Quantum information, quantum computation :

An introduction.

François Chapeau-Blondeau
LARIS, Université d’Angers, France.

Motivations pour le quantique

pour le traitement de l'information :

1) Quand on utilise des systèmes élémentaires (photons, électrons, atomes, nanodevices, ...).
2) Pour bénéficier d'effets purement quantiques (parallèlisme, intrication, ...)
3) Domaine de recherche récent, riche et largement ouvert.

Some recent textbooks

M. Nielsen \& I. Chuang

2000, 676 pages

MakM. wiride

Quantum

 Information Theory
M. Wilde

2013, 655 pages
arXiv:1106.1445v5 [quant-ph] M. Wilde, "From classical to quantum Shannon theory", 670 pages.

Hadamard basis

Another orthonormal basis of \mathcal{H}_{2}
\Longleftrightarrow Computational orthonormal basis

$$
\left\{|0\rangle=\frac{1}{\sqrt{2}}(|+\rangle+|-\rangle) ; \quad|1\rangle=\frac{1}{\sqrt{2}}(|+\rangle-|-\rangle)\right\} .
$$

- a probabilistic process,
- as a projection of the state $|\psi\rangle$ in an orthonormal basis
- with statistics evaluable over repeated experiments with same preparation $|\psi\rangle$.

Experiments

Stern-Gerlach apparatus for particles with two states of spin (electron, atom).

Two states of polarization of a photon : (Nicol prism, Glan-Thompson, ...)

Bloch sphere representation of the qubi

Qubit in state
$|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ with $|\alpha|^{2}+|\beta|^{2}=1$.
$\Longleftrightarrow|\psi\rangle=\cos (\theta / 2)|0\rangle+e^{i \varphi} \sin (\theta / 2)|1\rangle$

$$
\text { with } \theta \in[0, \pi]
$$

$\varphi \in[0,2 \pi[$.

As a quantum object

the qubit has infinitely many degrees of freedom (θ, φ),
yet when it is measured it can only be found in one of two states (just like a classical bit).

In dimension N (finite) (extensible to infinite dimension)
State $|\psi\rangle=\sum_{n=1}^{N} \alpha_{n}|n\rangle$, in some orthonormal basis $\{|1\rangle,|2\rangle, \ldots|N\rangle\}$ of \mathcal{H}_{N},
with $\alpha_{n} \in \mathbb{C}, \quad$ and $\sum_{n=1}^{N}\left|\alpha_{n}\right|^{2}=\langle\psi \mid \psi\rangle=1$.
Proba. $\operatorname{Pr}\{|n\rangle\}=\left|\alpha_{n}\right|^{2}$ in a projective measurement of $|\psi\rangle$ in basis $\{|n\rangle\}$
Inner product $\langle k \mid \psi\rangle=\sum_{n=1}^{N} \alpha_{n} \overbrace{\langle k \mid n\rangle}^{\delta_{k n}}=\alpha_{k}$ coordinate.
$\mathrm{S}=\sum_{n=1}^{N}|n\rangle\langle n|=\mathrm{I}_{N}$ identity of \mathcal{H}_{N} (closure or completeness relation),
since, $\forall|\psi\rangle: \mathrm{S}|\psi\rangle=\sum_{n=1}^{N}|n\rangle \overbrace{\langle n \mid \psi\rangle}^{\alpha_{n}}=\sum_{n=1}^{N} \alpha_{n}|n\rangle=|\psi\rangle \Longrightarrow \mathrm{S}=\mathrm{I}_{N}$.

Multiple qubits

A system (a word) of N qubits has a state in $\mathcal{H}_{2}^{\otimes N}$,
a tensor-product vector space with dimension 2^{N},
and orthonormal basis $\left\{\left|x_{1} x_{2} \cdots x_{N}\right\rangle\right\}_{\vec{x} \in\{0,1\}^{N}}$.
Example $N=2$:
Generally $|\psi\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle$.
Or, as a special separable state

$$
\begin{aligned}
|\phi\rangle & =\left(\alpha_{1}|0\rangle+\beta_{1}|1\rangle\right) \otimes\left(\alpha_{2}|0\rangle+\beta_{2}|1\rangle\right) \\
& =\alpha_{1} \alpha_{2}|00\rangle+\alpha_{1} \beta_{2}|01\rangle+\beta_{1} \alpha_{2}|10\rangle+\beta_{1} \beta_{2}|11\rangle .
\end{aligned}
$$

A multipartite state which is not separable is entangled.

Entangled states

- Example of a separable state of two qubits $A B$:
$|A B\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)=\frac{1}{2}(|00\rangle+|01\rangle+|10\rangle+|11\rangle)$.
When measured in the basis $\{|0\rangle,|1\rangle\}$, each qubit A and B can be found in state $|0\rangle$ or $|1\rangle$ independently with probability $1 / 2$.

$$
\operatorname{Pr}\{|A\rangle=|0\rangle\}=\operatorname{Pr}\{|A B\rangle=|00\rangle\}+\operatorname{Pr}\{|A B\rangle=|01\rangle\}=1 / 4+1 / 4=1 / 2 .
$$

- Example of an entangled state of two qubits $A B$:
$|A B\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) . \quad \operatorname{Pr}\{|A\rangle=|0\rangle\}=\operatorname{Pr}\{|A B\rangle=|00\rangle\}=1 / 2$.
When measured in the basis $\{|0\rangle,|1\rangle\}$, each qubit A and B can be found in state $|0\rangle$ or
$|1\rangle$ with probability $1 / 2$ (randomly, no predetermination before measurement).
But if A is found in $|0\rangle$ necessarily B is found in $|0\rangle$,
and if A is found in $|1\rangle$ necessarily B is found in $|1\rangle$,
no matter how distant the two qubits are before measurement.

Computation on a qubit

Through a unitary operator U on $\mathcal{H}_{2}(\mathrm{a} 2 \times 2$ matrix $): \quad$ (i.e. $\left.\mathrm{U}^{-1}=\mathrm{U}^{\dagger}\right)$ normalized vector $|\psi\rangle \in \mathcal{H}_{2} \longrightarrow \mathrm{U}|\psi\rangle$ normalized vector $\in \mathcal{H}_{2}$.
\equiv quantum gate

Hadamard gate $H=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right] . \quad \quad$ Identity gate $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
$\mathrm{H}^{2}=\mathrm{I}_{2} \Longleftrightarrow \mathrm{H}^{-1}=\mathrm{H}=\mathrm{H}^{\dagger}$ Hermitian unitary.
$H|0\rangle=|+\rangle \quad$ and $\quad H|1\rangle=|-\rangle$
\Longrightarrow in a compact notation $\quad \mathrm{H}|x\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{x}|1\rangle\right), \quad \forall x \in\{0,1\}$.

Computation on a pair of qubits

Through a unitary operator U on $\mathcal{H}_{2}^{\otimes 2}$ (a 4×4 matrix) :
normalized vector $|\psi\rangle \in \mathcal{H}_{2}^{\otimes 2} \longrightarrow \mathrm{U}|\psi\rangle$ normalized vector $\in \mathcal{H}_{2}^{\otimes 2}$.
\equiv quantum gate
(always reversible)

Completely defined for instance by the transformation of the four state vectors of the computational basis $\{|00\rangle,|01\rangle,|10\rangle,|11\rangle\}$.

Bell basis

A pair of qubits in $\mathcal{H}_{2}^{\otimes 2}$ is a quantum system with dimension 4, with original (computational) orthonormal basis $\{|00\rangle,|01\rangle,|10\rangle,|11\rangle\}$.

Another useful orthonormal basis of $\mathcal{H}_{2}^{\otimes 2}$ is the Bell basis
$\left\{\left|\beta_{00}\right\rangle,\left|\beta_{01}\right\rangle,\left|\beta_{10}\right\rangle,\left|\beta_{11}\right\rangle\right\}$,

$$
\text { with } \quad \begin{aligned}
\left|\beta_{00}\right\rangle & =\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
\left|\beta_{01}\right\rangle & =\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) \\
\left|\beta_{10}\right\rangle & =\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) \\
\left|\beta_{11}\right\rangle & =\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle) .
\end{aligned}
$$

Pauli gates

$\mathrm{X}=\sigma_{x}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], \quad \mathrm{Y}=\sigma_{y}=\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right], \quad \mathrm{Z}=\sigma_{z}=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$.
$\mathrm{X}^{2}=\mathrm{Y}^{2}=\mathrm{Z}^{2}=\mathrm{I}_{2} \quad$ Hermitian unitary. $\quad \mathrm{XY}=i Z$, etc \ldots
$\left\{\mathrm{I}_{2}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}\right\}$ a basis for operators on \mathcal{H}_{2}.
Hadamard gate $H=\frac{1}{\sqrt{2}}(X+Z)$.
$\mathrm{X}=\sigma_{x} \quad$ the inversion or Not quantum gate. $\quad \mathrm{X}|0\rangle=|1\rangle, \quad \mathrm{X}|1\rangle=|0\rangle$.
$\mathrm{W}=\sqrt{\mathrm{X}}=\sqrt{\sigma_{x}}=\frac{1}{2}\left[\begin{array}{ll}1+i & 1-i \\ 1-i & 1+i\end{array}\right], \quad$ such that $\mathrm{W}^{2}=\mathrm{X}$,
is the square-root of Not, a typically quantum gate (no classical equivalent).

