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Motivations pour le quantique

pour le traitement de l’information :

1) Quand on utilise des systèmes élémentaires (photons, électrons, atomes,

nanodevices, . . . ).

2) Pour bénéficier d’effets purement quantiques (parallèlisme, intrication, . . . ).

3) Domaine de recherche récent, riche et largement ouvert.
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Some recent textbooks

M. Nielsen & I. Chuang E. Desurvire M. Wilde

2000, 676 pages 2009, 691 pages 2013, 655 pages

arXiv:1106.1445v5 [quant-ph] M. Wilde, “From classical to quantum Shannon theory”, 670 pages.
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Quantum system
Represented by a state vector |ψ〉
in a complex Hilbert space H,
with unit norm 〈ψ|ψ〉 = ‖ψ‖2 = 1.

In dimension 2 : the qubit (photon, electron, atom, . . . )

State |ψ〉 = α |0〉+ β |1〉
in some orthonormal basis {|0〉 , |1〉} ofH2,

with complex α, β ∈  such that |α|2 + |β|2 = 1.

|ψ〉 =
[
α

β

]

, |ψ〉† = 〈ψ| = [α∗, β∗] =⇒ 〈ψ|ψ〉 = ‖ψ‖2 = |α|2 + |β|2 scalar.

|ψ〉 〈ψ| =
[
α

β

]

[α∗, β∗] =

[
αα∗ αβ∗

α∗β ββ∗

]

= Πψ orthogonal projector on |ψ〉.
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Measurement of the qubit

When a qubit in state |ψ〉 = α |0〉+ β |1〉
is measured in the orthonormal basis {|0〉 , |1〉},
=⇒ only 2 possible outcomes (Born rule) :

state |0〉 with probability |α|2 = | 〈0|ψ〉 |2, or
state |1〉 with probability |β|2 = | 〈1|ψ〉 |2.

Measurement :

• a probabilistic process,
• as a projection of the state |ψ〉 in an orthonormal basis,
• with statistics evaluable over repeated experiments with same preparation |ψ〉.
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Hadamard basis

Another orthonormal basis ofH2
{

|+〉 = 1√
2

(

|0〉+ |1〉
)

; |−〉 = 1√
2

(

|0〉 − |1〉
)
}

.

⇐⇒ Computational orthonormal basis
{

|0〉 = 1√
2

(

|+〉+ |−〉
)

; |1〉 = 1√
2

(

|+〉 − |−〉
)
}

.
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Experiments

Stern-Gerlach apparatus for particles with two states of spin (electron, atom).

Two states of polarization of a photon :

(Nicol prism, Glan-Thompson, . . . )
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Bloch sphere representation of the qubit

Qubit in state

|ψ〉 = α |0〉+ β |1〉 with |α|2 + |β|2 = 1.

⇐⇒ |ψ〉 = cos(θ/2) |0〉+ eiϕ sin(θ/2) |1〉
with θ ∈ [0, π] ,

ϕ ∈ [0, 2π[ .

As a quantum object

the qubit has infinitely many degrees of freedom (θ, ϕ),

yet when it is measured it can only be found in one of two states

(just like a classical bit).
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In dimension N (finite) (extensible to infinite dimension)

State |ψ〉 =
N∑

n=1

αn |n〉 , in some orthonormal basis {|1〉 , |2〉 , . . . |N〉} ofHN ,

with αn ∈  , and

N∑

n=1

|αn|2 = 〈ψ|ψ〉 = 1.

Proba. Pr{|n〉} = |αn|2 in a projective measurement of |ψ〉 in basis {|n〉}.

Inner product 〈k|ψ〉 =
N∑

n=1

αn

δkn
︷ ︸︸ ︷

〈k|n〉 = αk coordinate.

S =
N∑

n=1

|n〉 〈n| = IN identity ofHN (closure or completeness relation),

since, ∀ |ψ〉 : S |ψ〉 =
N∑

n=1

|n〉
αn
︷ ︸︸ ︷

〈n|ψ〉 =
N∑

n=1

αn |n〉 = |ψ〉 =⇒ S = IN .
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Multiple qubits

A system (a word) of N qubits has a state inH⊗N2 ,

a tensor-product vector space with dimension 2N ,

and orthonormal basis {|x1x2 · · · xN 〉}
~x ∈ {0, 1}N

.

Example N = 2 :

Generally |ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 .

Or, as a special separable state

|φ〉 =
(

α1 |0〉+ β1 |1〉
)

⊗
(

α2 |0〉+ β2 |1〉
)

= α1α2 |00〉+ α1β2 |01〉+ β1α2 |10〉+ β1β2 |11〉 .

A multipartite state which is not separable is entangled.
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Entangled states

• Example of a separable state of two qubits AB :

|AB〉 = 1√
2

(

|0〉+ |1〉
)

⊗ 1√
2

(

|0〉+ |1〉
)

=
1

2

(

|00〉+ |01〉+ |10〉+ |11〉
)

.

When measured in the basis {|0〉 , |1〉}, each qubit A and B can be found in state |0〉 or
|1〉 independently with probability 1/2.

Pr{|A〉 = |0〉} = Pr{|AB〉 = |00〉}+Pr{|AB〉 = |01〉} = 1/4+1/4 = 1/2.

• Example of an entangled state of two qubits AB :

|AB〉 = 1√
2

(

|00〉+ |11〉
)

. Pr{|A〉 = |0〉} = Pr{|AB〉 = |00〉} = 1/2.

When measured in the basis {|0〉 , |1〉}, each qubit A and B can be found in state |0〉 or
|1〉 with probability 1/2 (randomly, no predetermination before measurement).
But if A is found in |0〉 necessarily B is found in |0〉,
and if A is found in |1〉 necessarily B is found in |1〉,
no matter how distant the two qubits are before measurement.
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Bell basis

A pair of qubits inH⊗2
2 is a quantum system with dimension 4,

with original (computational) orthonormal basis
{
|00〉 , |01〉 , |10〉 , |11〉

}
.

Another useful orthonormal basis ofH⊗2
2 is the Bell basis

{
|β00〉 , |β01〉 , |β10〉 , |β11〉

}
,

with |β00〉 =
1√
2

(

|00〉+ |11〉
)

|β01〉 =
1√
2

(

|01〉+ |10〉
)

|β10〉 =
1√
2

(

|00〉 − |11〉
)

|β11〉 =
1√
2

(

|01〉 − |10〉
)

.
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Observables

For a quantum system inHN with dimensionN ,

a projective measurement is defined by an orthonormal basis {|1〉 , . . . |N〉} ofHN ,
and theN orthogonal projectors |n〉 〈n|, for n = 1 to N .

