication, ...).

3) Domaine de recherche récent, riche et largement ouvert.
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Quantum system Measurement of the qubit Hadamard basis
Represented by a state vector [¢)) When a qubit in state |1)) = a[0) + 3 [1) Another orthonormal basis of Ho
in a complex Hilbert space #, is measured in the orthonormal basis {|0) , |1) }, 1 1
with unit norm = 2=1. + :—<0+1); — :—(Ofl) .
(W) = [l = only 2 possible outcomes (Born rule) : +) V2 10y + 11 =) 2 0y =11)
. . . state |0) with probability |a|? = | (0]1) |2, or
In dimension 2 : the qubit (photon, electron, atom, ...) state |1) with probability [8]2 = | (1[s)) |2.
State 1)) = «|0) + 5]1) <= Computational orthonormal basis
in some orthonormal basis {|0) , [1)} of Ha, 1 1
with complex o, § € € such that |af? + [5]2 = 1. Measurement - {0) = E(|+> + |—>); 1) = ﬁ(m - —>)}.
e a probabilistic process,
Wy =%, )t =@l =", 8] = W) =wl?=|al+|8? scalar. e as a projection of the state [¢)) in an orthonormal basis,
5] proj
) ) e with statistics evaluable over repeated experiments with same preparation [1)).
[) (¢| = (} [@", 8] = o 03 =II,, orthogonal projector on [¢).
8 B BB
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Experiments Coll. Magnet

# [M]
Source | ———— " |Screen
] ‘

L —z ‘
W

Stern-Gerlach apparatus for particles with two states of spin (electron, atom).
detactor 1 ’

Two states of polarization of a photon :
(Nicol prism, Glan-Thompson, ...)

detector 2‘
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Bloch sphere representation of the qubit

Qubit in state
1) = [0} + B 1) with |2 + 82 = 1.
< [¢)) = cos(0/2) |0) + e sin(0/2) 1)

with 0 € [0,7],
¢ € [0,27].

As a quantum object
the qubit has infinitely many degrees of freedom (6, ¢),
yet when it is measured it can only be found in one of two states
(just like a classical bit).
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In dimension /V (finite) (extensible to infinite dimension)
N

State [¢)) = Z ay, [n) , in some orthonormal basis {|1),[2),...|N)} of Hn,

n=1

N
with a, € C, and Z lon|? = (b|y) = 1.
n=1

Proba. Pr{|n)} = |a,|? in a projective measurement of |¢/) in basis {|n)}.

Sken
Inner product (k|¢) = Z ay (k|n) = ay coordinate.
n=1

N
S = Z [n) (n] =1 identity of Hy (closure or completeness relation),

n=1
an

N N

—~—
since, V1) : S|g) = D [n) (nfyy) = > an|n) = [¢) = 8 =1Ix.
n=1 n=1
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Multiple qubits
A system (a word) of N qubits has a state in HS N,
a tensor-product vector space with dimension 2%,

and orthonormal basis {|z122 -2 n)}

ze {0, 1}V’

Example N =2:

Entangled states

e Example of a separable state of two qubits AB :
1 1
—(10)+1]1)) ® —&=
s0+m)e
When measured in the basis {|0) , |1) }, each qubit A and B can be found in state |0) or

|1) independently with probability 1/2.
Pr{|A) = [0)} = Pr{|AB) = [00)}+Pr{|AB) = [01)} = 1/4+1/4 = 1/2.

|AB) = (100 1)) = 5 (100 +fon) + 110} + 1) .

Bell basis
A pair of qubits in S 2 is a quantum system with dimension 4,

with original (computational) orthonormal basis {|00), |01),[10),[11)}.

Another useful orthonormal basis of H5? is the Bell basis

{1B00) + 1Bo1) + |B10) + |B11) }»

