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Une définition (large)

Exploiter les propriétés et phénomenes quantiques
pour le traitement de 1’information et le calcul.

Motivations pour le quantique

pour le traitement de 1’information :

1) Quand on utilise des systémes ¢lémentaires (photons, ¢lectrons, atomes,
nanodevices, .. .).

2) Pour bénéficier d’effets purement quantiques (parallélisme, intrication, ...).

3) Domaine de recherche récent, riche et largement ouvert.
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Quantum system Measurement of the qubit Hadamard basis
Represented by a state vector i) When a qubit in state |) = a|0) + B]|1) Another orthonormal basis of H,
in a complex Hilbert space H, is measured in the orthonormal basis {|0}, 1)}, 1 1
ith unit = |yl = 1. {+:—0+1; —:—0—1}.
with unit norm (Y1) = Iyl = only 2 possible outcomes (Born rule) : k) \/E(l )+l >) = \/E(l »-l >)
. . . state |0) with probability |af* = [(Ol) [* = (0ly)(¥10) = (OIT1,|0), or
In dimension 2 : the qubit (photon, electron, atom, ...) state |1) with probability 812 = | (1¢) P = (L)1) = (1T, 1)
State [y) = |0y + B|1)
in some orthonormal basis {|0), |1)} of H,, e tational orth 1 basi
. < Computational orthonormal basis
with complex @, 8 € C such that |a? + |8 = (Wly) = I = 1. Measurement : P
S 1 1
N e a probabilistic process, { 10y = _(|+> + |,)) co = _(|+> _ |,>) } .
vy = { ] W =@l =[BT = Wlp) = WP = |af + |8 scalar. e as a projection of the state |i/) in an orthonormal basis, V2 V2
B o with statistics evaluable over repeated experiments with same preparation [y).
W) H[ Bl [‘“f " | _ 11, orthogonal projector on |4
= o Bl=|, = orthogonal projector on |¢).
B ap o ppl
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Experiments Coll. Magriet Bloch sphere representation of the qubit In dimension N (finite) (extensible to infinite dimension)
= N
= | [m__ﬁ__,__* Qubit in state State |y) = Z a, n) , in some orthonormal basis {Il) L2y, .. IN)} of Hy,
I —————a Screen ) = @l0) + A1) with Jo? + |8 = 1. P
N
— & [) = cos(6/2)[0) + ¢ sin(6/2) |1) witha, € C, and Z ol = (W) = 1.
. . ‘ ith 6 € [0, 7], =t
Stern-Gerlach apparatus for particles with two states of spin (electron, atom). wi €[0.7]
¢ €[0,2n[. Proba. Pr{|n)} = |a,|> in a projective measurement of |i/) in basis [In)}.
detactor 1
stactor ’ N S
Inner product (kly) = Z a, {kln) = a; coordinate.
n=1
Two states of polarization of a photon : As a quantum object, v
(Nicol prism, Glan-Thompson, the qubit has infinitely many accessible values S = Z [y (n| = Iy identity of Hy (closure or completeness relation),
polarizing beam splitter, . ..) in its two continuous degrees of freedom (6, ¢), n=1
yet when it is measured it can only be found in one of two states . oS W
V) Shy) = = o ln)y = S =1ly.
dstoctor 2@ ustlke  lassical bio) since, Y1) S1) = 33 W) = D) =) = S =1
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Multiple qubits
A system (a word) of N qubits has a state in 7—(5"\/ ,
a tensor-product vector space with dimension 2V,
and orthonormal basis {|x;x, - - - xy)}

eefo. )V

Example N =2 :

Entangled states
o Example of a separable state of two qubits 4B :
1
V2
When measured in the basis {|0), |1)}, each qubit 4 and B can be found in state |0) or |1)
independently with probability 1/2.
Pr{4 in |0)} = Pr{|4B) =100)} + Pr{|4B) = [01)} = 1/4 + 1/4 = 1/2.

1 1
14B) = —=(10) + D) @ WOOH 1) = 5(|00>+|01>+ 10y +[11)).

Bell basis
A pair of qubits in 7{?2 is a quantum system with dimension 22 = 4,

with original (computational) orthonormal basis {IOO) ,101),]10), 1 1)}.