Also, any Hermitian (i.e. Ω = Ω†) operator Ω onHN ,
has its eigenstates forming an orthonormal basis {|ω1〉 , . . . |ωN 〉} ofHN .
Therefore, any Hermitian operator Ω onHN defines a valid measurement,

and has a spectral decomposition Ω =

N∑

n=1

ωn |ωn〉 〈ωn| , with the real eigenvalues ωn.

Also, any physical quantity measurable on a quantum system is represented in quantum

theory by a Hermitian operator (an observable) Ω.

When system in state |ψ〉, measuring observable Ω is equivalent to performing a projec-

tive measurement in eigenbasis {|ωn〉}, with projectors |ωn〉 〈ωn| = Πn, and yields the

eigenvalue ωn with probability Pr{ωn} = | 〈ωn|ψ〉 |2 = 〈ψ|ωn〉 〈ωn|ψ〉 = 〈ψ|Πn|ψ〉.
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Computation on a qubit

Through a unitary operator U on H2 (a 2× 2 matrix) : (i.e. U−1 = U† )

normalized vector |ψ〉 ∈ H2 −→ U |ψ〉 normalized vector ∈ H2 .

≡ quantum gate
input

|ψ〉 U

output

U|ψ〉

Hadamard gate H =
1
√
2

[
1 1

1 −1

]

. Identity gate I2 =

[
1 0

0 1

]

.

H2 = I2 ⇐⇒ H−1 = H = H† Hermitian unitary.

H |0〉 = |+〉 and H |1〉 = |−〉
=⇒ in a compact notation H |x〉 = 1√

2

(

|0〉+ (−1)x |1〉
)

, ∀x ∈ {0, 1}.
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Pauli gates

X = σx =

[
0 1

1 0

]

, Y = σy =

[
0 −i
i 0

]

, Z = σz =

[
1 0

0 −1

]

.

X2 = Y2 = Z2 = I2 Hermitian unitary. XY = iZ, etc . . .

{I2,X,Y,Z} a basis for operators onH2.

Hadamard gate H =
1√
2

(
X+ Z

)
.

X = σx the inversion or Not quantum gate. X |0〉 = |1〉, X |1〉 = |0〉.

W =
√
X =

√
σx =

1

2

[
1 + i 1− i
1− i 1 + i

]

, such thatW2 = X ,

is the square-root of Not, a typically quantum gate (no classical equivalent).
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In general, the gates U and eiφU give the same measurement statistics at the

output, and are thus physically equivalent, in this respect.

Any single-qubit gate can always be expressed as eiφUξ with

Uξ = exp

(

−i
ξ

2
~n~σ

)

= cos

(
ξ

2

)

I2 − i sin
(
ξ

2

)

~n~σ ,

where ~n = [nx, ny, nz ]
⊤ is a real unit vector of  3,

and a “vector” of 2× 2 matrices ~σ = [σx, σy, σz ],

implementing in the Bloch sphere representation

a rotation of the qubit state of an angle ξ around the axis ~n in 3.

17/68

Computation on a pair of qubits

Through a unitary operator U on H⊗2
2 (a 4× 4 matrix) :

normalized vector |ψ〉 ∈ H⊗2
2 −→ U |ψ〉 normalized vector ∈ H⊗2

2 .

≡ quantum gate

(always reversible)

input

|ψ〉 U

output

U|ψ〉

Completely defined for instance by the transformation of the four state vectors

of the computational basis
{
|00〉 , |01〉 , |10〉 , |11〉

}
.
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• Example : Controlled-Not gate
Via the XOR binary function : a⊕ b = a when b = 0, or = a when b = 1 ;

invertible a⊕ x = b⇐⇒ x = a⊕ b = b⊕ a.

Used to construct a unitary invertible quantum C-Not gate :

(T target, C control)

|CT 〉
T

C

|C,C ⊕ T 〉
C ⊕ T

C

U =







1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0







|CT 〉 −→ |C,C ⊕ T 〉
|00〉 −→ |00〉
|01〉 −→ |01〉
|10〉 −→ |11〉
|11〉 −→ |10〉

(C-Not)2 = I2 ⇐⇒ (C-Not)−1 = C-Not = (C-Not)† Hermitian unitary.
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Computation on a system of N qubits

Through a unitary operator U on H⊗N2 (a 2N × 2N matrix) :

normalized vector |ψ〉 ∈ H⊗N2 −→ U |ψ〉 normalized vector ∈ H⊗N2 .

≡ quantum gate : N input qubits
U−−−−−→ N output qubits.

Completely defined for instance by the transformation of the 2N state vectors of

the computational basis.

Any N -qubit quantum gate may always be composed

from two-qubit C-Not gates and single-qubit gates (universality).

This forms the grounding of quantum computation.
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No cloning theorem (1982)

¿ Possibility of a circuit (a unitary U) that would take any state |ψ〉, associated to an
auxiliary register |s〉, to transform the input |ψ〉 |s〉 into the cloned output |ψ〉 |ψ〉 ?

|ψ1〉 |s〉 U−−−−→ U(|ψ1〉 |s〉) = |ψ1〉 |ψ1〉 (would be).

|ψ2〉 |s〉 U−−−−→ U(|ψ2〉 |s〉) = |ψ2〉 |ψ2〉 (would be).

Linear superposition |ψ〉 = α1 |ψ1〉+ α2 |ψ2〉

|ψ〉 |s〉 U−−−−→ U(|ψ〉 |s〉) = U(α1 |ψ1〉 |s〉+ α2 |ψ2〉 |s〉)
= α1 |ψ1〉 |ψ1〉+ α2 |ψ2〉 |ψ2〉 since U linear.

But |ψ〉 |ψ〉 = |ψ〉 ⊗ |ψ〉 =
(
α1 |ψ1〉+ α2 |ψ2〉

)(
α1 |ψ1〉+ α2 |ψ2〉

)

= α2
1 |ψ1〉 |ψ1〉+ α1α2 |ψ1〉 |ψ2〉+ α1α2 |ψ2〉 |ψ1〉+ α2

2 |ψ2〉 |ψ2〉
6= U(|ψ〉 |s〉) in general. =⇒ No cloning U possible.
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Quantum parallelism

For a system of N qubits,

a quantum gate is any unitary operator U fromH⊗N2 onto H⊗N2 .

The quantum gate U is completely defined

by its action on the 2N basis states ofH⊗N2 : {|~x〉 , ~x ∈ {0, 1}N},
just like a classical gate.

Yet, the quantum gate U can be operated

on any linear superposition of the basis states {|~x〉 , ~x ∈ {0, 1}N}.
This is quantum parallelism, with no classical analog.
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Parallel evaluation of a function (1/3)

A classical function f(·) from N bits to 1 bit

~x ∈ {0, 1}N −−−→ f(~x) ∈ {0, 1}.