- Example : Controlled-Not gate

Via the XOR binary function : $a \oplus b=a$ when $b=0$, or $=\bar{a}$ when $b=1$; invertible $a \oplus x=b \Longleftrightarrow x=a \oplus b=b \oplus a$.

Used to construct a unitary invertible quantum C-Not gate :
(T target, C control)
$|C T\rangle \longrightarrow|C, C \oplus T\rangle$
$|00\rangle \longrightarrow|00\rangle$
$|01\rangle \longrightarrow|01\rangle$
$|10\rangle \longrightarrow|11\rangle$

$|11\rangle \longrightarrow|10\rangle$
$(\mathrm{C}-\mathrm{Not})^{2}=\mathrm{I}_{2} \Longleftrightarrow(\mathrm{C}-\mathrm{Not})^{-1}=\mathrm{C}-\mathrm{Not}=(\mathrm{C}-\mathrm{Not})^{\dagger}$ Hermitian unitary.

Computation on a system of N qubits

Through a unitary operator U on $\mathcal{H}_{2}^{\otimes N}$ (a $2^{N} \times 2^{N}$ matrix) :
normalized vector $|\psi\rangle \in \mathcal{H}_{2}^{\otimes N} \longrightarrow \mathrm{U}|\psi\rangle$ normalized vector $\in \mathcal{H}_{2}^{\otimes N}$.

三 quantum gate : N input qubits $\xrightarrow{\mathrm{U}} N$ output qubits.
Completely defined for instance by the transformation of the 2^{N} state vectors of the computational basis.

Any N-qubit quantum gate may always be composed
from two-qubit C-Not gates and single-qubit gates (universality).

This forms the grounding of quantum computation.

Parallel evaluation of a function (1/3)

A classical function $f(\cdot)$ from N bits to 1 bit

$$
\vec{x} \in\{0,1\}^{N} \longrightarrow f(\vec{x}) \in\{0,1\}
$$

Used to construct a unitary operator U_{f} as an invertible f-controlled gate :

with binary output $y \oplus f(\vec{x})=f(\vec{x})$ when $y=0$, or $=\overline{f(\vec{x})}$ when $y=1$.

Parallel evaluation of a function (2/3)

For every basis state $|\vec{x}\rangle$, with $\vec{x} \in\{0,1\}^{N}$:
$|\vec{x}\rangle|y=0\rangle \xrightarrow{\mathrm{U}_{f}}|\vec{x}\rangle|f(\vec{x})\rangle$
$|\vec{x}\rangle|y=1\rangle \longrightarrow|\vec{x}\rangle|\overline{f(\vec{x})}\rangle$
$|\vec{x}\rangle|+\rangle$ \qquad $|\vec{x}\rangle \frac{1}{\sqrt{2}}[|f(\vec{x})\rangle+|\overrightarrow{f(\vec{x})}\rangle]=|\vec{x}\rangle|+\rangle$
$|\vec{x}\rangle|-\rangle$ \qquad $\rightarrow|\vec{x}\rangle \frac{1}{\sqrt{2}}[|f(\vec{x})\rangle-|\overrightarrow{f(\vec{x})}\rangle]=|\vec{x}\rangle|-\rangle(-1)^{f(\vec{x})}$

Deutsch-Jozsa algorithm (2/5)

Input state $\left|\psi_{1}\right\rangle=|+\rangle^{\otimes N}|-\rangle=\left(\frac{1}{\sqrt{2}}\right)^{N} \sum_{\vec{x} \in\{0,1\}^{N}}|\vec{x}\rangle|-\rangle$
Internal state $\left|\psi_{2}\right\rangle=\left(\frac{1}{\sqrt{2}}\right)^{N} \sum_{\vec{x} \in\{0,1\}^{N}}|\vec{x}\rangle|-\rangle(-1)^{f(\vec{x})}$

Quantum parallelism

For a system of N qubits,
a quantum gate is any unitary operator U from $\mathcal{H}_{2}^{\otimes N}$ onto $\mathcal{H}_{2}^{\otimes N}$
The quantum gate U is completely defined
by its action on the 2^{N} basis states of $\mathcal{H}_{2}^{\otimes N}:\left\{|\vec{x}\rangle, \vec{x} \in\{0,1\}^{N}\right\}$,
just like a classical gate.
Yet, the quantum gate U can be operated
on any linear superposition of the basis states $\left\{|\vec{x}\rangle, \vec{x} \in\{0,1\}^{N}\right\}$.
This is quantum parallelism, with no classical analog.

Parallel evaluation of a function (3/3)

¿ How to extract, to measure, useful informations from superpositions?

Deutsch-Jozsa algorithm (3/5)

Output state $\left|\psi_{3}\right\rangle=\left(\mathrm{H}^{\otimes N} \otimes \mathrm{I}_{2}\right)\left|\psi_{2}\right\rangle$

$$
\begin{aligned}
& =\left(\frac{1}{\sqrt{2}}\right)^{N} \sum_{\vec{x} \in\{0,1\}^{N}} H^{\otimes N}|\vec{x}\rangle|-\rangle(-1)^{f(\vec{x})} \\
& =\left(\frac{1}{2}\right)^{N} \sum_{\vec{x} \in\{0,1\}^{N}} \sum_{\vec{z} \in\{0,1\}^{N}}(-1)^{\vec{x} \vec{z}}|\vec{z}\rangle|-\rangle(-1)^{f(\vec{x})} \quad \text { by Lemma 1, }
\end{aligned}
$$

$$
\text { or }\left|\psi_{3}\right\rangle=|\psi\rangle|-\rangle, \quad \text { with } \quad|\psi\rangle=\left(\frac{1}{2}\right)^{N} \sum_{\vec{z} \in\{0,1\}^{N}} u(\vec{z})|\vec{z}\rangle
$$

$$
\text { and the scalar weight } \quad u(\vec{z})=\sum_{\vec{x} \in\{0,1\}^{N}}(-1)^{f(\vec{x})+\vec{x} \vec{z}}
$$

Deutsch-Jozsa algorithm (4/5)

So $|\psi\rangle=\frac{1}{2^{N}} \sum_{\vec{z} \in\{0,1\}^{N}} u(\vec{z})|\vec{z}\rangle \quad$ with $u(\vec{z})=\sum_{\vec{x} \in\{0,1\}^{N}}(-1)^{f(\vec{x})+\vec{x} \vec{z}}$.
For $|\vec{z}\rangle=|\overrightarrow{0}\rangle=|0\rangle^{\otimes N} \quad$ then $u(\vec{z}=\overrightarrow{0})=\sum_{\vec{x} \in\{0,1\}^{N}}(-1)^{f(\vec{x})}$.

- When $f(\cdot)$ constant : $u(\vec{z}=\overrightarrow{0})=2^{N}(-1)^{f(\overrightarrow{0})}= \pm 2^{N} \Longrightarrow$ in $|\psi\rangle$ the amplitude of $|\overrightarrow{0}\rangle$ is ± 1, and since $|\psi\rangle$ is with unit norm $\Longrightarrow|\psi\rangle= \pm|\overrightarrow{0}\rangle$, and all other $u(\vec{z} \neq \overrightarrow{0})=0$. \Longrightarrow When $|\psi\rangle$ is measured, N states $|0\rangle$ are found.
- When $f(\cdot)$ balanced : $u(\vec{z}=\overrightarrow{0})=0 \Longrightarrow|\psi\rangle$ is not or does not contain state $|\overrightarrow{0}\rangle$. \Longrightarrow When $|\psi\rangle$ is measured, at least one state $|1\rangle$ is found.
\longrightarrow Illustrates quantum ressources of parallelism, coherent superposition, interference (When $f(\cdot)$ is neither constant nor balanced $|\psi\rangle$ contains a little bit of $|\overrightarrow{0}\rangle$.)