1
. ith = —(]00 11
Generally [¢)) = agg [00) + ap1 |01) + g [10) 4+ aqy |11) . o Example of an entangled state of two qubits AB : A |Boo) 2 (I )+ >>
1
. AB) = —=(]00) + [11)) . Pr{|A) = |0)} = Pr{|AB) = [00)} = 1/2. 1
Or, as a special separable state 145) V2 (l I >) H{I4) =100} = Pr{|AB) = [00)} = 1/ |Bo1) = 7 (\01) + \10>)
lp) = (041 [0) + 61 \l)) ® (a;) |0) + B2 |1>) When measured in the basis {|0) , 1)}, each qubit A and B can be found in state |0) or 1
= 102 |00) + a1 82 |01) 4+ Brasg [10) + B152|11) . |1) with probability 1/2 (randomly, no predetermination before measurement). [Bro) = NG (‘00) - ‘11>)
But if A is found in |0) necessarily B is found in |0), 1
A multipartite state which is not separable is entangled. and if A is found in |1) necessarily B is found in |1), [B11) = 7 (\01) - \10))
10/68 no matter how distant the two qubits are before measurement. 11/68 12/68
Observables Computation on a qubit Pauli gates
For a quantum system in # y with dimension N, Through a unitary operator U on Hy (a 2 x 2 matrix) : (ie. Ut =TT) X =0, = {0 1} Y=g, — 0 —i 7= — Lo
jectiv tis defined b rth I basis {|1),...|N)} of Hn, i ) ’ 1 0]’ v i 0] i 0 —-1]°
a projective measurement is defined by an orthonormal basis {I1) [N)} of Hi normalized vector [18) € Ha —> U |45) normalized vector € s .
and the IV orthogonal projectors |n) (n|, forn = 1to N.
) X2=Y2=172=1, Hermitian unitary. XY =iZ,etc...
L i mput output
Also, any Hermitian (i.e. 2 = Q") operator 2 on H = quantum gate ]
has its eigenstates forming an orthonormal basis {|w1) , ... |wn)} of H. [Y) —= U +——Ul) {I2,X,Y,Z} abasis for operators on Hs.
Therefore, any Hermitian operator {2 on #  defines a valid measurement, 1
N Hadamard gate H = — (X + Z) .
and has a spectral decomposition © = Z wWn |wn) (wn|, with the real eigenvalues wy,. 1 1 Lo V2
i Hadamard gate H = 7 L J . Identity gate I = [0 J .
Also, any physical quantity measurable on a quantum system is represented in quantum 2 X=o0, the inversion or Not quantum gate. ~ X |0) = [1), X|[1) = |0).
theory by a Hermitian operator (an observable) 2. H? =1, <= H~! = H = H' Hermitian unitary. . .
Wo VK= e [P h that W2 = X
When system in state 1)), measuring observable €2 is equivalent to performing a projec- H|0) = |[+) and HI[1) = |-) = =0z = 5 1—i 144] such that =X,
tive measurement in eigenbasis {|wy ) }, with projectors |wy,) (wy| = II,,, and yields the ) ) 1 is th ¢ <call assical val
cigenvalue w,, with probability Pr{wn } = | {wn 1)) |> = (bl (wnltb) = ([TTn]0). = inacompact notation H |z) = 7 <|0> +(=1)* |1>)_] va e {0,1}. is the square-root of Not, a typically quantum gate (no classical equivalent).
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In general, the gates U and e¢*®U give the same measurement statistics at the Computation on a pair of qubits e Example : Controlled-Not gate
output, and are thus physically equivalent, in this respect. Through a unitary operator U on HE? (a 4 x 4 matrix) : Via the XOR binary function: a ©b = a whenb =0, or=a whenb =1
. . i ibl =b<=ux= = .
normalized vector [¢) € HY? — U |¢) normalized vector € HY? . invertible a @ = b r=a®b=ba
Any single-qubit gate can always be expressed as ¢'*Ug with o )
input output Used to construct a unitary invertible quantum C-Not gate :
R 3 &\ L. = quantum gate ] . (T target, C control)
Ug =exp| —i—1d | =cos| - |Io —isin| — |iid, . )
D) 2 2 (always reversible) [¢) U Ule) - CaT
—_— [ () .
) ) |ICT)y — |C,C @ T) |CT) |C,CaT)
where 7 = [n,,ny,n.]" is areal unit vector of R?, [00) — [00) o » 100 0
and a “vector” of 2 x 2 matrices & = [0y, 0y, 0], Completely defined for instance by the transformation of the four state vectors [01) —[01) v |0 L 00
. . 0001
implementing in the Bloch sphere representation of the computational basis {]00),|01),[10) ,[11)}. 110} — 1) 0010
a rotation of the qubit state of an angle & around the axis 77 in R®. 1) — [10)
(C-Not)? = I, <= (C-Not)~! = C-Not = (C-Not)! Hermitian unitary.
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Computation on a system of /V qubits
Through a unitary operator U on H$™ (a 2" x 2V matrix) :

normalized vector [1) € HE™N — U [¢)) normalized vector € HE™Y .

= quantum gate : N input qubits —U—> N output qubits.

Completely defined for instance by the transformation of the 2V state vectors of
the computational basis.

Any N-qubit quantum gate may always be composed
from two-qubit C-Not gates and single-qubit gates (universality).

This forms the grounding of quantum computation.

No cloning theorem (1982)

¢, Possibility of a circuit (a unitary U) that would take any state [1)), associated to an

auxiliary register |s), to transform the input |¢)) |s) into the cloned output [¢)) [¢)) ?

1) [s) —2— U(apr) [s)) = [161) [¢1) (would be).
) [s) —2— U([uéz) [s)) = [ié2) [t2) (would be).
Linear superposition 1) = ay [th1) + g [t)a)

[0) Is) —9— U(e) |s)) = Ulas [} [s) + a2 [) |s))

= a1 Y1) [¥1) + az i) [P2)

since U linear.

But [¢)) 1) = |1) @ |1h) = (o1 [1h1) + az [¥2)) (o [9h1) + az [¥2))
= of [1) |th1) + aro 1) [the) + arag [¥2) [1) 4+ a3 [1he) [1)2)

Quantum parallelism

For a system of N qubits,
a quantum gate is any unitary operator U from H$ N onto H?N .

The quantum gate U is completely defined
by its action on the 2V basis states of HS'Y @ {|@), 7 € {0,1}V},
just like a classical gate.

Yet, the quantum gate U can be operated
on any linear superposition of the basis states {|Z) ,# € {0,1}V}.

This is quantum parallelism, with no classical analog.