Used to construct a unitary operator Uf as an invertible f -controlled gate :

Uf

~x ~x

y y ⊕ f (~x)

with binary output y ⊕ f(~x) = f(~x) when y = 0, or = f(~x) when y = 1.
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Parallel evaluation of a function (2/3)

Uf

~x ~x

y y ⊕ f (~x)

For every basis state |~x〉, with ~x ∈ {0, 1}N :

|~x〉 |y = 0〉
Uf−−−−−−−−−→ |~x〉 |f(~x)〉

|~x〉 |y = 1〉 −−−−−−−−−→ |~x〉
∣
∣
∣f(~x)

〉

|~x〉 |+〉 −−−−−−−−−→ |~x〉 1√
2

[

|f(~x)〉+
∣
∣
∣f(~x)

〉]

= |~x〉 |+〉

|~x〉 |−〉 −−−−−−−−−→ |~x〉 1√
2

[

|f(~x)〉 −
∣
∣
∣f(~x)

〉]

= |~x〉 |−〉 (−1)f(~x)
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Parallel evaluation of a function (3/3)

|+〉⊗N

|y〉
Uf

~x ~x

y y ⊕ f (~x)

|+〉⊗N =

(
1
√
2

)N ∑

~x∈{0,1}N
|~x 〉 superposition of all basis states,

|+〉⊗N ⊗ |0〉
Uf−−−−−→

(
1
√
2

)N ∑

~x∈{0,1}N
|~x 〉 |f(~x) 〉 superpos. of all values f(~x).

|+〉⊗N ⊗ |−〉
Uf−−−−−→

(
1
√
2

)N ∑

~x∈{0,1}N
|~x 〉 |−〉 (−1)f(~x)

¿ How to extract, to measure, useful informations from superpositions ?
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Deutsch-Jozsa algorithm (1992) : Parallel test of a function (1/5)

A classical function
f(·)

∣
∣
∣
∣

{0, 1}N −→ {0, 1}
2N values −→ 2 values,

can be constant or balanced (equal numbers of 0, 1 in output).

Classically : Between 2 and
2N

2
+ 1 evaluations of f(·) to decide.

Quantumly : One evaluation of f(·) is enough (on a suitable superposition).

Lemma 1 : H |x〉 =
1
√
2

(

|0〉+ (−1)x |1〉
)

=
1
√
2

∑

z∈{0,1}

(−1)xz |z〉 , ∀x ∈ {0, 1}

=⇒ H⊗N |~x 〉 = H |x1〉⊗· · ·⊗H |xN 〉 =
(

1
√
2

)N
∑

~z∈{0,1}N

(−1)~x~z |~z 〉 , ∀ ~x ∈ {0, 1}N

with scalar product ~x~z = x1z1 + · · ·+ xNzN modulo 2. (quant. Hadamard transfo.)
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Deutsch-Jozsa algorithm (2/5)

|+〉⊗N

|−〉

H⊗N
Uf

~x ~x

y y ⊕ f (~x)

|ψ1〉 |ψ2〉 |ψ3〉

Input state |ψ1〉 = |+〉⊗N |−〉 =
(

1
√
2

)N ∑

~x∈{0,1}N
|~x 〉 |−〉

Internal state |ψ2〉 =
(

1
√
2

)N ∑

~x∈{0,1}N
|~x 〉 |−〉 (−1)f(~x)
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Deutsch-Jozsa algorithm (3/5)

Output state |ψ3〉 =
(
H⊗N ⊗ I2

)
|ψ2〉

=

(
1
√
2

)N ∑

~x∈{0,1}N
H⊗N |~x 〉 |−〉 (−1)f(~x)

=

(
1

2

)N ∑

~x∈{0,1}N

∑

~z∈{0,1}N
(−1)~x~z |~z 〉 |−〉 (−1)f(~x) by Lemma 1,

or |ψ3〉 = |ψ〉 |−〉 , with |ψ〉 =
(
1

2

)N ∑

~z∈{0,1}N
u(~z ) |~z 〉

and the scalar weight u(~z ) =
∑

~x∈{0,1}N
(−1)f(~x)+~x~z
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Deutsch-Jozsa algorithm (4/5)

So |ψ〉 =
1

2N

∑

~z∈{0,1}N
u(~z ) |~z 〉 with u(~z ) =

∑

~x∈{0,1}N
(−1)f(~x)+~x~z .

For |~z 〉 = |~0 〉 = |0〉⊗N then u(~z = ~0 ) =
∑

~x∈{0,1}N
(−1)f(~x) .

•When f(·) constant : u(~z = ~0 ) = 2N (−1)f(~0) = ±2N =⇒ in |ψ〉 the amplitude of
|~0 〉 is ±1, and since |ψ〉 is with unit norm =⇒ |ψ〉 = ± |~0 〉, and all other u(~z 6= ~0 )=0.

=⇒When |ψ〉 is measured,N states |0〉 are found.

•When f(·) balanced : u(~z = ~0 ) = 0 =⇒ |ψ〉 is not or does not contain state |~0 〉.
=⇒When |ψ〉 is measured, at least one state |1〉 is found.

−→ Illustrates quantum ressources of parallelism, coherent superposition, interference.

(When f(·) is neither constant nor balanced |ψ〉 contains a little bit of |~0 〉.)
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Deutsch-Jozsa algorithm (5/5)

[1] D. Deutsch; “Quantum theory, the Church-Turing principle and the universal quantum

computer”; Proceedings of the Royal Society of London A 400 (1985) 97–117.

The case N = 2.

[2] D. Deutsch, R. Jozsa; “Rapid solution of problems by quantum computation”; Proceedings of

the Royal Society of London A, 439 (1993) 553–558.

Extension to arbitrary N ≥ 2.

[3] E. Bernstein, U. Vazirani; “Quantum complexity theory”; SIAM Journal on Computing 26

(1997) 1411–1473.

Extension to f(~x) = ~a~x or f(~x) = ~a~x⊕~b, to find binaryN -word ~a −→ by producing output

|ψ〉 = |~a 〉.

[4] R. Cleve, A. Ekert, C. Macchiavello, M. Mosca; “Quantum algorithms revisited”; Proceedings

of the Royal Society of London A, 454 (1998) 339–354.
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Superdense coding (Bennett 1992) : exploiting entanglement

Alice and Bob share a qubit pair in entangled state |AB〉 =
1
√
2

(

|00〉+ |11〉
)

= |β00〉.

Alice chooses two classical bits, used to encode by applying to her qubit A

one of {I2,X, iY,Z}, delivering the qubit A′ sent to Bob.