Teleportation (Bennett 1993) : of an unknown qubit state (1/3)
Qubit Q in unknown arbitrary state $\left|\psi_{Q}\right\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle$
Alice and Bob share a qubit pair in entangled state $|A B\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\left|\beta_{00}\right\rangle$.

Alice measures the pair of qubits $Q A$ in the Bell basis (so $\left|\psi_{Q}\right\rangle$ is locally destroyed), and the two resulting cbits x, y are sent to Bob.
Bob on his qubit B applies the gates X^{y} and Z^{x} which reconstructs $\left|\psi_{Q}\right\rangle$.

Princeps references on superdense coding ...

[1] C. H. Bennett, S. J. Wiesner, "Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states"; Physical Review Letters 69 (1992) 2881-2884.
[2] K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger; "Dense coding in experimental quantum communication"; Physical Review Letters 76 (1996) 4656-4659.

... and teleportation

[3] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters; "Teleporting a unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels"; Physical Review Letters 70 (1993) 1895-1899.

Deutsch-Jozsa algorithm (5/5)

[1] D. Deutsch; "Quantum theory, the Church-Turing principle and the universal quantum computer"; Proceedings of the Royal Society of London A 400 (1985) 97-117.
The case $N=2$.
[2] D. Deutsch, R. Jozsa; "Rapid solution of problems by quantum computation"; Proceedings of the Royal Society of London A, 439 (1993) 553-558.
Extension to arbitrary $N \geq 2$.
[3] E. Bernstein, U. Vazirani; "Quantum complexity theory"; SIAM Journal on Computing 26 (1997) 1411-1473.

Extension to $f(\vec{x})=\vec{a} \vec{x}$ or $f(\vec{x})=\vec{a} \vec{x} \oplus \vec{b}$, to find binary N-word $\vec{a} \longrightarrow$ by producing output $|\psi\rangle=|\vec{a}\rangle$.
[4] R. Cleve, A. Ekert, C. Macchiavello, M. Mosca; "Quantum algorithms revisited"; Proceedings of the Royal Society of London A, 454 (1998) 339-354.

Teleportation (2/3)

$\left|\psi_{1}\right\rangle=\left|\psi_{Q}\right\rangle\left|\beta_{00}\right\rangle=\frac{1}{\sqrt{2}}\left[\alpha_{0}|0\rangle(|00\rangle+|11\rangle)+\alpha_{1}|1\rangle(|00\rangle+|11\rangle)\right]$

$$
=\frac{1}{\sqrt{2}}\left[\alpha_{0}|000\rangle+\alpha_{0}|011\rangle+\alpha_{1}|100\rangle+\alpha_{1}|111\rangle\right],
$$

factorizable as $\left|\psi_{1}\right\rangle=\frac{1}{2}\left[\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)\left(\alpha_{0}|0\rangle+\alpha_{1}|1\rangle\right)+\right.$

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)\left(\alpha_{0}|1\rangle+\alpha_{1}|0\rangle\right)+ \\
& \frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)\left(\alpha_{0}|0\rangle-\alpha_{1}|1\rangle\right)+ \\
& \left.\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)\left(\alpha_{0}|1\rangle-\alpha_{1}|0\rangle\right)\right]
\end{aligned}
$$

Grover quantum search algorithm (1/3) Phys. Rev. Let. 79 (1997) 325.

- Finds an item out of N in an unsorted database,
in $O(\sqrt{N})$ complexity instead of $O(N)$ classically.
- An N-dimensional quantum system with orthonormal basis $\{|1\rangle, \cdots,|N\rangle\}$ the states $|n\rangle, n=1, \ldots N$, representing the N items stored in the database.
- A set of N real values $\left\{\omega_{1}, \cdots, \omega_{N}\right\}$ representing the address of each item $|n\rangle$ in the database.
- The unsorted database is in the state $|\psi\rangle=\frac{1}{\sqrt{N}} \sum_{n=1}^{N}|n\rangle$.
- A query of the database, in order to obtain the address ω_{n} of an item $|n\rangle$
is performed by a measurement of the observable $\Omega=\sum_{n=1}^{N} \omega_{n}|n\rangle\langle n|$.
- Any specific item $\left|n_{0}\right\rangle$ is obtained as measurement outcome with its eigenvalue (address) $\omega_{n_{0}}$, with the probability $\left|\left\langle n_{0} \mid \psi\right\rangle\right|^{2}=1 / N \quad$ (since $\left\langle n_{0} \mid \psi\right\rangle=1 / \sqrt{N}$).

Superdense coding (Bennett 1992) : exploiting entanglement

Alice and Bob share a qubit pair in entangled state $|A B\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\left|\beta_{00}\right\rangle$.
Alice chooses two classical bits, used to encode by applying to her qubit A one of $\left\{\mathrm{I}_{2}, \mathrm{X}, i \mathrm{Y}, \mathrm{Z}\right\}$, delivering the qubit A^{\prime} sent to Bob.

Bob receives this qubit A^{\prime}. For decoding, Bob measures $\left|A^{\prime} B\right\rangle$ in the Bell basis $\left\{\left|\beta_{00}\right\rangle,\left|\beta_{01}\right\rangle,\left|\beta_{10}\right\rangle,\left|\beta_{11}\right\rangle\right\}$, from which he recovers the two classical bits.

Teleportation (3/3)

$$
\begin{array}{r}
\left|\psi_{1}\right\rangle=\frac{1}{2}\left[\left|\beta_{00}\right\rangle\left(\alpha_{0}|0\rangle+\alpha_{1}|1\rangle\right)+\left|\beta_{01}\right\rangle\left(\alpha_{0}|1\rangle+\alpha_{1}|0\rangle\right)+\right. \\
\left.\left|\beta_{10}\right\rangle\left(\alpha_{0}|0\rangle-\alpha_{1}|1\rangle\right)+\left|\beta_{11}\right\rangle\left(\alpha_{0}|1\rangle-\alpha_{1}|0\rangle\right)\right]
\end{array}
$$

The first two qubits $Q A$ measured in Bell basis $\left\{\left|\beta_{x y}\right\rangle\right\}$ yield the two cbits $x y$, used to transform the third qubit B by X^{y} then Z^{x}, which reconstructs $\left|\psi_{Q}\right\rangle$.

When $Q A$ is measured in $\left|\beta_{00}\right\rangle$ then B is in $\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \xrightarrow{\mathrm{I}_{2}} \cdot \xrightarrow{\mathrm{I}_{2}}\left|\psi_{Q}\right\rangle$ When $Q A$ is measured in $\left|\beta_{01}\right\rangle$ then B is in $\alpha_{0}|1\rangle+\alpha_{1}|0\rangle \xrightarrow{\mathrm{X}} \cdot \xrightarrow{\mathrm{I}_{2}}\left|\psi_{Q}\right\rangle$ When $Q A$ is measured in $\left|\beta_{10}\right\rangle$ then B is in $\alpha_{0}|0\rangle-\alpha_{1}|1\rangle \xrightarrow{\mathrm{I}_{2}} \cdot \xrightarrow{\mathrm{Z}}\left|\psi_{Q}\right\rangle$ When $Q A$ is measured in $\left|\beta_{11}\right\rangle$ then B is in $\alpha_{0}|1\rangle-\alpha_{1}|0\rangle \xrightarrow{\mathrm{X}} \cdot \xrightarrow{\mathrm{Z}}\left|\psi_{Q}\right\rangle$.