# U(|¢) |s))  in general. = No cloning U possible.
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Parallel evaluation of a function (1/3) Parallel evaluation of a function (2/3) Parallel evaluation of a function (3/3)
A classical function f(-) from N bits to 1 bit 7 7 | +>®N 7 7
7€ {0,1}Y —— (%) € {0,1}. U U,
f )
Used to construct a unitary operator U as an invertible f-controlled gate : —y y B f(f) — |?J> —Y y D f(f) —
= = : 2\ with 7 N . 1\Y
e - T For every basis state |Z), with Z € {0,1}" : |+>®N _ (7> Z |#)  superposition of all basis states,
f - Us o [ £(5 V2) sty
. [7) ly = 0) ———— D) [£(&))
—Y_ Yy @ ) - U 1\
[Z) |y =1) ———— |2) ‘f(f)> [+)®Y @ |0) . (E) Z |Z) | f(Z) ) superpos. of all values f(Z).
with binary output y & f(%) = f(¥) wheny =0, or = f(Z) wheny = 1. . 1 . — . #e{0,1}N
12 [+ 1) 5 [IF@) + [7@)] =12 1+) L
Uy . =
: ) W sl —L (=) S 18-y
17 |1=) ———— 18 5[5 @) ~ [7@)] = 9 1-) (1)@ Felon)y
(, How to extract, to measure, useful informations from superpositions ?
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Deutsch-Jozsa algorithm (1992) : Parallel test of a function (1/5) Deutsch-Jozsa algorithm (2/5) Deutsch-Jozsa algorithm (3/5)
A classical function 70 ;{Vov By — {01} |+>®N+> T T H®N Output state [¢h3) = (H®N ® 12) [1h2)
2% values — 2 values, U/ N
. 1
can be constant or balanced (equal numbers of 0, 1 in output). ! _ (7) HEN |f> |7> (71)]‘(5)
A o ' . |=) —y y @ [(2) V2 EE{EU:I}N
Classically : Between 2 and > + 1 evaluations of f(-) to decide. t ? 1 ’
N
Quantumly : One evaluation of f(-) is enough (on a suitable superposition). ‘¢1> |'l/12> |1/)3> — (}) Z Z (,1)55 12} |—) (,1)f(i) by Lemma 1,
L I 2 7€{0,1}N Ze{0,1}N
1 1 ) = |V |-y = [ — Z)|—
Lemmau;n|w>:ﬁ(|o>+(4>“”u>) = X D7), vee{on routstate i) = <\/§> -E{;}N e N
< or i) = 4) 1) win [5)=(1) Y w@))
N 2/ . N
®N |~ 1 o o N LA\Y = ze{0.1}
— H"" |Z) =H|z1)® - -@H|zn) = %) Z ,(71> “1Z), v&e{0,1} Internal state |¢)2) = <E> Z 1Z)]-) (,1)f<z) o
Fe (0,3 #e{0,1}N and the scalar weight u(Z') = Z (—1)f@+a2
with scalar product #Z'= z121 + -+ + nzy modulo 2. (quant. Hadamard transfo.) Fe{0,1}
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Deutsch-Jozsa algorithm (4/5)

1 ==
So )= Y w@)F) with u()= Y (~1)/@+F
2 ze{0,1}N #€{0,1}N
For |2) = [0) = [0)®Y  then u(Z=0) = Z (—1)f@
Fe{0,1}N

o When f(-) constant : u(Z=0) = 2N (—1)/® = £2V —s in |1) the amplitude of
|0) is +1, and since |¢) is with unit norm = |¢) = + |0 ), and all other u(Z # 0) =
= When 1) is measured, N states |0) are found.

e When f(-) balanced : u(Z = () = 0 == |3 is not or does not contain state |0 ).
= When 1)) is measured, at least one state |1) is found.

— Illustrates quantum ressources of parallelism, coherent superposition, interference.
(When £(-) is neither constant nor balanced |¢/) contains a little bit of |0').)

Deutsch-Jozsa algorithm (5/5)
[1] D. Deutsch; “Quantum theory, the Church-Turing principle and the universal quantum
computer”; Proceedings of the Royal Society of London A 400 (1985) 97-117.

The case N = 2.

[2] D. Deutsch, R. Jozsa; “Rapid solution of problems by quantum computation”; Proceedings of
the Royal Society of London A, 439 (1993) 553-558.

Extension to arbitrary N > 2.

[3] E. Bernstein, U. Vazirani; “Quantum complexity theory”; SIAM Journal on Computing 26
(1997) 1411-1473.

Extension to f(Z) = d or f(Z) =
1) = |a@).

@ b, to find binary N-word @ — by producing output

[4] R. Cleve, A. Ekert, C. Macchiavello, M. Mosca; “Quantum algorithms revisited”; Proceedings
of the Royal Society of London A, 454 (1998) 339-354.

Superdense coding (Bennett 1992) : exploiting entanglement

Alice and Bob share a qubit pair in entangled state | AB) = (\00) + \11)) = |Boo)-

V2
Alice chooses two classical bits, used to encode by applying to her qubit A
one of {I>, X, 7Y, Z}, delivering the qubit A’ sent to Bob.

9 ehits Alice Bob
OB R iqghitar . L®L|AB) = |w)
X 2 chits X oL |AB) —
7Y Decoder |—#—= ®12|AB) = |Bo1)
A Z®Ts|AB) = |Bio)