Alice Bob
2 cbits I2

X

iY

Z

Decoder
2 cbits1 qbit A′

2 entangled qubits|AB〉

A
B

I2 ⊗ I2 |AB〉 = |β00〉
X⊗ I2 |AB〉 = |β01〉
Z⊗ I2 |AB〉 = |β10〉
iY ⊗ I2 |AB〉 = |β11〉

Bob receives this qubit A′. For decoding, Bob measures |A′B〉 in the Bell basis
{|β00〉 , |β01〉 , |β10〉 , |β11〉}, from which he recovers the two classical bits.

31/68

Teleportation (Bennett 1993) : of an unknown qubit state (1/3)

Qubit Q in unknown arbitrary state |ψQ〉 = α0 |0〉+ α1 |1〉.

Alice and Bob share a qubit pair in entangled state |AB〉 =
1
√
2

(

|00〉+ |11〉
)

= |β00〉.

Alice Bob|ψQ〉
Measurement
in Bell basis
{|βxy〉}

2 cbits

y x

Xy Zx

|ψQ〉
2 entangled qubits|AB〉

A

B

|ψ1〉 |ψ2〉

Alice measures the pair of qubits QA in the Bell basis (so |ψQ〉 is locally destroyed),
and the two resulting cbits x, y are sent to Bob.

Bob on his qubit B applies the gates Xy and Zx which reconstructs |ψQ〉.
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Teleportation (2/3)

|ψ1〉 = |ψQ〉 |β00〉 =
1√
2

[

α0 |0〉
(

|00〉+ |11〉
)

+ α1 |1〉
(

|00〉+ |11〉
)]

=
1√
2

[

α0 |000〉+ α0 |011〉+ α1 |100〉+ α1 |111〉
]

,

factorizable as |ψ1〉 =
1

2

[
1√
2

(

|00〉+ |11〉
)(

α0 |0〉+ α1 |1〉
)

+

1√
2

(

|01〉+ |10〉
)(

α0 |1〉+ α1 |0〉
)

+

1√
2

(

|00〉 − |11〉
)(

α0 |0〉 − α1 |1〉
)

+

1√
2

(

|01〉 − |10〉
)(

α0 |1〉 − α1 |0〉
)]

,

33/68

Teleportation (3/3)

|ψ1〉 =
1

2

[

|β00〉
(

α0 |0〉+ α1 |1〉
)

+ |β01〉
(

α0 |1〉+ α1 |0〉
)

+

|β10〉
(

α0 |0〉 − α1 |1〉
)

+ |β11〉
(

α0 |1〉 − α1 |0〉
)]

The first two qubits QA measured in Bell basis {|βxy〉} yield the two cbits xy,
used to transform the third qubit B by Xy then Zx, which reconstructs |ψQ〉.

When QA is measured in |β00〉 then B is in α0 |0〉+ α1 |1〉 I2−−−→ · I2−−−→ |ψQ〉

When QA is measured in |β01〉 then B is in α0 |1〉+ α1 |0〉 X−−−→ · I2−−−→ |ψQ〉

When QA is measured in |β10〉 then B is in α0 |0〉 − α1 |1〉 I2−−−→ · Z−−−→ |ψQ〉

When QA is measured in |β11〉 then B is in α0 |1〉 − α1 |0〉 X−−−→ · Z−−−→ |ψQ〉.
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Princeps references on superdense coding . . .

[1] C. H. Bennett, S. J. Wiesner; “Communication via one- and two-particle operators on

Einstein-Podolsky-Rosen states”; Physical Review Letters 69 (1992) 2881–2884.

[2] K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger; “Dense coding in experimental

quantum communication”; Physical Review Letters 76 (1996) 4656–4659.

. . . and teleportation

[3] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters; “Teleporting an

unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels”;

Physical Review Letters 70 (1993) 1895–1899.
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Grover quantum search algorithm (1/3) Phys. Rev. Let. 79 (1997) 325.

• Finds an item out of N in an unsorted database,

in O(
√
N) complexity instead of O(N) classically.

• An N -dimensional quantum system with orthonormal basis {|1〉 , · · · , |N〉},
the states |n〉, n = 1, . . . N , representing the N items stored in the database.

• A set of N real values {ω1, · · · , ωN} representing the address of each item |n〉 in the
database.

• The unsorted database is in the state |ψ〉 =
1
√
N

N∑

n=1

|n〉.

• A query of the database, in order to obtain the address ωn of an item |n〉,

is performed by a measurement of the observable Ω =
N∑

n=1

ωn |n〉 〈n|.

• Any specific item |n0〉 is obtained as measurement outcome with its eigenvalue
(address) ωn0

, with the probability |〈n0|ψ〉 |2 = 1/N (since 〈n0|ψ〉 = 1/
√
N ).
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Grover quantum search algorithm (2/3)

• For this specific item |n0〉 that we want to retrieve (obtain its address ωn0
),

it is possible to amplify this uniform probability |〈n0|ψ〉 |2 = 1/N .

• Let |n⊥〉 =
1

√
N − 1

N∑

n6=n0

|n〉 normalized state ⊥ |n0〉 =⇒ |ψ〉 in plane (|n0〉 , |n⊥〉).

• Define unitary operator U0 = IN − 2 |n0〉〈n0| =⇒ U0 |n⊥〉 = |n⊥〉 and U0 |n0〉 = − |n0〉.
So in plane (|n0〉 , |n⊥〉), the operator U0 performs a reflection about |n⊥〉. (U0 oracle).

• Let |ψ⊥〉 normalized state ⊥ |ψ〉 in plane (|n0〉 , |n⊥〉).
• Define the unitary operator Uψ = 2 |ψ〉 〈ψ| − IN =⇒ Uψ |ψ〉 = |ψ〉 and Uψ |ψ⊥〉 = − |ψ⊥〉.
So in plane (|n0〉 , |n⊥〉), the operator Uψ performs a reflection about |ψ〉.

• In plane (|n0〉 , |n⊥〉), the composition of two reflections is a rotation UψU0 = G (Grover

amplification operator). It verifiesG |n0〉 = UψU0 |n0〉 = −Uψ |n0〉 = |n0〉 −
2√
N
|ψ〉.

The rotation angle θ between |n0〉 and G |n0〉, via the scalar product of |n0〉 and G |n0〉, verifies

cos(θ) = 〈n0|G|n0〉 = 1− 2

N
≈ 1− θ2

2
=⇒ θ ≈ 2√

N
atN ≫ 1.
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Grover quantum search algorithm (3/3)

• In plane (|n0〉 , |n⊥〉), the rotationG = UψU0 is with angle θ ≈
2√
N

.