Grover quantum search algorithm (2/3)

- For this specific item $\left|n_{0}\right\rangle$ that we want to retrieve (obtain its address $\omega_{n_{0}}$) it is possible to amplify this uniform probability $\left|\left\langle n_{0} \mid \psi\right\rangle\right|^{2}=1 / N$.
- Let $\left|n_{\perp}\right\rangle=\frac{1}{\sqrt{N-1}} \sum_{n \neq n_{0}}^{N}|n\rangle$ normalized state $\perp\left|n_{0}\right\rangle \Longrightarrow|\psi\rangle$ in plane $\left(\left|n_{0}\right\rangle,\left|n_{\perp}\right\rangle\right)$.
- Define unitary operator $\mathrm{U}_{0}=\mathrm{I}_{N}-2\left|n_{0}\right\rangle\left\langle n_{0}\right| \Longrightarrow \mathrm{U}_{0}\left|n_{\perp}\right\rangle=\left|n_{\perp}\right\rangle$ and $\mathrm{U}_{0}\left|n_{0}\right\rangle=-\left|n_{0}\right\rangle$. So in plane $\left(\left|n_{0}\right\rangle,\left|n_{\perp}\right\rangle\right)$, the operator U_{0} performs a reflection about $\left|n_{\perp}\right\rangle$. (U_{0} oracle).
- Let $\left|\psi_{\perp}\right\rangle$ normalized state $\perp|\psi\rangle$ in plane $\left(\left|n_{0}\right\rangle,\left|n_{\perp}\right\rangle\right)$.
- Define the unitary operator $\mathrm{U}_{\psi}=2|\psi\rangle\langle\psi|-\mathrm{I}_{N} \Longrightarrow \mathrm{U}_{\psi}|\psi\rangle=|\psi\rangle$ and $\mathrm{U}_{\psi}\left|\psi_{\perp}\right\rangle=-\left|\psi_{\perp}\right\rangle$. So in plane $\left(\left|n_{0}\right\rangle,\left|n_{\perp}\right\rangle\right)$, the operator U_{ψ} performs a reflection about $|\psi\rangle$.
- In plane $\left(\left|n_{0}\right\rangle,\left|n_{\perp}\right\rangle\right)$, the composition of two reflections is a rotation $\mathrm{U}_{\psi} \mathrm{U}_{0}=\mathrm{G}$ (Grover amplification operator). It verifies $\mathrm{G}\left|n_{0}\right\rangle=\mathrm{U}_{\psi} \mathrm{U}_{0}\left|n_{0}\right\rangle=-\mathrm{U}_{\psi}\left|n_{0}\right\rangle=\left|n_{0}\right\rangle-\frac{2}{\sqrt{N}}|\psi\rangle$. The rotation angle θ between $\left|n_{0}\right\rangle$ and $\mathrm{G}\left|n_{0}\right\rangle$, via the scalar product of $\left|n_{0}\right\rangle$ and $\mathrm{G}\left|n_{0}\right\rangle$, verifies $\cos (\theta)=\left\langle n_{0}\right| \mathrm{G}\left|n_{0}\right\rangle=1-\frac{2}{N} \approx 1-\frac{\theta^{2}}{2} \Longrightarrow \theta \approx \frac{2}{\sqrt{N}}$ at $N \gg 1$.

Grover quantum search algorithm (3/3)

- In plane $\left(\left|n_{0}\right\rangle,\left|n_{\perp}\right\rangle\right)$, the rotation $\mathrm{G}=\mathrm{U}_{\psi} \mathrm{U}_{0}$ is with angle $\theta \approx \frac{2}{\sqrt{N}}$
- $\mathrm{G}|\psi\rangle=\mathrm{U}_{\psi} \mathrm{U}_{0}|\psi\rangle=\mathrm{U}_{\psi}\left(|\psi\rangle-\frac{2}{\sqrt{N}}\left|n_{0}\right\rangle\right)=\left(1-\frac{4}{N}\right)|\psi\rangle+\frac{2}{\sqrt{N}}\left|n_{0}\right\rangle$.

So after rotation by θ the rotated state $\mathrm{G}|\psi\rangle$ is closer to $\left|n_{0}\right\rangle$.

- $\mathrm{G}|\psi\rangle$ remains in plane $\left(\left|n_{0}\right\rangle,\left|n_{\perp}\right\rangle\right)$, and any state in plane $\left(\left|n_{0}\right\rangle,\left|n_{\perp}\right\rangle\right)$ by G is rotated by θ. So $\mathrm{G}^{2}|\psi\rangle$ rotates $|\psi\rangle$ by 2θ toward $\left|n_{0}\right\rangle$, and $\mathrm{G}^{k}|\psi\rangle$ rotates $|\psi\rangle$ by $k \theta$ toward $\left|n_{0}\right\rangle$.
- The angle Θ of $|\psi\rangle$ and $\left|n_{0}\right\rangle$ is such that $\cos (\Theta)=\left\langle n_{0} \mid \psi\right\rangle=1 / \sqrt{N} \Longrightarrow \Theta=\operatorname{acos}(1 / \sqrt{N})$.
- So $K=\frac{\Theta}{\theta} \approx \frac{\sqrt{N}}{2} \operatorname{acos}(1 / \sqrt{N})$ iterations of G rotate $|\psi\rangle$ onto $\left|n_{0}\right\rangle$.

At most $\Theta=\frac{\pi}{2} \Longrightarrow$ at most $K \approx \frac{\pi}{4} \sqrt{N}$

- So when the state $\mathrm{G}^{K}|\psi\rangle \approx\left|n_{0}\right\rangle$ is measured, the probability is almost 1 to obtain $\left|n_{0}\right\rangle$ and its address $\omega_{n_{0}} \Longrightarrow$ The searched item is found in $O(\sqrt{N})$ operations instead of $O(N)$ classically.

Other quantum algorithms

- Shor factoring algorithm (1997)

Factors any integer in polynomial complexity (instead of exponential classically).
$15=3 \times 5$, with spin- $1 / 2$ nuclei (Vandersypen et al., Nature 2001).
$21=3 \times 7$, with photons (Martín-López et al., Nature Photonics 2012).

- http://math.nist.gov/quantum/zoo/
"A comprehensive catalog of quantum algorithms ..."

Quantum correlations (1/2)

Alice and Bob share a pair of qubits in the entangled (Bell) state $\left|\psi_{\mathrm{AB}}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)$.
Alice or Bob on its qubit can measure observables of the form $\Omega(\theta)=\sin (\theta) \mathrm{X}+\cos (\theta) \mathrm{Z}$, having eigenvalues ± 1.
Alice measures $\Omega(\alpha)$ to obtain $A= \pm 1$, and Bob measures $\Omega(\beta)$ to obtain $B= \pm 1$, then from $\rho_{\mathrm{AB}}=\left|\psi_{\mathrm{AB}}\right\rangle\left\langle\psi_{\mathrm{AB}}\right|$ we obtain the average $\langle A B\rangle=\operatorname{tr}\left(\rho_{\mathrm{AB}} \Omega(\alpha) \otimes \Omega(\beta)\right)=-\cos (\alpha-\beta)$.

For any four random variables $A_{1}, A_{2}, B_{1}, B_{2}$ with values ± 1,
$\Gamma=\left(A_{1}+A_{2}\right) B_{1}-\left(A_{1}-A_{2}\right) B_{2}=A_{1} B_{1}+A_{2} B_{1}+A_{2} B_{2}-A_{1} B_{2}= \pm 2$ because since $A_{1}, A_{2}= \pm 1$, either $\left(A_{1}+A_{2}\right) B_{1}=0$ or $\left(A_{1}-A_{2}\right) B_{2}=0$,
and in each case the remaining term is ± 2.
So for any probability distribution on ($A_{1}, A_{2}, B_{1}, B_{2}$), necessarily
$\langle\Gamma\rangle=\left\langle A_{1} B_{1}+A_{2} B_{1}+A_{2} B_{2}-A_{1} B_{2}\right\rangle=\left\langle A_{1} B_{1}\right\rangle+\left\langle A_{2} B_{1}\right\rangle+\left\langle A_{2} B_{2}\right\rangle-\left\langle A_{1} B_{2}\right\rangle$ verifies $-2 \leq\langle\Gamma\rangle \leq 2$. Bell inequalities (1964).

GHZ states (1/5) (1989, Greenberger, Horne, Zeilinger)

Three players, each receiving a binary input $x_{j}=0 / 1$, for $j=1,2,3$,
with four possible input configurations $x_{1} x_{2} x_{3} \in\{000,011,101,110\}$
Each player j responds by a binary output $y_{j}\left(x_{j}\right)=0 / 1$, function only of its own input x_{j}, for $j=1,2,3$.

Game is won if the players collectively respond according to the input-output matches :

$$
\left\lvert\, \begin{aligned}
& x_{1} x_{2} x_{3}=000 \longrightarrow y_{1} y_{2} y_{3} \text { such that } y_{1} \oplus y_{2} \oplus y_{3}=0, \\
& x_{1} x_{2} x_{3} \in\{011,101,110\} \longrightarrow y_{1} y_{2} y_{3} \text { such that } y_{1} \oplus y_{2} \oplus y_{3}=1 .
\end{aligned}\right.
$$

To select their responses $y_{j}\left(x_{j}\right)$, the players can agree on a collective strategy before, but not after, they have received their inputs x_{j}.