B

Y ® I ‘AB) = |ﬁ[1>
2 entangled qubits

Bob receives this qubit A’. For decoding, Bob measures | A’ B) in the Bell basis
{|B00) , |Bo1) ,|B10) , |B11)}, from which he recovers the two classical bits.
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Teleportation (Bennett 1993) : of an unknown qubit state (1/3) Teleportation (2/3) Teleportation (3/3)
Qubit ) in unknown arbitrary state |¢q) = a0 |0) + a1 |1). 1 1
o) ZelOr et [90) = e [8n0) = = [a0[0) (100) + [11)) + e 1) (00) + 1)) 1) = £ 1800 (2010) +xs 1)) +180) (a0 1) + e [0)) +
Alice and Bob share a qubit pair in entangled state |AB) = G (\00 + \11)) = |Boo)-
1
=7 [ao |000) + cro |011) + 1 [100) + \111>} |B10) (ao 0) — an |1>) + |B1) (ao 1) —aa |0>)]
> Alice 2 chits Bob
Measurement ) 171 The first two qubits QA measured in Bell basis {|8+,)} yield the two cbits zy,
in Bell basis factorizable as |y1) = 5 [72 (|00) +11) ) (a [0) + a1 [1) ) + used to transform the third qubit B by XV then Z*, which reconstructs [1q).
A { Iﬂ"y> }
; 1
‘/LQ> 7 (lOl) + \10)) (ao 1) + a1 |0) ) + When QA is measured in |Bo0) then Bisin ao|0) + aq [1) EEC TN IR [q)
. . .. X I
|'¢}t1> Wf > B <|00> - ‘11>) (a 0) — a1 |1) ) 4 When QA is measured in |8o1) then Bis in ap |1) + a1 [0) —— - —=> [1ho)
Do 2
1 When QA is measured in |310) then B isin ag |0) — a1 [1) L, 2, [¥q)
Alice measures the pair of qubits QA in the Bell basis (so [1¢) is locally destroyed), 7 <|01> _ ‘10>) (ao 1) — a1 |0) )] X 7
and the two resulting cbits x, y are sent to Bob. 2 When QA is measured in |811) then Bisin ao |1) — o1 [0) —— - == [)q).
Bob on his qubit B applies the gates X¥ and Z* which reconstructs [1q).
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Princeps references on superdense coding ... Grover quantum search algorithm (1/3)  Phys. Rev. Let. 79 (1997) 325. Grover quantum search algorithm (2/3)
. . o . . o Finds an item out of N in an unsorted database. o For this specific item |ng) that we want to retrieve (obtain its address wp, ),
[1] C. H. Bennett, S. J. Wiesner; “Communication via one- and two-particle operators on ) o o it is possible to amplify this uniform probability |(no|&) |2 = 1/N
Einstein-Podolsky-Rosen states™; Physical Review Letters 69 (1992) 2881-2884. in O(V/'N) complexity instead of O(N) classically. ’
. . . . 1 N
o An N-dimensional quantum system with orthonormal basis {|1) ,--,|N)}, elet|ny)=——— > |n) normalized state L |no) = |¢) in pl
- . I Lo . T = plane (|no) , [n.L)).
(2] K. Mattle, H. Wenr}tuf}er,}f" G I;W'at" and A. Zell;nge;‘;GD:gszf:giur;g in experimental the states |n), n = 1,... N, representing the IV items stored in the database. VN =122,
quantum communication”; Physical Review Letters 76 (1996) 465 59. o Define unitary operator Uy = Ty — 2 [no)(no| = Uo [n1) = |1 ) and Ug [ng) = — |no).

... and teleportation
[3] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters; “Teleporting an

unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels”;
Physical Review Letters 70 (1993) 1895-1899.
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o A set of N real values {wy, - - -, wn } representing the address of each item |n) in the

database.

o The unsorted database is in the state 1)) = —— Z [n).

e A query of the database, in order to obtain the address w,, of an item |n),
N

= an [n) (n].

o Any specific item |no) is obtained as measurement outcome with its eigenvalue
(address) wy, , with the probability |(no|v) | = 1/N (since {noly) = 1/v/N ).
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is performed by a measurement of the observable 2

So in plane (|no) , [n1)), the operator Ug performs a reflection about [n ). (U oracle).
e Let [t ) normalized state L |1) in plane (|no) , |ny ).

o Define the unitary operator Uy, = 2 [¢)) ()| —In == Uy [¢) = [¢) and Uy, |9 1) = — [¢1).
So in plane (|ng) , [n1 )), the operator Uy, performs a reflection about [¢)).

o In plane (|no) , |1 )), the composition of two reflections is a rotation Uy, Ug = G (Grovcr

amplification operator). It verifies G [no) = Uy Uq [no) = —Uy |no) = |no) — \/7 [).
The rotation angle 6 between |ng) and G |ng), via the scalar product of [ng) and G |no), verifies
2 6° 2
cos(f (no|Glng) =1—- —=1—- — =0~ at N > 1.
( ) Ul ‘ U) N 2 \/ﬁ
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Grover quantum search algorithm (3/3)

2
o In plane (|no) ,|n )), the rotation G = Uy, Uy is with angle § ~ —— .

VN

« Gy} = UyUo o) = Uy (1) = e Inob) = (1= 1) 1) + 7 Ino)

So after rotation by 6 the rotated state G |) is closer to [ng).

o G [¢) remains in plane (|ng) , [n)), and any state in plane (Jno) ,|n_1)) by G is rotated by 6.

So G2 |¢) rotates |1)) by 26 toward |ng), and GF |1) rotates |1) by k6 toward |ng).

o The angle © of [¢)) and |no) is such that cos(©) = (ng|¢)) = 1/v/N = © = acos(1/V'N).
e VN

eSo K = i ~ - acos(1/+v/N) iterations of G rotate [¢)) onto |n).

Atmost © = g — at most K ~ Z\/N4

® So when the state G |)) & |ng) is measured, the probability is almost 1 to obtain |ng) and its
address wy,, == The searched item is found in O(+/N) operations instead of O(NN) classically.

Other quantum algorithms

e Shor factoring algorithm (1997) :

Factors any integer in polynomial complexity

(instead of exponential classically).

15 = 3 x 5, with spin-1/2 nuclei (Vandersypen et al., Nature 2001).

21 = 3 x 7, with photons (Martin-Lopez et al., Nature Photonics 2012).

o http://math.nist.gov/quantum/zoo/

“A comprehensive catalog of quantum algorithms . ..”

Quantum correlations (1/2)
1
Alice and Bob share a pair of qubits in the entangled (Bell) state |[¢)ap) = 7 (|01) — \10)) .

Alice or Bob on its qubit can measure observables of the form €2(60) = sin(6)X + cos(0)Z,
having eigenvalues +1.

Alice measures () to obtain A = =£1, and Bob measures {2(/3) to obtain B = +1, then from
pAB = YA XWap| e obtain the average (AB) = tr (pABQ(a) ® Q(B)) = —cos(a — f).

For any four random variables Ay, A2, By, B2 with values +1,

I'= (A1 + A2)B1 — (A1 — A2)B2 = A1 B1 + A2B1 + A2B2 — A1 By = £2,
because since A1, Ao = £1, either (A; + A2)B1 = 0or (A1 — A2)B2 =0,

and in each case the remaining term is £2.