•G |ψ〉 = UψU0 |ψ〉 = Uψ

(

|ψ〉 − 2√
N
|n0〉

)

=
(

1− 4

N

)

|ψ〉+ 2√
N
|n0〉.

So after rotation by θ the rotated state G |ψ〉 is closer to |n0〉.

•G |ψ〉 remains in plane (|n0〉 , |n⊥〉), and any state in plane (|n0〉 , |n⊥〉) byG is rotated by θ.

So G2 |ψ〉 rotates |ψ〉 by 2θ toward |n0〉, and Gk |ψ〉 rotates |ψ〉 by kθ toward |n0〉.

• The angleΘ of |ψ〉 and |n0〉 is such that cos(Θ) = 〈n0|ψ〉 = 1/
√
N =⇒ Θ = acos(1/

√
N).

• SoK =
Θ

θ
≈
√
N

2
acos(1/

√
N) iterations ofG rotate |ψ〉 onto |n0〉.

At most Θ =
π

2
=⇒ at mostK ≈ π

4

√
N .

• So when the state GK |ψ〉 ≈ |n0〉 is measured, the probability is almost 1 to obtain |n0〉 and its
address ωn0

=⇒ The searched item is found in O(
√
N) operations instead of O(N) classically.
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Other quantum algorithms

• Shor factoring algorithm (1997) :

Factors any integer in polynomial complexity

(instead of exponential classically).

15 = 3× 5, with spin-1/2 nuclei (Vandersypen et al., Nature 2001).

21 = 3× 7, with photons (Martı́n-López et al., Nature Photonics 2012).

• http://math.nist.gov/quantum/zoo/

“A comprehensive catalog of quantum algorithms . . . ”
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Quantum correlations (1/2)

Alice and Bob share a pair of qubits in the entangled (Bell) state |ψAB〉 =
1√
2

(

|01〉 − |10〉
)

.

Alice or Bob on its qubit can measure observables of the form Ω(θ) = sin(θ)X + cos(θ)Z ,

having eigenvalues±1.

Alice measures Ω(α) to obtain A = ±1, and Bob measures Ω(β) to obtain B = ±1, then from
ρAB= |ψAB〉〈ψAB| we obtain the average 〈AB〉 = tr

(

ρABΩ(α)⊗ Ω(β)
)

= − cos(α− β).

For any four random variables A1, A2, B1, B2 with values±1,
Γ = (A1 + A2)B1 − (A1 −A2)B2 = A1B1 + A2B1 +A2B2 − A1B2 = ±2 ,
because since A1, A2 = ±1, either (A1 +A2)B1 = 0 or (A1 −A2)B2 = 0,

and in each case the remaining term is ±2.

So for any probability distribution on (A1, A2, B1, B2), necessarily

〈Γ〉 = 〈A1B1 + A2B1 + A2B2 −A1B2〉 = 〈A1B1〉+ 〈A2B1〉+ 〈A2B2〉 − 〈A1B2〉
verifies−2 ≤ 〈Γ〉 ≤ 2 . Bell inequalities (1964).
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Quantum correlations (2/2)

A long series of experiments repeated on identical copies of |ψAB〉 :
EPR experiment (Einstein, Podolsky, Rosen, 1935).

Alice chooses to randomly switch between measuring A1 ≡ Ω(α1) or A2 ≡ Ω(α2),

and Bob chooses to randomly switch between measuring B1 ≡ Ω(β1) or B2 ≡ Ω(β2).

For 〈Γ〉 = 〈A1B1〉+ 〈A2B1〉+ 〈A2B2〉 − 〈A1B2〉 one obtains

〈Γ〉 = − cos(α1 − β1)− cos(α2 − β1)− cos(α2 − β2) + cos(α1 − β2).

The choice α1 = 0, α2 = π/2 and β1 = π/4, β2 = 3π/4 leads to

〈Γ〉 = − cos(π/4)− cos(π/4)− cos(π/4) + cos(3π/4) = −2
√
2 < −2.

Bell inequalities are violated by quantum measurements.

Experimentally verified (Aspect et al., Phys. Rev. Let. 1981, 1982).

Local realism and separability (classical) replaced by

a nonlocal nonseparable reality (quantum).
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GHZ states (1/5) (1989, Greenberger, Horne, Zeilinger)

Three players, each receiving a binary input xj = 0/1, for j = 1, 2, 3,

with four possible input configurations x1x2x3 ∈ {000, 011, 101, 110}.

Each player j responds by a binary output yj(xj) = 0/1, function only of its own input

xj , for j = 1, 2, 3.

Game is won if the players collectively respond according to the input–output matches :

x1x2x3 = 000 −−−−−−−−−−−−−→ y1y2y3 such that y1 ⊕ y2 ⊕ y3 = 0,

x1x2x3 ∈ {011, 101, 110} −−−−→ y1y2y3 such that y1 ⊕ y2 ⊕ y3 = 1.

To select their responses yj(xj), the players can agree on a collective strategy before,

but not after, they have received their inputs xj .
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GHZ states (2/5)

A strategy winning on all four input configurations

would consist in three binary functions yj(xj) meeting the four constraints :

y1(0)⊕ y2(0)⊕ y3(0) = 0

y1(0)⊕ y2(1)⊕ y3(1) = 1

y1(1)⊕ y2(0)⊕ y3(1) = 1

y1(1)⊕ y2(1)⊕ y3(0) = 1

0 ⊕ 0 ⊕ 0 = 1 , by summation of the four constraints,

=⇒ 0 = 1 , so the four constraints are incompatible.

So no (classical) strategy exists that would win on all four input configurations.

Any (classical) strategy is bound to fail on some input configuration(s).

We show a strategy using quantum resources winning on all four input configurations,

(by escaping local realism, yj(0) = 0/1 and yj(1) = 0/1 not existing simultaneously).
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GHZ states (3/5)

Before the game starts, each player receives one qubit from a qubit triplet prepared in the

entangled state (GHZ state)

|ψ〉 =
∣
∣ψ123

〉
=

1

2

(

|000〉 − |011〉 − |101〉 − |110〉
)

.

And the players agree on the common (prior) strategy :

if xj = 0, player j obtains yj as the outcome of measuring its qubit in basis {|0〉 , |1〉},
if xj = 1, player j obtains yj as the outcome of measuring its qubit in basis {|+〉 , |−〉}.

We prove this is a winning strategy on all four input configurations :

1) When x1x2x3 = 000, the three players measure in {|0〉 , |1〉}
=⇒ y1 ⊕ y2 ⊕ y3 = 0 is matched.
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GHZ states (4/5)

2) When x1x2x3 = 011, only player 1 measures in {|0〉 , |1〉}.

|ψ〉 =
1

2

(

|000〉 − |011〉 − |101〉 − |110〉
)

=
1

2

[

|0〉
(

|00〉 − |11〉
)

− |1〉
(

|01〉+ |10〉
)

]

.