GHZ states (3/5)

Before the game starts, each player receives one qubit from a qubit triplet prepared in the entangled state (GHZ state)

$$
|\psi\rangle=\left|\psi_{123}\right\rangle=\frac{1}{2}(|000\rangle-|011\rangle-|101\rangle-|110\rangle) .
$$

And the players agree on the common (prior) strategy :
if $x_{j}=0$, player j obtains y_{j} as the outcome of measuring its qubit in basis $\{|0\rangle,|1\rangle\}$, if $x_{j}=1$, player j obtains y_{j} as the outcome of measuring its qubit in basis $\{|+\rangle,|-\rangle\}$.

We prove this is a winning strategy on all four input configurations:

1) When $x_{1} x_{2} x_{3}=000$, the three players measure in $\{|0\rangle,|1\rangle\}$
$\Longrightarrow y_{1} \oplus y_{2} \oplus y_{3}=0$ is matched.

GHZ states (4/5)

2) When $x_{1} x_{2} x_{3}=011$, only player 1 measures in $\{|0\rangle,|1\rangle\}$ $|\psi\rangle=\frac{1}{2}(|000\rangle-|011\rangle-|101\rangle-|110\rangle)=\frac{1}{2}[|0\rangle(|00\rangle-|11\rangle)-|1\rangle(|01\rangle+|10\rangle)]$

Since $|0\rangle=\frac{1}{\sqrt{2}}(|+\rangle+|-\rangle), \quad|1\rangle=\frac{1}{\sqrt{2}}(|+\rangle-|-\rangle) \Longrightarrow$
$|00\rangle-|11\rangle=\frac{1}{2}[(|+\rangle+|-\rangle)(|+\rangle+|-\rangle)-(|+\rangle-|-\rangle)(|+\rangle-|-\rangle)]$
$=\frac{1}{2}[(|++\rangle+|+-\rangle+|-+\rangle+|--\rangle)-(|++\rangle-|+-\rangle-|-+\rangle+|--\rangle)]$

$|01\rangle+|10\rangle=\frac{1}{2}[(|+\rangle+|-\rangle)(|+\rangle-|-\rangle)+(|+\rangle-|-\rangle)(|+\rangle+|-\rangle)]=|++\rangle-|--\rangle ;$ $\Longrightarrow|\psi\rangle=\frac{1}{2}(|0+-\rangle+|0-+\rangle-|1++\rangle+|1--\rangle) \Longrightarrow y_{1} \oplus y_{2} \oplus y_{3}=1$ matched.

GHZ states (5/5)

3) When $x_{1} x_{2} x_{3}=101$, only player 2 measures in $\{|0\rangle,|1\rangle\}$.
$|\psi\rangle=\frac{1}{2}(|000\rangle-|011\rangle-|101\rangle-|110\rangle)=\frac{1}{2}[|\cdot \cdot \cdot\rangle(|0 \cdot 0\rangle-|1 \cdot 1\rangle)-|\cdot \cdot \cdot\rangle(|0 \cdot 1\rangle+|1 \cdot 0\rangle)]$

$$
=\frac{1}{2}[|\cdot 0 \cdot\rangle(|+\cdot-\rangle+|-\cdot+\rangle)-|\cdot \cdot \cdot\rangle(|+\cdot+\rangle-|-\cdot-\rangle)]
$$

$=\frac{1}{2}(|+0-\rangle+|-0+\rangle-|+1+\rangle+|-1-\rangle) \Longrightarrow y_{1} \oplus y_{2} \oplus y_{3}=1$ matched.
4) When $x_{1} x_{2} x_{3}=110$, only player 3 measures in $\{|0\rangle,|1\rangle\}$.
$|\psi\rangle=\frac{1}{2}(|000\rangle-|011\rangle-|101\rangle-|110\rangle)=\frac{1}{2}[|\cdots 0\rangle(|00 \cdot\rangle-|11 \cdot\rangle)-|\cdot \cdot 1\rangle(|01 \cdot\rangle+|10 \cdot\rangle)]$

$$
=\frac{1}{2}[|\cdot 0\rangle(|+-\cdot\rangle+|-+\cdot\rangle)-|\cdot \cdot 1\rangle(|++\cdot\rangle-|--\cdot\rangle)]
$$

$=\frac{1}{2}(|+-0\rangle+|-+0\rangle-|++1\rangle+|--1\rangle) \Longrightarrow y_{1} \oplus y_{2} \oplus y_{3}=1$ matched.

Density operator (1/2)

Quantum system in (pure) state $\left|\psi_{j}\right\rangle$, measured in an orthonormal basis $\{|n\rangle\}$:
\Longrightarrow probability $\operatorname{Pr}\left\{|n\rangle\left|\left|\psi_{j}\right\rangle\right\}=\left|\left\langle n \mid \psi_{j}\right\rangle\right|^{2}=\left\langle n \mid \psi_{j}\right\rangle\left\langle\psi_{j} \mid n\right\rangle\right.$
Several possible states $\left|\psi_{j}\right\rangle$ with probabilities $p_{j}\left(\right.$ with $\left.\sum_{j} p_{j}=1\right)$:
$\left.\Longrightarrow \operatorname{Pr}\{|n\rangle\}=\sum_{j} p_{j} \operatorname{Pr}\left\{|n\rangle| | \psi_{j}\right\rangle\right\}=\langle n|\left(\sum_{j} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\right)|n\rangle=\langle n| \rho|n\rangle$,
with density operator $\rho=\sum_{j} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$.
and $\operatorname{Pr}\{|n\rangle\}=\langle n| \rho|n\rangle=\operatorname{tr}(\rho|n\rangle\langle n|)=\operatorname{tr}\left(\rho \Pi_{n}\right)$.
The quantum system is in a mixed state, corresponding to the statistical ensemble $\left\{p_{j},\left|\psi_{j}\right\rangle\right\}$, described by the density operator ρ

Lemma : For any operator A with $\operatorname{trace} \operatorname{tr}(\mathrm{A})=\sum_{n}\langle n| \mathrm{A}|n\rangle$, one has
$\operatorname{tr}(\mathrm{A}|\psi\rangle\langle\phi|)=\sum_{n}\langle n| \mathrm{A}|\psi\rangle\langle\phi \mid n\rangle=\sum_{n}\langle\phi \mid n\rangle\langle n| \mathrm{A}|\psi\rangle=\langle\phi|\left(\sum_{n}|n\rangle\langle n|\right) \mathrm{A}|\psi\rangle=\langle\phi| \mathrm{A}|\psi\rangle$

Density operator for the qubit

$\left\{\sigma_{0}=\mathrm{I}_{2}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right\}$ a basis of \mathcal{H}_{2},
orthogonal for the Hilbert-Schmidt inner product $\operatorname{tr}\left(\mathrm{A}^{\dagger} \mathrm{B}\right)$.
Any $\rho=\frac{1}{2}\left(\mathrm{I}_{2}+r_{x} \sigma_{x}+r_{y} \sigma_{y}+r_{z} \sigma_{z}\right)=\frac{1}{2}\left(\mathrm{I}_{2}+\vec{r} \vec{\sigma}\right)$.
$\Longrightarrow \operatorname{tr}(\rho)=1$.
$\rho=\rho^{\dagger} \Longrightarrow r_{x}=r_{x}^{*}, \quad r_{y}=r_{y}^{*}, \quad r_{z}=r_{z}^{*} \Longrightarrow r_{x}, r_{y}, r_{z}$ real.
Eigenvalues $\lambda_{ \pm}=\frac{1}{2}(1 \pm\|\vec{r}\|) \geq 0 \Longrightarrow\|\vec{r}\| \leq 1$.
$\|\vec{r}\|<1$ for mixed states,
$\|\vec{r}\|=1$ for pure states.
$\vec{r}=\left[r_{x}, r_{y}, r_{z}\right]^{\top}$ in Bloch ball of \mathbb{R}^{3}

50/68

Density operator (2/2)

Density operator $\rho=\sum_{j} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$
$\Longrightarrow \rho=\rho^{\dagger}$ Hermitian ;
$\forall|\psi\rangle,\langle\psi| \rho|\psi\rangle=\sum_{j} p_{j}\left|\left\langle\psi \mid \psi_{j}\right\rangle\right|^{2} \geq 0 \Longrightarrow \rho \geq 0$ positive ;
$\operatorname{trace} \operatorname{tr}(\rho)=\sum_{j} p_{j} \operatorname{tr}\left(\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\right)=\sum_{j} p_{j}=1$.
On \mathcal{H}_{N}, eigen decomposition $\rho=\sum_{n=1}^{N} \lambda_{n}\left|\lambda_{n}\right\rangle\left\langle\lambda_{n}\right|$, with
eigenvalues $\left\{\lambda_{n}\right\}$ a probability distribution,
eigenstates $\left\{\left|\lambda_{n}\right\rangle\right\}$ an orthonormal basis of \mathcal{H}_{N}.
Purity $\operatorname{tr}\left(\rho^{2}\right)=\sum_{n=1}^{N} \lambda_{n}^{2}=1$ for a pure state, and $\operatorname{tr}\left(\rho^{2}\right)<1$ for a mixed state.
A valid density operator on $\mathcal{H}_{N} \equiv$ any positive operator ρ with unit trace,
provides a general representation for the state of a quantum system in \mathcal{H}_{N}.