So for any probability distribution on (A, A, By, By), necessarily
(T') = (A1B1 + A2 B1 + AaBy — A1 Ba) = (A1 B1) + (A2B1) + (A2B2) — (A1 Ba)
verifies —2 < (I') < 2. Bell inequalities (1964).
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Physica A 414(2014) 204-215
Quantum correlations (2/2) T ————— E= GHZ states (1/5) (1989, Greenberger, Horne, Zeilinger)
A long series of experiments repeated on identical copies of |¢aB) : Physica A -
EPR experiment (Einstein, Podolsky, Rosen, 1935). et s s i oo B Three players, each receiving a binary input ;; = 0/1, for j = 1,2,3,
with four possible input configurations z1z223 € {000,011, 101, 110}.
Alice chooses to randomly switch between measuring A1 = Q(a1) or Az = Q(a),
. . _ _ Tsallis entropy for assessing quantum correlation with "
and Bob chooses to randomly switch between measuring By = €(61) or By = Q(B2). Bell-type inequalities in EPR experiment @ Each player j responds by a binary output y; (x;) = 0/1, function only of its own input
i Frangois Chapeau-Blondeau* xj, forj = 1,2,3.
For (I) = (A1 B1) + (AsB1) + (A2 By) — (A1 Bs) one obtains ety 3,007
T) = —cos(ar — — cos(az — — cos(az — + cos(ay — B2).
0 (a1 = A1) (az = A1) (az = f2) (o - B2) HIGHLIGHTS Game is won if the players collectively respond according to the input—output matches :
. « Anew Bell-type inequality for decived,
The choice a1 =0, ag =7/2 and 1 = 7/4, B2 = 37 /4 leads to o g e pogiutond mic L 212923 = 000 ——————— 31923 such that y; D y2 B yz =0,
= —cos — cos — cos ; =— — e e il e ot S o
(T') = —cos(w/4) — cos(m/4) — cos(mw/4) + cos(37/4) 2V/2 < —2. it bletod ] lationfrom a large st of cbservabl w1zams € {011,101, 110} yryays such that 1 B o © ys — 1.
Bell inequalities are violated by quantum measurements. ARTIELE B WESTRALY
. ) R i e he s e f e prrd o1 3 g
Experimentally verified (Aspect et al., Phys. Rev. Let. 1981, 1982). Avaiabecnine 23 July 2014 e o o L e b g e v+ To select their responses y; (), the players can agree on a collective strategy before,
T R = = s el e sy . e okt . .
Local realism and separability (classical) replaced by Gammrin o m'“mj remens o i l"ym NF e :"w ...2411:1'., but not after, they have received their inputs ;.
a nonlocal nonseparable reality (quantum). i L ©2014 Esevier Y. Al s reseved.
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GHZ states (2/5) GHZ states (3/5) GHZ states (4/5)
A strategy winning on all four input configurations Before the game starts, each player receives one qubit from a qubit triplet prepared in the 2) When z1z225 = 011, only player 1 measures in {|0),]1)}.
would consist in three binary functions y;(2;) meeting the four constraints : entangled state (GHZ state) 1 1
1 vy =3 (1000) - J011) — J101) — 110)) = 5 {\0) (100) = 1)) = 11y (Jo1) + \10))].
y1(0) @ y2(0) ® y3(0) =0 [¢) = ‘1#123) = §(|000> —[011) — |101) — \11()))'
y1(0) @ y2(1) ®ys(1) =1 _ N N
y1(1) & y2(0) @ a(1) = 1 . since 10) = 75 (1) +12). 10 = 75 (14 -12) =
v (1) @ (1) @ y3(0) = 1 And the players agree on the common (prior) strategy :
! i ifx; = 0, player j obtains y; as the outcome of measuring its qubit in basis {|0) , [1)}, |00y — |11) = L [(H) + ‘,>) (|+> + ‘,>) _ (|+> _ ‘,>) (I+> _ \*))}
0 ® 0 @ 0 =1, bysummation ofthe four constraints, if w; = 1, player j obtains y; as the outcome of measuring its qubit in basis {|+) ,|—)}. :
= 0 =1, so the four constraints are incompatible. -1 [(HH F =)+ =) + ‘,,>) - (\++> — =) — =)+ |,,>)}
2
So no (classical) strategy exists that would win on all four input configurations. We prove this is a winning strategy on all four input configurations : =)+ =t
Any (classical) strategy is bound to fail on some input configuration(s). |01) + [10) = L [(H) + ‘,>) (H) _ ‘,>) + (H) _ ‘,>) (H) + |,>>] =4 = [-—)
1) When 12223 = 000, the three players measure in {|0) , [1)} 2
We show ? strategy usiflg quantum resources winning on all fourlinPut c.onﬁgurations, = 31 ® y2 @ y3 = 0 is matched. — gy = 1 (\U 0= ) — ) - 7)) sy @ ys B ys — 1 matched.
(by escaping local realism, y;(0) = 0/1 and y; (1) = 0/1 not existing simultancously). 2
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GHZ states (5/5)

3) When 12223 = 101, only player 2 measures in {|0) ,|1)}.

1 1
[h) = 5(\000) —|011) — [101) — |1io>) =3 [\~0-> (\0~0> —1- 1>) — |1 (\0 )+ |1,0))]
= % [|‘“') (|+ B R B +>) —|-1) (|+ ) == ,)):I
= %(H'O_) +1=04) = [+14) + |-1-)) = 1 B y2 G ys = 1 matched.
4) When z 2223 = 110, only player 3 measures in {|0) , |1)}.