Since |0〉 = 1√
2

(

|+〉+ |−〉
)

, |1〉 = 1√
2

(

|+〉 − |−〉
)

=⇒

|00〉 − |11〉 = 1

2

[

(

|+〉 + |−〉
)(

|+〉 + |−〉
)

−
(

|+〉 − |−〉
)(

|+〉 − |−〉
)

]

=
1

2

[

(

|++〉 + |+−〉+ |−+〉+ |−−〉
)

−
(

|++〉 − |+−〉 − |−+〉 + |−−〉
)

]

= |+−〉 + |−+〉 ;

|01〉+ |10〉 = 1

2

[

(

|+〉+ |−〉
)(

|+〉 − |−〉
)

+
(

|+〉 − |−〉
)(

|+〉+ |−〉
)

]

= |++〉 − |−−〉 ;

=⇒ |ψ〉 = 1

2

(

|0 +−〉+ |0−+〉 − |1 + +〉+ |1−−〉
)

=⇒ y1 ⊕ y2 ⊕ y3 = 1 matched.
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GHZ states (5/5)

3) When x1x2x3 = 101, only player 2 measures in {|0〉 , |1〉}.

|ψ〉 =
1

2

(

|000〉 − |011〉 − |101〉 − |110〉
)

=
1

2

[

|·0·〉
(

|0 · 0〉 − |1 · 1〉
)

− |·1·〉
(

|0 · 1〉+ |1 · 0〉
)

]

=
1

2

[

|·0·〉
(

|+ · −〉+|− ·+〉
)

−|·1·〉
(

|+ ·+〉−|− · −〉
)

]

=
1

2

(

|+0−〉+ |−0+〉 − |+1+〉 + |−1−〉
)

=⇒ y1 ⊕ y2 ⊕ y3 = 1 matched.

4) When x1x2x3 = 110, only player 3 measures in {|0〉 , |1〉}.

|ψ〉 =
1

2

(

|000〉 − |011〉 − |101〉 − |110〉
)

=
1

2

[

|· · 0〉
(

|00·〉 − |11·〉
)

− |· · 1〉
(

|01·〉+ |10·〉
)

]

=
1

2

[

|· · 0〉
(

|+− ·〉+ |−+ ·〉
)

− |· · 1〉
(

|+ + ·〉 − |− − ·〉
)

]

=
1

2

(

|+− 0〉 + |−+ 0〉 − |+ + 1〉+ |− − 1〉
)

=⇒ y1 ⊕ y2 ⊕ y3 = 1 matched.
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Density operator (1/2)

Quantum system in (pure) state |ψj〉, measured in an orthonormal basis {|n〉} :
=⇒ probability Pr{|n〉 |ψj〉} = | 〈n|ψj〉 |2 = 〈n|ψj〉 〈ψj |n〉 .

Several possible states |ψj〉 with probabilities pj (with
∑

j pj = 1) :

=⇒ Pr{|n〉} =∑j pj Pr{|n〉 |ψj〉} = 〈n|
(
∑

j pj |ψj〉 〈ψj |
)

|n〉 = 〈n| ρ |n〉 ,

with density operator ρ =
∑

j pj |ψj〉 〈ψj | .

and Pr{|n〉} = 〈n| ρ |n〉 = tr(ρ |n〉 〈n|) = tr(ρΠn) .

The quantum system is in a mixed state, corresponding to the statistical ensemble

{pj , |ψj〉}, described by the density operator ρ.

Lemma : For any operator A with trace tr(A) =
∑

n 〈n|A |n〉, one has
tr(A |ψ〉 〈φ|) =

∑

n 〈n|A |ψ〉 〈φ|n〉 =
∑

n 〈φ|n〉 〈n|A |ψ〉 = 〈φ|
(

∑

n |n〉 〈n|
)

A |ψ〉 = 〈φ|A |ψ〉
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Density operator (2/2)

Density operator ρ =
∑

j pj |ψj〉 〈ψj |

=⇒ ρ = ρ† Hermitian ;

∀ |ψ〉 , 〈ψ|ρ|ψ〉 =∑j pj | 〈ψ|ψj〉 |2 ≥ 0 =⇒ ρ ≥ 0 positive ;

trace tr(ρ) =
∑

j pj tr(|ψj〉 〈ψj |) =
∑

j pj = 1.

OnHN , eigen decomposition ρ =
N∑

n=1

λn |λn〉 〈λn| , with

eigenvalues {λn} a probability distribution,
eigenstates {|λn〉} an orthonormal basis ofHN .

Purity tr(ρ2) =
N∑

n=1

λ2
n = 1 for a pure state, and tr(ρ2) < 1 for a mixed state.

A valid density operator onHN ≡ any positive operator ρ with unit trace,

provides a general representation for the state of a quantum system inHN .
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Average of an observable

A quantum system inHN has observable Ω of diagonal form Ω =
N∑

n=1

ωn |ωn〉 〈ωn|.

When the quantum system is in state ρ, measuring Ω amounts to performing

a projective measurement on ρ in the orthonormal eigenbasis {|ω1〉 , . . . |ωN 〉} ofHN ,
with theN orthogonal projectors |ωn〉 〈ωn|, for n = 1 to N .

The outcome yields the eigenvalue ωn ∈  with probability

Pr{ωn} = 〈ωn| ρ |ωn〉 = tr(ρ |ωn〉 〈ωn|).

Over repeated measurements of Ω on the system prepared in the same state ρ,

the average value of Ω is

〈Ω〉 =
N∑

n=1

ωn Pr{ωn} =
N∑

n=1

ωn tr(ρ |ωn〉 〈ωn|) = tr

(

ρ
N∑

n=1

ωn |ωn〉 〈ωn|
)

= tr(ρΩ).
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Density operator for the qubit

{σ0 = I2, σx, σy, σz} a basis ofH2,

orthogonal for the Hilbert-Schmidt inner product tr(A†B).

Any ρ =
1

2

(
I2 + rxσx + ryσy + rzσz

)
=

1

2

(
I2 + ~r ~σ

)
.

=⇒ tr(ρ) = 1.

ρ = ρ† =⇒ rx = r∗x, ry = r∗y , rz = r∗z =⇒ rx, ry , rz real.

Eigenvalues λ± =
1

2

(
1± ‖~r ‖

)
≥ 0 =⇒ ‖~r ‖ ≤ 1.

‖~r ‖ < 1 for mixed states,

‖~r ‖ = 1 for pure states.