Average of an observable

A quantum system in \mathcal{H}_{N} has observable Ω of diagonal form $\Omega=\sum_{n=1}^{N} \omega_{n}\left|\omega_{n}\right\rangle\left\langle\omega_{n}\right|$.
When the quantum system is in state ρ, measuring Ω amounts to performing
a projective measurement on ρ in the orthonormal eigenbasis $\left\{\left|\omega_{1}\right\rangle, \ldots\left|\omega_{N}\right\rangle\right\}$ of \mathcal{H}_{N}, with the N orthogonal projectors $\left|\omega_{n}\right\rangle\left\langle\omega_{n}\right|$, for $n=1$ to N.

The outcome yields the eigenvalue $\omega_{n} \in \mathbb{R}$ with probability
$\operatorname{Pr}\left\{\omega_{n}\right\}=\left\langle\omega_{n}\right| \rho\left|\omega_{n}\right\rangle=\operatorname{tr}\left(\rho\left|\omega_{n}\right\rangle\left\langle\omega_{n}\right|\right)$.
Over repeated measurements of Ω on the system prepared in the same state ρ, the average value of Ω is

$$
\langle\Omega\rangle=\sum_{n=1}^{N} \omega_{n} \operatorname{Pr}\left\{\omega_{n}\right\}=\sum_{n=1}^{N} \omega_{n} \operatorname{tr}\left(\rho\left|\omega_{n}\right\rangle\left\langle\omega_{n}\right|\right)=\operatorname{tr}\left(\rho \sum_{n=1}^{N} \omega_{n}\left|\omega_{n}\right\rangle\left\langle\omega_{n}\right|\right)
$$

$$
=\operatorname{tr}(\rho \Omega) .
$$

Observables on the qubit

Any operator on \mathcal{H}_{2} has general form $\Omega=a_{0} \mathrm{I}_{2}+\vec{a} \vec{\sigma}$,
with determinant $\operatorname{det}(\Omega)=a_{0}^{2}-\vec{a}^{2}$, two eigenvalues $a_{0} \pm \sqrt{\vec{a}^{2}}$,
and two projectors on the two eigenvectors $| \pm \vec{a}\rangle\langle \pm \vec{a}|=\frac{1}{2}\left(\mathrm{I}_{2} \pm \vec{a} \vec{\sigma} / \sqrt{\vec{a}^{2}}\right)$.

For an observable, Ω Hermitian requires $a_{0} \in \mathbb{R}$ and $\vec{a}=\left[a_{x}, a_{y}, a_{z}\right]^{\top} \in \mathbb{R}^{3}$

An important observable measurable on the qubit is $\Omega=\vec{a} \vec{\sigma}$ with $\|\vec{a}\|=1$,
known as a spin measurement in the direction \vec{a} of \mathbb{R}^{3},
yielding as possible outcomes the two eigenvalues $\pm\|\vec{a}\|= \pm 1$,
with probabilites $\operatorname{Pr}\{ \pm 1\}=\frac{1}{2}(1 \pm \vec{r} \vec{a})$ for a qubit in state $\rho=\frac{1}{2}\left(\mathrm{I}_{2}+\vec{r} \vec{\sigma}\right)$,
(since $\operatorname{Pr}\{ \pm 1\}=\operatorname{tr}(\rho| \pm \vec{a}\rangle\langle \pm \vec{a}|)=\frac{1}{2} \pm \frac{1}{2} \operatorname{tr}(\rho \vec{a} \vec{\sigma})$ with $\left.(\vec{r} \vec{\sigma})(\vec{a} \vec{\sigma})=(\vec{r} \vec{a}) \mathrm{I}_{2}+i(\vec{r} \times \vec{a}) \vec{\sigma}\right)$.

Quantum noise (1/2)

A quantum system of \mathcal{H}_{N} in state ρ interacting with its environment represents an open quantum system. The state ρ usually undergoes a nonunitary evolution
With $\rho_{\text {env }}$ the state of the environment at the onset of the interaction, the joint state $\rho \otimes \rho_{\text {env }}$ can be considered as that of a closed system, undergoing a unitary evolution by U as $\rho \otimes \rho_{\text {env }} \longrightarrow \mathrm{U}\left(\rho \otimes \rho_{\text {env }}\right) \mathrm{U}^{\dagger}$.
At the end of the interaction, the state of the quantum system of interest is obtained by the partial trace over the environment : $\rho \longrightarrow \mathcal{N}(\rho)=\operatorname{tr}_{\text {env }}\left[\mathrm{U}\left(\rho \otimes \rho_{\text {env }}\right) \mathrm{U}^{\dagger}\right]$. (1) Very often, the environment incorporates a huge number of degrees of freedom, and is largely uncontrolled ; it can be understood as quantum noise inducing decoherence. A very nice feature is that, independently of the complexity of the environment, Eq. (1) can always be put in the form $\rho \longrightarrow \mathcal{N}(\rho)=\sum_{\ell} \Lambda_{\ell} \rho \Lambda_{\ell}^{\dagger}$ operator-sum or Kraus representation, with the Kraus operators Λ_{ℓ}, which need not be more than N^{2}, satisfying $\sum_{\ell} \Lambda_{\ell}^{\dagger} \Lambda_{\ell}=\mathrm{I}_{N}$.

Quantum noise (2/2)

A general transformation of a quantum state ρ can be expressed by the quantum operation $\rho \longrightarrow \mathcal{N}(\rho)=\sum_{\ell} \Lambda_{\ell} \rho \Lambda_{\ell}$, with $\sum_{\ell} \Lambda_{\ell} \Lambda_{\ell}=I_{N}$, representing a linear completely positive trace-preserving map, mapping a density operator on \mathcal{H}_{N} into a density operator on \mathcal{H}_{N} For an arbitrary qubit state defined by $\rho=\frac{1}{2}\left(\mathrm{I}_{2}+\vec{r} \vec{\sigma}\right)$ with $\|\vec{r}\| \leq 1$,
this is equivalent to the affine map $\vec{r} \rightarrow A \vec{r}+\vec{c}$,
with A a 3×3 real matrix
and \vec{c} a real vector in \mathbb{R}^{3} mapping the Bloch ball onto itself.

1

Quantum noise on the qubit (1/4)

Quantum noise on a qubit in state ρ can be represented by random applications of some of the 4 Pauli operators $\left\{I_{2}, X, Y, Z\right\}$ on the qubit, e.g.