Another useful orthonormal basis of ‘Hfz is the Bell basis
[|.300) s [Bor)» 1B1o) s Wn)},
1

Generally /) = ago [00) + @y [01) + a0 ]10) + 11 [11) (ZN coord.). e Example of an entangled state of two qubits 4B : with Boo) = ﬁ(l()()) +11 l))
1
|[AB) = —(lOO) +]1 1)). Pr{4 in |0)} = Pr{|AB) = |00)} = 1/2. |
Or, as a special separable state (2N coord.) V2 o) = 7(|01> + |10>)
) = (m 10) + 81 |1>) ® ((,2 10 + 8> |1>) When measured in the basis {|0), |1)}, each qubit 4 and B can be found in state |0) or |1) V2
= a1200) + @13, |01) + B1a2 |[10) + 815, 1) with.prolf)abi]ity 1‘/2 (randomly, n}o preéeterminatlion before measurement). Bio) = L(IOO) ~n 1>)
But if 4 is found in |0) necessarily B is found in |0), V2
A multipartite state which is not separable is entangled. and if 4 is found in |1) necessarily B is found in |1), o) = L(lOI) - |10>)
no matter how distant the two qubits are before measurement. " V2 '
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Observables Computation on a qubit Pauli gates
For a quantum system in Hy with dimension N, ) .
a projective measurement is defined by an orthonormal basis {|1), ... |N)} of Hy, Through a unitary operator U on %, (a 2 x 2 matrix) : (ie. U =U") X=0,= [0 1 ] Y=o0,= 0 _l] 7 =0 = [ 0 ] )
. _ . . 1 0 i o) 10 -1
and the N orthogonal projectors |n) (|, for n = 1 to N. normalized vector |y € H, — U |) normalized vector € H, .
Also, any Hermitian (i.e. Q = Q) operator Q on Hy, — output X?=Y?>=7%=1,. Hermitian unitary. XY =-YX=iZ, ZX =iY, etc.
has its eigenstates forming an orthonormal basis {|w,), ... |wy)} of Hy. = quantum gate ' )
Therefore, any Hermitian operator Q on Hy defines a valid measurement, [t)) ——] U +—— Ule) {, X, Y, Z} a basis for operators on #,.
N
and has a spectral decomposition Q = Z Wy |w,) {w,| with the real eigenvalues w,. Hadamard gate H = L(X + Z) .
=l 2
Also, any physical quantity measurable on a quantum system is represented in quantum Hadamard gate H = L [ 1 1 ] . Identity gate I, = [ 1 0] .
theory by a Hermitian operator (an observable) Q. V2l -l 01 X =0, theinversion or Not quantum gate. ~ X|[0) =[1), X]|1) =0).
When system in state [i), measuring observable Q is equivalent to performing a projec- H? =1, & H! = H = H' Hermitian unitary. 1147 1-i 1 [ gin/4  pmin/4 5
tive measurement in eigenbasis {|w,)}, with projectors |w,) (w,| = I1,, and yields the W= VX = Vo = 5 [ l—i 14+i = 6 [e”"’“ ol ] = W =X,
cigenvalue w, with probability Priw,) = [(w,l6) 2 = (Wlw,) (wl) = WITLI0). HI0)=1+) and H|I)=]-)
The average is (@) = 3., @y Prlw,} = (1QI) = in a compact notation H|x) = ﬁ(|0> +(=1)" |1>), Vxe{0,1}. is the square-root of Not, a typically quantum gate (no classical analog).
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In general, the gates U and ¢®U give the same measurement statistics at the Computation on a pair of qubits e Example : Controlled-Not gate
output, and are thus physically equivalent, in this respect. Through a unitary operator U on HE? (a 4 x 4 matrix) : Via the XOR binary function: ¢®b =a whenb =0, or=a whenb=1;
. . i ibl = = = .
normalized vector |y/) € 7—(?2 — U ) normalized vector € ‘Hfz . invertible a®x =b < x=a®b=b&a
Any single-qubit gate can always be expressed as €U, with o )
input output Used to construct a unitary invertible quantum C-Not gate :
U EINN I3 b s 2NN = quantum gate —— I (T target, C control)
¢ = exp| —15}10' = Cos 5 2 — [ 8IN| E no, (always reversible) W’) U UW> , cor
Fany /
' . ICTy — |C,CaT) |CT> |C,C®T>
where i = [ny, ny,n.]" is a real unit vector of R, 100y —> [00) . o 1000
and a formal “vector” of 2 X 2 matrices & = [0y, oy, 0], Completely defined for instance by the transformation of the four state vectors 01y —101) U= 0100
. . . . : [10) — |11) 00 0 1
implementing in the Bloch sphere representation of the computational basis {IOO) ,01), 1103, 11 1>}' 1 — 110 00 1 0
a rotation of the qubit state of an angle & around the axis 77 in R>.
) . (C-Not)? = I, &= (C-Not)~! = C-Not = (C-Not)" Hermitian unitary.
For example : W = /oy = e’”/4lcos(7r/4) I, — isin(/4) a'xJ.
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Computation on a system of N qubits
Through a unitary operator U on 7—[?"’ (a2" x 2V matrix) :

normalized vector |y) € 7—[?]" — U ) normalized vector € W?N .