~r = [rx, ry, rz ]
⊤ in Bloch ball of 3.
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Observables on the qubit

Any operator onH2 has general form Ω = a0I2 + ~a~σ,

with determinant det(Ω) = a20 − ~a 2, two eigenvalues a0 ±
√
~a 2,

and two projectors on the two eigenvectors |±~a〉 〈±~a| = 1

2

(

I2 ± ~a~σ/
√
~a 2
)

.

For an observable, Ω Hermitian requires a0 ∈  and ~a = [ax, ay, az]
⊤ ∈  3.

An important observable measurable on the qubit is Ω = ~a~σ with ‖~a ‖ = 1,

known as a spin measurement in the direction ~a of 3,

yielding as possible outcomes the two eigenvalues±‖~a ‖ = ±1,

with probabilites Pr{±1} = 1

2

(

1± ~r~a
)

for a qubit in state ρ =
1

2

(

I2 + ~r ~σ
)

,

(

since Pr{±1}=tr
(

ρ |±~a〉 〈±~a|
)

=
1

2
± 1
2
tr(ρ~a~σ) with (~r ~σ)(~a ~σ) = (~r~a)I2 + i(~r×~a)~σ

)

.
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Generalized measurement

In a Hilbert spaceHN with dimensionN , the state of a quantum system

is specified by a Hermitian positive unit-trace density operator ρ.

• Projective measurement :
Defined by a set of N orthogonal projectors |n〉 〈n| = Πn ,

verifying
∑

n |n〉 〈n| =
∑

nΠn = IN ,

and Pr{|n〉} = tr(ρΠn) . Moreover
∑

n Pr{|n〉} = 1 , ∀ρ⇐⇒∑

nΠn = IN .

• Generalized measurement :
Defined by a set of an arbitrary number of positive operatorsMm,

verifying
∑

mMm = IN ,

and Pr{Mm} = tr(ρMm) . Moreover
∑

m Pr{Mm} = 1 , ∀ρ⇐⇒∑

mMm = IN .
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Quantum noise (1/2)

A quantum system ofHN in state ρ interacting with its environment represents an open

quantum system. The state ρ usually undergoes a nonunitary evolution.

With ρenv the state of the environment at the onset of the interaction, the joint state

ρ⊗ ρenv can be considered as that of a closed system, undergoing a unitary evolution
by U as ρ⊗ ρenv −→ U(ρ⊗ ρenv)U†.

At the end of the interaction, the state of the quantum system of interest is obtained by

the partial trace over the environment : ρ −→ N (ρ) = trenv
[

U(ρ⊗ ρenv)U†
]

. (1)

Very often, the environment incorporates a huge number of degrees of freedom, and is

largely uncontrolled ; it can be understood as quantum noise inducing decoherence.

A very nice feature is that, independently of the complexity of the environment, Eq. (1)

can always be put in the form ρ −→ N (ρ) =∑ℓ ΛℓρΛ
†
ℓ operator-sum or Kraus

representation, with the Kraus operators Λℓ, which need not be more than N
2, satisfying

∑

ℓ Λ
†
ℓΛℓ = IN .
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Quantum noise (2/2)

A general transformation of a quantum state ρ can be expressed by the

quantum operation ρ −→ N (ρ) =∑ℓ ΛℓρΛ
†
ℓ , with

∑

ℓ Λ
†
ℓΛℓ = IN ,

representing a linear completely positive trace-preserving map,

mapping a density operator onHN into a density operator onHN .

For an arbitrary qubit state defined by ρ =
1

2

(

I2 + ~r ~σ
)

with ‖~r ‖ ≤ 1,

this is equivalent to the affine map ~r → A~r + ~c ,

with A a 3×3 real matrix
and ~c a real vector in 3,

mapping the Bloch ball onto itself.
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Quantum noise on the qubit (1/4)

Quantum noise on a qubit in state ρ can be represented by random applications of some

of the 4 Pauli operators {I2,X,Y,Z} on the qubit, e.g.

Bit-flip noise : flips the qubit state with probability p by applying X, or leaves the qubit

unchanged with probability 1− p :

ρ −→ N (ρ) = (1− p)ρ+ pXρX† , ~r −→ A~r =







1 0 0

0 1− 2p 0

0 0 1− 2p






~r .

Phase-flip noise : flips the qubit phase with probability p by applying Z, or leaves the

qubit unchanged with probability 1− p :

ρ −→ N (ρ) = (1− p)ρ+ pZρZ† , ~r −→ A~r =







1− 2p 0 0

0 1− 2p 0

0 0 1






~r .
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Quantum noise on the qubit (2/4)

Depolarizing noise : leaves the qubit unchanged with probability 1− p, or apply any
of X, Y or Z with equal probability p/3 :

ρ −→ N (ρ) = (1− p)ρ+ p

3

(

XρX† +YρY† + ZρZ†
)

,

~r −→ A~r =














1− 4

3
p 0 0

0 1− 4

3
p 0

0 0 1− 4

3
p














~r .
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Quantum noise on the qubit (3/4)

Amplitude damping noise : relaxes the excited state |1〉 to the ground state |0〉 with
probability γ (for instance by losing a photon) :

ρ −→ N (ρ) = Λ1ρΛ
†
1 + Λ2ρΛ

†
2 ,

with Λ2 =




0

√
γ

0 0



 =
√
γ |0〉 〈1| taking |1〉 to |0〉 with probability γ,

and Λ1 =




1 0

0
√
1− γ



 = |0〉 〈0|+√1− γ |1〉 〈1| which leaves |0〉 unchanged

and reduces the probability amplitude of resting in state |1〉.

=⇒ ~r −→ A~r + ~c =







√
1− γ 0 0

0
√
1− γ 0

0 0 1− γ






~r +







0

0

γ






.
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Quantum noise on the qubit (4/4)
Generalized amplitude damping noise : interaction of the qubit with a thermal bath at

temperature T :
ρ −→ N (ρ) = Λ1ρΛ

†
1 + Λ2ρΛ

†
2 + Λ3ρΛ

†
3 + Λ4ρΛ

†
4 ,

with Λ1 =
√
p




1 0

0
√
1− γ



 , Λ2 =
√
p




0

√
γ

0 0



 , p, γ ∈ [0, 1] ,

Λ3 =
√
1− p





√
1− γ 0

0 1



 , Λ4 =
√
1− p




0 0
√
γ 0



 ,

=⇒ ~r −→ A~r + ~c =







√
1− γ 0 0

0
√
1− γ 0

0 0 1− γ






~r +







0

0

(2p− 1)γ






.