Bit-flip noise : flips the qubit state with probability p by applying X, or leaves the qubit unchanged with probability $1-p$:
$\rho \longrightarrow \mathcal{N}(\rho)=(1-p) \rho+p \mathrm{X} \rho \mathrm{X}^{\dagger}, \quad \vec{r} \longrightarrow A \vec{r}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1-2 p & 0 \\ 0 & 0 & 1-2 p\end{array}\right] \vec{r}$.
Phase-flip noise : flips the qubit phase with probability p by applying Z, or leaves the qubit unchanged with probability $1-p$:
$\rho \longrightarrow \mathcal{N}(\rho)=(1-p) \rho+p \mathbf{Z} \rho \mathbf{Z}^{\dagger}, \quad \vec{r} \longrightarrow A \vec{r}=\left[\begin{array}{ccc}1-2 p & 0 & 0 \\ 0 & 1-2 p & 0 \\ 0 & 0 & 1\end{array}\right] \vec{r}$

Quantum noise on the qubit (4/4)

Generalized amplitude damping noise : interaction of the qubit with a thermal bath at
temperature T :
with $\Lambda_{1}=\sqrt{p}\left[\begin{array}{cc}1 & 0 \\ 0 & \sqrt{1-\gamma}\end{array}\right], \quad \Lambda_{2}=\sqrt{p}\left[\begin{array}{cc}0 & \sqrt{\gamma} \\ 0 & 0\end{array}\right], \quad \quad p, \gamma \in[0,1]$,
$\Lambda_{3}=\sqrt{1-p}\left[\begin{array}{cc}\sqrt{1-\gamma} & 0 \\ 0 & 1\end{array}\right], \quad \Lambda_{4}=\sqrt{1-p}\left[\begin{array}{cc}0 & 0 \\ \sqrt{\gamma} & 0\end{array}\right]$,
$\Longrightarrow \vec{r} \longrightarrow A \vec{r}+\vec{c}=\left[\begin{array}{ccc}\sqrt{1-\gamma} & 0 & 0 \\ 0 & \sqrt{1-\gamma} & 0 \\ 0 & 0 & 1-\gamma\end{array}\right] \vec{r}+\left[\begin{array}{c}0 \\ 0 \\ (2 p-1) \gamma\end{array}\right]$
Damping $[0,1] \ni \gamma=1-e^{-t / T_{1}} \rightarrow 1$ as the interaction time $t \rightarrow \infty$ with the bath of the qubit relaxing to equilibrium $\rho_{\infty}=p|0\rangle\langle 0|+(1-p)|1\rangle\langle 1|$, with equilibrium probabilities $p=\exp \left[-E_{0} /\left(k_{B} T\right)\right] / Z$ and $1-p=\exp \left[-E_{1} /\left(k_{B} T\right)\right] / Z$ with $Z=\exp \left[-E_{0} /\left(k_{B} T\right)\right]+\exp \left[-E_{1} /\left(k_{B} T\right)\right]$ governed by the Boltzmann distribution between the two energy levels E_{0} of $|0\rangle$ and $E_{1}>E_{0}$ of $|1\rangle$.
$T=0 \Rightarrow p=1 \Rightarrow$
$T=0 \Rightarrow p=1 \Rightarrow \rho_{\infty}=|0\rangle\langle 0| . \quad T \rightarrow \infty \Rightarrow p=1 / 2 \Rightarrow \rho_{\infty} \rightarrow\left(|0\rangle\langle 0|+(|1\rangle\langle 1|) / 2=\mathrm{I}_{2} / 2\right.$
58/68

Quantum noise on the qubit (2/4)

Depolarizing noise : leaves the qubit unchanged with probability $1-p$, or apply any of X, Y or Z with equal probability $p / 3$

$$
\begin{aligned}
& \rho \longrightarrow \mathcal{N}(\rho)=(1-p) \rho+\frac{p}{3}\left(\mathrm{X} \rho \mathrm{X}^{\dagger}+\mathrm{Y} \rho \mathrm{Y}^{\dagger}+\mathrm{Z} \rho \mathrm{Z}^{\dagger}\right) \\
& \vec{r} \longrightarrow A \vec{r}=\left[\begin{array}{ccc}
1-\frac{4}{3} p & 0 & 0 \\
0 & 1-\frac{4}{3} p & 0 \\
0 & 0 & 1-\frac{4}{3} p
\end{array}\right] \vec{r} .
\end{aligned}
$$

Quantum state discrimination

A quantum system can be in one of two alternative states ρ_{0} or ρ_{1}
with prior probabilities P_{0} and $P_{1}=1-P_{0}$.
Question : What is the best measurement $\left\{\mathrm{M}_{0}, \mathrm{M}_{1}\right\}$ to decide with a maximal probability of success $P_{\text {suc }}$?

Answer: One has $P_{\text {suc }}=P_{0} \operatorname{tr}\left(\rho_{0} \mathrm{M}_{0}\right)+P_{1} \operatorname{tr}\left(\rho_{1} \mathrm{M}_{1}\right)=P_{0}+\operatorname{tr}\left(\mathrm{TM}_{1}\right)$,
with the test operator $\mathrm{T}=P_{1} \rho_{1}-P_{0} \rho_{0}$.
Then $P_{\text {suc }}$ is maximized by $\mathrm{M}_{1}^{\text {opt }}=\sum_{\lambda_{n}>0}\left|\lambda_{n}\right\rangle\left\langle\lambda_{n}\right|$,
the projector on the eigensubspace of T with positive eigenvalues λ_{n}.
The optimal measurement $\left\{\mathrm{M}_{1}^{\text {opt }}, \mathrm{M}_{0}^{\text {opt }}=\mathrm{I}_{N}-\mathrm{M}_{1}^{\text {opt }}\right\}$
achieves the maximum $P_{\text {suc }}^{\max }=\frac{1}{2}\left(1+\sum_{n=1}^{N}\left|\lambda_{n}\right|\right)$.
(Helstrom 1976)

Quantum noise on the qubit (3/4)

Amplitude damping noise : relaxes the excited state $|1\rangle$ to the ground state $|0\rangle$ with probability γ (for instance by losing a photon) :

$$
\rho \longrightarrow \mathcal{N}(\rho)=\Lambda_{1} \rho \Lambda_{1}^{\dagger}+\Lambda_{2} \rho \Lambda_{2}^{\dagger},
$$

with $\Lambda_{2}=\left[\begin{array}{cc}0 & \sqrt{\gamma} \\ 0 & 0\end{array}\right]=\sqrt{\gamma}|0\rangle\langle 1| \quad$ taking $|1\rangle$ to $|0\rangle$ with probability γ,
and $\Lambda_{1}=\left[\begin{array}{cc}1 & 0 \\ 0 & \sqrt{1-\gamma}\end{array}\right]=|0\rangle\langle 0|+\sqrt{1-\gamma}|1\rangle\langle 1| \quad$ which leaves $|0\rangle$ unchanged and reduces the probability amplitude of resting in state $|1\rangle$.
$\Longrightarrow \vec{r} \longrightarrow A \vec{r}+\vec{c}=\left[\begin{array}{ccc}\sqrt{1-\gamma} & 0 & 0 \\ 0 & \sqrt{1-\gamma} & 0 \\ 0 & 0 & 1-\gamma\end{array}\right] \vec{r}+\left[\begin{array}{l}0 \\ 0 \\ \gamma\end{array}\right]$

Discrimination from noisy qubits

Quantum noise on a qubit in state ρ can be represented by random applications of (one of) the 4 Pauli operators $\left\{\mathrm{I}_{2}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}\right\}$ on the qubit, e.g.

Bit-flip noise : $\rho \longrightarrow \mathcal{N}(\rho)=(1-p) \rho+p \mathrm{X} \rho \mathrm{X}^{\dagger}$,
Depolarizing noise : $\rho \longrightarrow \mathcal{N}(\rho)=(1-p) \rho+\frac{p}{3}\left(\mathrm{X} \rho \mathrm{X}^{\dagger}+\mathrm{Y} \rho \mathrm{Y}^{\dagger}+\mathrm{Z} \rho \mathrm{Z}^{\dagger}\right)$.

With a noisy qubit, discrimination from $\mathcal{N}\left(\rho_{0}\right)$ and $\mathcal{N}\left(\rho_{1}\right)$.
\longrightarrow Impact of the probability p of action of the quantum noise, on the performance $P_{\text {suc }}^{\max }$ of the optimal detector,
in relation to stochastic resonance and enhancement by noise.
(Chapeau-Blondeau, Physics Letters A 378 (2014) 2128-2136.)

Discrimination among $M>2$ quantum states

A quantum system can be in one of M alternative states ρ_{m}, for $m=1$ to M, with prior probabilities P_{m} with $\sum_{m=1}^{M} P_{m}=1$.

Problem : What is the best measurement $\left\{\mathrm{M}_{m}\right\}$ with M outcomes to decide with a maximal probability of success $P_{\text {suc }}$?
\Longrightarrow Maximize $P_{\text {suc }}=\sum_{m=1}^{M} P_{m} \operatorname{tr}\left(\rho_{m} \mathrm{M}_{m}\right)$ according to the M operators M_{m}, subject to $0 \leq \mathrm{M}_{m} \leq \mathrm{I}_{N} \quad$ and $\quad \sum_{m=1}^{M} \mathrm{M}_{m}=\mathrm{I}_{N}$.

For $M>2$ this problem is only partially solved, in some special cases. (Barnett et al., Adv. Opt. Photon. 2009).