[ = £ (1000) — Jo11) = 101) ~ [110)) = 2 [\» -0) (100 = [119) = |-- 1) (jo1) + |1o~>)]

:%["'m(‘**‘)*'**”)*\“1>(\++‘>7|77i>)]

1
= (F=0+ =40~ [+ + 1)+ - =1) =11 ©y2 Bys = 1 matched.
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Density operator (1/2)
Quantum system in (pure) state |¢;), measured in an orthonormal basis {|n)} :

= probability Pr{|n)|[v;)} = | (n|e;y) [* = (nle;) (W) -

Several possible states |1/;) with probabilities p; (with 3=, p; = 1):
— Pr{In)} = 5, p; Priim)]| 1)} = (nl (05 ¥3) (sl) In) =l p )
with density operator p = 3~ p; [¥;) (¥] -

and Pr{|n)} = (n| p|n) = tr(p |n) (n]) = tr(p1L,).

The quantum system is in a mixed state, corresponding to the statistical ensemble

{pj, [1;)}, described by the density operator p.

Lemma : For any operator A with trace tr(A) = >_  (n| A |n), one has
(A 9) (8]) =5, (nl A1) (@ln) = 3, (@ln) (n] A [0) = (@] (. In) (n])A[6) = (6] A )
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Density operator (2/2)
Density operator p = 37, p; [¥;) (5]
— p = p Hermitian ;
V[, (Wlplb) = 32, pil (Wles) |2 > 0 = p > 0 positive ;
(p) =22, pitr(lvy) (¥sl) = X2, ps =

N
On H n, eigen decomposition p = Z An [An) (An]| , with

trace tr

eigenvalues {\, } a probability distribution,
eigenstates {|\,)} an orthonormal basis of H .

Purity tr(p Z A2 = 1 for a pure state, and tr(p?) < 1 for a mixed state.

n=1

A valid density operator on H x = any positive operator p with unit trace,
provides a general representation for the state of a quantum system in H .
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Average of an observable

N
A quantum system in H v has observable € of diagonal form = Z wWn [wn ) (W
n=1

When the quantum system is in state p, measuring 2 amounts to performing
a projective measurement on p in the orthonormal eigenbasis {|w1) , ... |wn)} of Hu,

with the N orthogonal projectors |wy) (wn|, forn = 1to N.

The outcome yields the eigenvalue w, € R with probability
Pr{wn} = (wal plwn) = tr(pfwn) (wnl)-

Over repeated measurements of §2 on the system prepared in the same state p,
the average value of  is

anPr{wn}—antr plwn) (wnl) —tr( an |wn ) wn|)

n=1 n=1 n=1

= tr(pQ).
49/68

Density operator for the qubit
{o0 =12,04,0,,0.} abasis of Ha,
orthogonal for the Hilbert-Schmidt inner product tr(ATB).

1 1 -
Any p = 5(12 + 120y +1yoy + TzUz) = 5(12 + ra).

= tr(p) = 1.
p=pl = r,=1%, Ty =Ty,

T, =T} == 74,1y, T, real.

o=+1

1
Eigenvalues \y = 5(1 7)) =0=|F| <1

[I7|l < 1 for mixed states,
[I7|| =1 for pure states.

7= [ry,7y, 72" in Bloch ball of R®.
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Observables on the qubit

Any operator on H has general form 2 = aolz + d &,
with determinant det(Q) = af — @2, two eigenvalues ap + Va2,

- %(12 +a5/Va?).

and two projectors on the two eigenvectors |£a) (+a|

For an observable, Q Hermitian requires ap € R and @ = [az, ay,a.]" € R

An important observable measurable on the qubitis 2 = d ¢ with||d| =1,
known as a spin measurement in the direction @ of R?,
yielding as possible outcomes the two eigenvalues +||a@ || = +1,

1
with probabilites Pr{+1} = (1 + 7 a> for a qubit in state p = 5 (Ig + F&‘),

(since Pr{£1} :tr(p |+£3) (id\) - %i% tr(p@s) with (75)(@5) = (Fa)lo +i(7 x a)a),
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Generalized measurement

In a Hilbert space # x with dimension [V, the state of a quantum system
is specified by a Hermitian positive unit-trace density operator p.

® Projective measurement :

Defined by a set of IV orthogonal projectors |n) (n| = II,, ,

verifying - |n) (n| = 3, II,, = In,

and Pr{|n)} = tr(pll,). Moreover ) Pr{|n)} =1,Vp < > I, =In.

o Generalized measurement :
Defined by a set of an arbitrary number of positive operators M,,,
verifying - M., = In,

and Pr{M,, } = tr(pMn,). Moreover > Pr{M,,} =1,Vp<= > M, =Ixn.

m m
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Quantum noise (1/2)

A quantum system of H  in state p interacting with its environment represents an open
quantum system. The state p usually undergoes a nonunitary evolution.

With peny the state of the environment at the onset of the interaction, the joint state
P ® penv can be considered as that of a closed system, undergoing a unitary evolution
by U as p @ penv — U(p @ penv)UT.

At the end of the interaction, the state of the quantum system of interest is obtained by
the partial trace over the environment : p — A (p) = trenv {U(p ® penv)Ui] . (1)

Very often, the environment incorporates a huge number of degrees of freedom, and is

largely uncontrolled ; it can be understood as quantum noise inducing decoherence.

A very nice feature is that, independently of the complexity of the environment, Eq. (1)
can always be put in the form p — N(p) = >, A¢ pA operator-sum or Kraus
representation, with the Kraus operators Ae, which need not be more than N2, satisfying

S AA =1y
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Quantum noise (2/2)

A general transformation of a quantum state p can be expressed by the
Z[ A;pAi , with Z( A Af = In,
representing a linear completely positive trace-preserving map,

quantum operation p — A (p

mapping a density operator on H  into a density operator on H .

0

1
For an arbitrary qubit state defined by p = 5 (12 + 7 5)
with |7 < 1,

this is equivalent to the affine map 7 — A7+ ¢,

with A a 3 x 3 real matrix
and ¢ a real vector in R®,
mapping the Bloch ball onto itself.
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Quantum noise on the qubit (1/4)
Quantum noise on a qubit in state p can be represented by random applications of some

of the 4 Pauli operators {I2, X, Y, Z} on the qubit, e.g.