Damping [0, 1] ∋ γ = 1− e−t/T1 → 1 as the interaction time t→∞ with the bath of the qubit relaxing to

equilibrium ρ∞ = p |0〉 〈0|+ (1− p) |1〉 〈1|, with equilibrium probabilities p = exp[−E0/(kBT )]/Z

and 1− p = exp[−E1/(kBT )]/Z with Z = exp[−E0/(kBT )] + exp[−E1/(kBT )] governed by the

Boltzmann distribution between the two energy levels E0 of |0〉 and E1 > E0 of |1〉.
T = 0⇒ p = 1⇒ ρ∞ = |0〉 〈0| . T →∞⇒ p = 1/2⇒ ρ∞ → (|0〉 〈0|+ (|1〉 〈1|)/2 = I2/2 .
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Quantum state discrimination

A quantum system can be in one of two alternative states ρ0 or ρ1

with prior probabilities P0 and P1 = 1− P0.

Question : What is the best measurement {M0,M1} to decide
with a maximal probability of success Psuc ?

Answer : One has Psuc = P0 tr(ρ0M0) + P1 tr(ρ1M1) = P0 + tr(TM1) ,

with the test operator T = P1ρ1 − P0ρ0.

Then Psuc is maximized byM
opt
1 =

∑

λn>0

|λn〉 〈λn| ,

the projector on the eigensubspace of T with positive eigenvalues λn.

The optimal measurement {Mopt
1 ,Mopt

0 = IN −Mopt
1 }

achieves the maximum Pmax
suc =

1

2

(

1 +

N∑

n=1

|λn|
)

. (Helstrom 1976)
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Discrimination from noisy qubits

Quantum noise on a qubit in state ρ can be represented by random applications of (one

of) the 4 Pauli operators {I2,X,Y,Z} on the qubit, e.g.

Bit-flip noise : ρ −→ N (ρ) = (1− p)ρ+ pXρX† ,

Depolarizing noise : ρ −→ N (ρ) = (1− p)ρ+ p

3

(

XρX† +YρY† + ZρZ†
)

.

With a noisy qubit, discrimination fromN (ρ0) andN (ρ1).
−→ Impact of the probability p of action of the quantum noise,

on the performance Pmax
suc of the optimal detector,

in relation to stochastic resonance and enhancement by noise.

(Chapeau-Blondeau, Physics Letters A 378 (2014) 2128-2136.)
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Discrimination amongM > 2 quantum states

A quantum system can be in one ofM alternative states ρm, form = 1 toM ,

with prior probabilities Pm with
∑M
m=1 Pm = 1.

Problem : What is the best measurement {Mm} withM outcomes to decide

with a maximal probability of success Psuc ?

=⇒Maximize Psuc =
M∑

m=1

Pm tr(ρmMm) according to theM operatorsMm,

subject to 0 ≤ Mm ≤ IN and
∑M
m=1Mm = IN .

ForM > 2 this problem is only partially solved, in some special cases.

(Barnett et al., Adv. Opt. Photon. 2009).
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Error-free discrimination betweenM = 2 states

Two alternative states ρ0 or ρ1 ofHN , with priors P0 and P1 = 1− P0,

are not full-rank inHN , e.g. supp(ρ0) ⊂ HN ⇐⇒ [supp(ρ0)]
⊥ ⊃ {~0}.

If S0 = supp(ρ0) ∩ [supp(ρ1)]⊥ 6= {~0}, error-free discrimination of ρ0 is possible.
If S1 = supp(ρ1) ∩ [supp(ρ0)]⊥ 6= {~0}, error-free discrimination of ρ1 is possible.
Necessity to find a three-outcome measurement {M0,M1,Munc} :

Find 0 ≤ M0 ≤ IN s.t.M0 = ~a0Π1 “proportional” to Π1 projector on [supp(ρ1)]
⊥,

and 0 ≤ M1 ≤ IN s.t.M1 = ~a1Π0 “proportional” to Π0 projector on [supp(ρ0)]
⊥,

andM0 +M1 ≤ IN ⇐⇒
[

M0 +M1 +Munc = IN with 0 ≤ Munc ≤ IN
]

,

maximizing Psuc = P0 tr(M0ρ0) + P1 tr(M1ρ1) (≡ min Punc = 1− Psuc)

This problem is only partially solved, in some special cases,

(Kleinmann et al., J. Math. Phys. 2010).
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Error-free discrimination betweenM ≥ 2 states

M alternative states ρm ofHN , with prior Pm, form = 1, . . .M ;

each ρm must be with defective rank < N .

For allm = 1 toM , define Sm = supp(ρm) ∩

Km
︷ ︸︸ ︷
{ ⋂

ℓ6=m

[supp(ρℓ)]
⊥
}

.

For each nontrivial Sm 6= {~0}, then ρm can go where none other ρℓ can go.

=⇒ Error-free discrimination of ρm is possible,

byMm such that 0 ≤Mm ≤ IN andMm “proportional” to the projector on Km.
To parametrizeMm, find an orthonormal basis {|umj 〉}dim(Km)

j=1 of Km,
thenMm =

∑dim(Km)
j=1 amj |umj 〉 〈umj | = ~amΠm, with Πm projector on Km.

Find theMm (the ~am) with
∑

mMm ≤ IN maximizing Psuc =
∑

m Pm tr(Mmρm).

This problem is only partially solved, in some special cases, (Kleinmann, J. Math. Phys. 2010).
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Quantum feedback control
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System dynamics :

• Schrödinger equation (for closed systems)
d

dt
|ψ〉 = −

i

~

H |ψ〉 =⇒ |ψ(t2)〉 = exp
(

−
i

~

∫ t2

t1

Hdt
)

︸ ︷︷ ︸

unitary U(t1,t2)

|ψ(t1)〉 = U(t1, t2) |ψ(t1)〉

Hermitian operator Hamiltonian H = H0 +Hu (control part Hu).

d

dt
ρ = −

i

~

[H, ρ] =⇒ ρ(t2) = U(t1, t2) ρ(t1)U
†(t1, t2).

• Lindblad equation (for open systems)
d

dt
ρ = −

i

~

[H, ρ] +
∑

j

(

2LjρL
†
j − {L

†
jLj , ρ}

)

, Lindblad op. Lj for interact. with environt.

Measurement : Arbitrary operators {Em} such that
∑

m E†
mEm = IN ,

Pr{m} = tr(EmρE
†
m) = tr(ρE†

mEm) = tr(ρMm) withMm = E†
mEm positive,

Post-measurement state ρm =
EmρE

†
m

tr(EmρE
†
m)

.
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Merci de votre attention.

Si vous avez compris . . .

c’est que je me suis mal exprimé !

“Nobody really understands quantum mechanics.”

R. P. Feynman