Error-free discrimination between $M=2$ states

Two alternative states ρ_{0} or ρ_{1} of \mathcal{H}_{N}, with priors P_{0} and $P_{1}=1-P_{0}$,
are not full-rank in \mathcal{H}_{N}, e.g. $\operatorname{supp}\left(\rho_{0}\right) \subset \mathcal{H}_{N} \Longleftrightarrow\left[\operatorname{supp}\left(\rho_{0}\right)\right]^{\perp} \supset\{0\}$
If $\mathcal{S}_{0}=\operatorname{supp}\left(\rho_{0}\right) \cap\left[\operatorname{supp}\left(\rho_{1}\right)\right]^{\perp} \neq\{\overrightarrow{0}\}$, error-free discrimination of ρ_{0} is possible. If $\mathcal{S}_{1}=\operatorname{supp}\left(\rho_{1}\right) \cap\left[\operatorname{supp}\left(\rho_{0}\right)\right]^{\perp} \neq\{\overrightarrow{0}\}$, error-free discrimination of ρ_{1} is possible. Necessity to find a three-outcome measurement $\left\{\mathrm{M}_{0}, \mathrm{M}_{1}, \mathrm{M}_{\mathrm{unc}}\right\}$:
Find $0 \leq \mathrm{M}_{0} \leq \mathrm{I}_{N}$ s.t. $\mathrm{M}_{0}=\vec{a}_{0} \Pi_{1}$ "proportional" to Π_{1} projector on $\left[\operatorname{supp}\left(\rho_{1}\right)\right]^{\perp}$, and $0 \leq \mathrm{M}_{1} \leq \mathrm{I}_{N}$ s.t. $\mathrm{M}_{1}=\vec{a}_{1} \Pi_{0}$ "proportional" to Π_{0} projector on $\left[\operatorname{supp}\left(\rho_{0}\right)\right]^{\perp}$ and $\mathrm{M}_{0}+\mathrm{M}_{1} \leq \mathrm{I}_{N} \Longleftrightarrow\left[\mathrm{M}_{0}+\mathrm{M}_{1}+\mathrm{M}_{\mathrm{unc}}=\mathrm{I}_{N}\right.$ with $\left.0 \leq \mathrm{M}_{\mathrm{unc}} \leq \mathrm{I}_{N}\right]$, maximizing $P_{\text {suc }}=P_{0} \operatorname{tr}\left(\mathrm{M}_{0} \rho_{0}\right)+P_{1} \operatorname{tr}\left(\mathrm{M}_{1} \rho_{1}\right) \quad\left(\equiv \min P_{\text {unc }}=1-P_{\text {suc }}\right)$

This problem is only partially solved, in some special cases,
(Kleinmann et al., J. Math. Phys. 2010).

Error-free discrimination between $M \geq 2$ states

M alternative states ρ_{m} of \mathcal{H}_{N}, with prior P_{m}, for $m=1, \ldots M$;
each ρ_{m} must be with defective rank $<N$.
For all $m=1$ to M, define $\mathcal{S}_{m}=\operatorname{supp}\left(\rho_{m}\right) \cap \overbrace{\left\{\bigcap_{\ell \neq m}\left[\operatorname{supp}\left(\rho_{\ell}\right)\right]^{\perp}\right.}\}$
For each nontrivial $\mathcal{S}_{m} \neq\{\overrightarrow{0}\}$, then ρ_{m} can go where none other ρ_{ℓ} can go \Longrightarrow Error-free discrimination of ρ_{m} is possible,
by M_{m} such that $0 \leq \mathrm{M}_{m} \leq \mathrm{I}_{N}$ and M_{m} "proportional" to the projector on \mathcal{K}_{m}
To parametrize M_{m}, find an orthonormal basis $\left\{\left|u_{j}^{m}\right\rangle\right\}_{j=1}^{\operatorname{dim}\left(\mathcal{K}_{m}\right)}$ of \mathcal{K}_{m},
then $\mathrm{M}_{m}=\sum_{j=1}^{\operatorname{dim}\left(\mathcal{K}_{m}\right)} a_{j}^{m}\left|u_{j}^{m}\right\rangle\left\langle u_{j}^{m}\right|=\vec{a}^{m} \Pi_{m}$, with Π_{m} projector on \mathcal{K}_{m}
Find the M_{m} (the \vec{a}^{m}) with $\sum_{m} \mathrm{M}_{m} \leq \mathrm{I}_{N}$ maximizing $P_{\text {suc }}=\sum_{m} P_{m} \operatorname{tr}\left(\mathrm{M}_{m} \rho_{m}\right)$.
This problem is only partially solved, in some special cases, (Kleinmann, J. Math. Phys. 2010).

Quantum feedback control
physical review a so, 013805 (2009)
Quantum feedback by discrete quantum nondemolition measuremen Towards on-demand generation of photon-number states

System dynamics :

- Schrödinger equation (for closed systems)
$\frac{d}{d t}|\psi\rangle=-\frac{i}{\hbar} \mathrm{H}|\psi\rangle \Longrightarrow\left|\psi\left(t_{2}\right)\right\rangle=\underbrace{\exp \left(-\frac{i}{\hbar} \int_{t_{1}}^{t_{2}} \mathrm{H} d t\right)}\left|\psi\left(t_{1}\right)\right\rangle=\mathrm{U}\left(t_{1}, t_{2}\right)\left|\psi\left(t_{1}\right)\right\rangle$ $\underbrace{\mathrm{U}\left(t_{1}, t_{2}\right)}_{\text {unitary }}$
Hermitian operator Hamiltonian $\mathrm{H}=\mathrm{H}_{0}+\mathrm{H}_{u}$ (control part H_{u}).
$\frac{d}{d t} \rho=-\frac{i}{\hbar}[\mathrm{H}, \rho] \Longrightarrow \rho\left(t_{2}\right)=\mathrm{U}\left(t_{1}, t_{2}\right) \rho\left(t_{1}\right) \mathrm{U}^{\dagger}\left(t_{1}, t_{2}\right)$.
- Lindblad equation (for open systems)
$\frac{d}{d t} \rho=-\frac{i}{\hbar}[\mathrm{H}, \rho]+\sum_{j}\left(2 \mathrm{~L}_{j} \rho \mathrm{~L}_{j}^{\dagger}-\left\{\mathrm{L}_{j}^{\dagger} \mathrm{L}_{j}, \rho\right\}\right), \quad$ Lindblad op. L_{j} for interact. with environt.
Measurement : Arbitrary operators $\left\{\mathrm{E}_{m}\right\}$ such that $\sum_{m} \mathrm{E}_{m}^{\dagger} \mathrm{E}_{m}=\mathrm{I}_{N}$,
$\operatorname{Pr}\{m\}=\operatorname{tr}\left(\mathrm{E}_{m} \rho \mathrm{E}_{m}^{\dagger}\right)=\operatorname{tr}\left(\rho \mathrm{E}_{m}^{\dagger} \mathrm{E}_{m}\right)=\operatorname{tr}\left(\rho \mathrm{M}_{m}\right)$ with $\mathrm{M}_{m}=\mathrm{E}_{m}^{\dagger} \mathrm{E}_{m}$ positive,
Post-measurement state $\rho_{m}=\frac{\mathrm{E}_{m} \rho \mathrm{E}_{m}^{\dagger}}{\operatorname{tr}\left(\mathrm{E}_{m} \rho \mathrm{E}_{m}^{\dagger}\right)}$

PHYSICAL REVIEW A 91, 052310 (2013)

Optimized probing states for qubit phase estimation with general quantum noise

François Chapeau-Blondeau
Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université dAngers 62 avenue Notre Dame du Lac, 49000 Angers. France
(Received 27 March 2015: published 12 May 2015)
We exploit the theory of quantum estimation to investigate quantum state estimation in the presence of Wise. The quantum Fisher information is used to assess the estimation performance. For the qubit in Bloch representation, general expressions are derived for the quantum score and then for the quantum Fishher information.
From this later expression. it is proved that the Fisher information always increases with the purity of the Fom this latter expressin abirry quantum noise affecting the qubit is atken into account for its impact on the Fisher information. The task is then specified to estimating the phase of a qubit in a rotation around an arbitrary axis, equivalent to estimating the phase of an artitrary single-qubit quantum gate. The analysis enables termination of the optimal probing states best resistant to the noise, and proves that they always are pure and a a solutions.
DOI: 10.1103/PhysRevA.91.052310
PACS number(s): 03.67.-a.42.50.Le. 05.40.-a

Merci de votre attention.

Si vous avez compris.
c'est que je me suis mal exprimé !
"Nobody really understands quantum mechanics." R. P. Feynman

68/68