Bit-flip noise : flips the qubit state with probability p by applying X, or leaves the qubit
unchanged with probability 1 — p :

=

p—N(p)=0-pp+pXpX!, F—AF=|0 1-2p 0
0 0 1—-2p

Phase-flip noise : flips the qubit phase with probability p by applying Z, or leaves the
qubit unchanged with probability 1 — p :
1-2p 0 0
7 — Ar'= 0 1-2p 0 |7
0 0 1

p—> N(p) = (1—p)p+pZpZt,
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Quantum noise on the qubit (2/4)

Depolarizing noise : leaves the qubit unchanged with probability 1 — p, or apply any
of X, Y or Z with equal probability p/3 :

p—N(p)=(1-p)p+ g(XpXT +YpYt+ ZpZ*) .

14 0 0
3;0
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Quantum noise on the qubit (3/4)

Amplitude damping noise : relaxes the excited state |1) to the ground state |0) with
probability v (for instance by losing a photon) :

p — N(p) = AipAl + AzpAl,

with Ay = = /710) (1| taking|1) to |0) with probability -,

V4l
0
1 0
0 V1I—-v

and reduces the probability amplitude of resting in state |1).

and Ay = =10) (0] + I —~1) (1]

which leaves |0) unchanged

VI=~ 0 0 0

— 7 — AF+C= 0
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Quantum noise on the qubit (4/4)
Generalized amplitude damping noise : interaction of the qubit with a thermal bath at

temperature 7" : + t t +
p—> N(p) = AipAj + AapAl + AzpAl + AapAj,

) 1 0 0 A
with Ay = \/p , Ae=p s p,y €[0,1],
\/[0 %1*7} N o o (0,1]
Vi=y 0 0 0
Az =+v1I—-p , M=y1-p s
0 1 Vi oo
VI—~ 0 0 0
= F— AF4 &= 0 Vi=y 0 P+ 0
0 0 1—7v (2p— 1)y

Damping [0,1] 5 v =1 — e™t/T1 5 1 as the interaction time ¢ — oo with the bath of the qubit relaxing to

equilibrium poe = p [0) (0| + (1 — p) [1) (1], with equilibrium probabilities p = exp[—FEo/(ksT)]/Z

and 1 — p = exp[—FE1/(kT)]/Z with Z = exp[—Eo/(kT)] + exp|—FE1/(kT)] governed by the

Boltzmann distribution between the two energy levels Eq of [0) and E;1 > Ej of [1).

T=0=p=1=pe=10)(0]. T —=o00=p=1/2= ps — (|0) (0] + (|1) (1])/2 =12/2.
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Quantum state discrimination

A quantum system can be in one of two alternative states po or p1
with prior probabilities Py and P, = 1 — Pp.

Question : What is the best measurement {Mo, M; } to decide
with a maximal probability of success Psyc ?

Answer : One has Psue = Po tr(poMo) + Pitr(piM1) = Po + tr(TM;y),
with the test operator T = Py p; — Popo.
Then Py is maximized by M{™ = > [An) (Al

A >0
the projector on the eigensubspace of T with positive eigenvalues \,,.

The optimal measurement {M{P*, MgP® = Iy — M{P'}

1 N
achieves the maximum P, = — <1 + Z \AM). (Helstrom 1976)
2 n=1
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Discrimination from noisy qubits

Quantum noise on a qubit in state p can be represented by random applications of (one
of) the 4 Pauli operators {I2, X, Y, Z} on the qubit, e.g.

Bit-flip noise : p — N(p) = (1 — p)p + pXpXT',

Depolarizing noise : p — N'(p) = (1 — p)p + g (XpXT +YpYt + ZpZi) .

With a noisy qubit, discrimination from N (po) and N (p1).

— Impact of the probability p of action of the quantum noise,
on the performance P2 of the optimal detector,
in relation to stochastic resonance and enhancement by noise.
(Chapeau-Blondeau, Physics Letters A 378 (2014) 2128-2136.)
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ARTICLE INFO ABSTRACT

‘Anicle history: Discrimination berween two quantum states is addressed as a quantum detection process where a
Received 12 February 2014 measurement with two outcomes is performed and a conclusive binary decision results about the
Received in revised form 15 May 2014 state. The performance is assessed by the overall probability of decision error. Based on the theory of
b quantum detection, the optimal measurement and its performance are exhibited in general conditions,
Sakiciounl o et An application is realized on the qubit, for which generic models of quantum noise can be investigated
for their impact on state discrimination from a noisy qubit. The quantum noise acts through random
Xeywords application of Pauli operators on the qubit prior to its measurement. For discrimination from a noisy
Quantum state discrimination qubit, various situations are exhibited where reinforcement of the action of the quantum noise can
Quantum noise be associated with enhanced performance. Such implications of the quantum noise are analyzed and
Quantum detection interpreted in relation to stochastic resonance and enhancement by noise in information processing.

signal detection © 2014 Elsevier BV. All rights reserved.
Enhancement by noise
Stochastic resonance
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Discrimination among )/ > 2 quantum states

A quantum system can be in one of M alternative states p,,,, form = 1to M,
with prior probabilities P,,, with Z%zl P, =1

Problem : What is the best measurement {M,,, } with M outcomes to decide
with a maximal probability of success Py ?

M
—> Maximize Py, = Z Py, tr(pmM,,) according to the M operators M,,,
m=1

subject to 0 < M,,, <Iy and ZM M,, = Iy.

m=1

For M > 2 this problem is only partially solved, in some special cases.
(Barnett ef al., Adv. Opt. Photon. 2009).
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Error-free discrimination between M/ = 2 states

Two alternative states po or p1 of H, with priors Py and Py = 1 — P,

are not full-rank in H, e.g. supp(po) C Hy <= [supp(po)]* D {0}.

If Sy = supp(po) N [supp(p1)]* # {0}, error-free discrimination of po is possible.

If S1 = supp(p1) N [supp(po)]* # {0}, error-free discrimination of p; is possible.

Necessity to find a three-outcome measurement {Mo, M1, Munc} :

Find 0 < My < Iy s.t. Mg = @olIl; “proportional” to IT; projector on [supp(p1)]—,
and0 < My < Iy s.t. My = @ Io “proportional” to TTy projector on [supp(po)]™,
and Mo + M; < Iy < [Mo + M1 + Mune = In with 0 < Mune < IN],
maximizing Psuc = Po tr(Mopo) + Pi tr(Mip1)

(= min Punc =1 — Psuc)

This problem is only partially solved, in some special cases,
(Kleinmann et al., J. Math. Phys. 2010).
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Error-free discrimination between )M > 2 states

M alternative states p,, of Hn, with prior P,,, form =1,... M ;

each p,,, must be with defective rank < N.
Kon

Forall m = 1 to M, define S, = supp(pm) { ﬂ [supp(pe)] ™ }
t£m

For each nontrivial Sy, # {6}, then p,, can go where none other p, can go.
== Error-free discrimination of p, is possible,

by M,, such that 0 < M,,, < Iy and M,, “proportional” to the projector on /C,,

To parametrize M,,,, find an orthonormal basis {|u" )}d""()c”‘) of K
then M, = E;l':"}('c'“) ai" [uf') (uj'] = @™ Iy, with IT,,, projector on /C,,

Find the M., (the &™) with 3~ M,, < Iy maximizing Psuc = >, Pm tr(Mmpm).

This problem is only partially solved, in some special cases, (Kleinmann, J. Math. Phys. 2010).
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Quantum feedback control

PHYSICAL REVIEW A 80. 013805 (2009)

Qi feedback by discrete d lition measurements:
Towards on-demand generation of photon-number states

L. Dotsenko.">* M. Mirrahimi.* M. Brune.,' S. Haroche." J.-M. Raimond.' and P. Rouchon*
\Laboratoire Kastler Brossel. Ecole Normale Supérieure, CNRS, Université P. et M. Curie,
24 rue Lhomond, F-75231 Paris Cedex 5, France
*College de France, 11 Place Marcelin Bertheloi, F-75231 Paris Cedex S, France
SINRIA Rocquencouri, Domaine de Vouceau, BP 105, 78153 Le Chesnay Cedex, France
“Centre Automatique et Systemes, Mathématiques et Systemes, Mines ParisTech,
60 Boulevard Saint-Michel, 75272 Paris Cedex 6, France
(Received 1 May 2009: published 9 July 2009)

We propose a quantum feedback scheme for the prep: and protection of ph ber states of light
trapped in a high-0 microwave cavity. A quantum nondemoliton measurement of the caviy fild provides
on the ph Jistrib The feedback loop is closed by inj nto the cavity a

and r

coherent pulse adjusted to inerease the probability of the target photon number. The e
of the closed-loop state stabilization is assessed by quantum Monte Carlo simulations. We show
are efficiently produced and protected against decoherence.

. in
realistic experimental conditions. the Fock state

DOL: 10.1103/PhysRevA.80.013805 PACS number(s): 42.50.Dv. 02.30.Yy, 42.50.Pq
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System dynamics :

e Schrodinger equation (for closed systems)

d = iH =e : tZHd =U
) =—- \w>:\¢<t2>>7cxp(—%/ £) (1)) = Ulta, t2) [$(t1))

t1
unitary U(ty,t2)

Hermitian operator Hamiltonian H = Hg + Hy, (control part Hy,).

d i
a'= 7;[H,p] = p(ta) = U(ts, t2) p(t1) Ut (t1, 12).
.

e Lindblad equation (for open systems)

dt

Measurement : Arbitrary operators {E,, } such that 3°, ElLEm = Iy,
Pr{m} = tr(EmpEh) = tr(pEl Em) = tr(pMpm) with My, = Ef, By, positive,
EmpEf,

Post-measurement state pp, = ————— .
tr(EmpE,)

d i + + . . . .
—p=— ; [H,p] + Z (ZLij] — {L]Lj7 p}) , Lindblad op. L; for interact. with environt.
3 -
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PHYSICAL REVIEW A 91. 052310 (2015)

Optimized probing states for qubit phase estimation with general quantum noise

Francois Chapeau-Blondeau
Laboratoire Angevin de Recherche en Ingénierie des Systémes (LARIS), Université d’Angers,
62 avenue Notre Dame du Lac, 49000 Angers, France
(Received 27 March 2015: published 12 May 2015)

in the presence of

We exploit the theory of quantum estimation to i i quantum state esti
noise. The quantum Fisher information is used to assess lhc stimation performance. For the qubit in Bloch

are derived for the quantum score and then for the quantum Fisher information.
with the purity of the

repr ion, general expre:
From this latter expression. it is proved that the Fisher information always increa:
measured qubit state. An arbitrary quantum noise affecting the qubit is taken into a
the Fisher information. The task is then specified to estimating the phase of a qubit in a rotation around an
arbitrary axis, equivalent to estimating the phase of an arbitrary single-qubit quantum gate. The analysis enables
determination of the optimal probing states best re ise. and proves that they always are pure
states but need to be specifically matched to the noise. This optimization is worked out for several noise models
important to the qubit. An adaptive scheme and a Bayesian approach are presented to handle phase-dependent

count for its impact on

as

solutions.

DOI: 10.1103/PhysRevA 91.052310 PACS number(s): 03.67.—a, 42.50.Lc. 05.40.—,
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Merci de votre attention.

Si vous avez compris ...
c’est que je me suis mal exprimé !

“Nobody really understands quantum mechanics.”

R. P. Feynman
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