. . U .
= quantum gate : N input qubits ——— N output qubits.

Completely defined for instance by the transformation of the 2V state vectors of
the computational basis.

Any N-qubit quantum gate or circuit may always be composed
from two-qubit C-Not gates and single-qubit gates (universality).

This forms the grounding of quantum computation.

No cloning theorem (1982)

¢, Possibility of a circuit (a unitary U) that would take any state |i/), associated to an

auxiliary register |s), to transform the input [y) |s) into the cloned output |y) ) ?

U
1) Is) —— U(1) Is)) = 1) 1) (would be).
18]
[2) Is) —— U(l2) Is)) = 2} y2) (would be).
Linear superposition |) = a; Y1) + a2 |2)

U
) 1) —— U() Is)) = Ular ) Is) + az [2) Is))
= ar ) W) + @ a) a)

since U linear.

But [y} [p) = ) @ ) = (a1 1) + @z ) 1 ) + e [92))
=2 W) ) + aras W) W) + aras o) ) + a3 w2) Ia)

Quantum parallelism

For a system of N qubits,
a quantum gate is any unitary operator U from (Hf‘N onto 7—(2®N .

The quantum gate U is completely defined
by its action on the 2 basis states of HZ" : {I)E’) ,x¥e |0, I}N],
just like a classical gate.

Yet, the quantum gate U can be operated
on any linear superposition of the basis states {If) ,xe {0, l}N].

This is quantum parallelism, with no classical analog.

# U(lyyls))  in general. = No cloning U possible.
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Parallel evaluation of a function (1/3) Parallel evaluation of a function (2/3) Parallel evaluation of a function (3/3)
A classical function f(-) from ];zl{t(s) t(l)};lvbit e 7 7 |+>®N 7 7
s m— , Ly, Uf Uj
Used to construct a unitary operator U as an invertible f-controlled gate : —y y B f(f) - |?J> — Y A f(f) —
= = . . > N . 1 N
T U X = For every basis state |X), with ¥ € {0, 1}" : [+)°N = (7) Z |#)  superposition of all basis states,
f Uy 27 oy
B Bl = 0) ———— D o
—y y @ [(@)— ~ — Uy (1Y
b= 1) ——— D) 9% ® 10y — (7) ST ) superposition of all values £(3).
S . T 2/ ed00w
with binary output y @ f(¥) = f(¥) wheny =0, or = f(¥) wheny = 1. 1 — 0.1y
Y upuLy© () = /) wheny S0 wheny 19 14+) 19~ [ + [7@) | = 101
2 o Uf 1 N ®
| - e @) —— (ﬁ) D DD
1) 19— @) = [7&@)| =19 1 (1@ sy
(, How to extract, to measure, useful informations from superpositions ?
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Deutsch-Jozsa algorithm (1992) : Parallel test of a function (1/5) Deutsch-Jozsa algorithm (2/5) Deutsch-Jozsa algorithm (3/5)
A classical function N woo— {0 QN , [= = N Output state [y3) = (HV @ 1) [y,)
Ue 2N values — 2 values, |+> z U, z H® ’ ( 2) ’
can be constant (all inputs into 0 or 1) or balanced (equal numbers of 0, 1 in output). f 1\ N | 1@
2 =) —y  yof@ -\ 5 DT H ) ) (- 1)
Classically : Between 2 and >+ 1 evaluations of f(-) to decide. t ? 1 Yel0,1)¥
) . N . - I\ _
Quantumly : One evaluation of f(-) is enough (on a suitable superposition). ‘¢1> |'¢}2> |1/)3> _ (7) Z Z 1) =) (<1 by Lemma 1,
L 2oy =
1 1 QN 2
. _ 1 - 1y ' Input state ;) = [+)*" |-) = | — |X) =)
Lemmal: Hx) = 0) + (=D)* 1)) = (=D, Yxelo,1} p ( )
\/5( ) V2 :e(Z:u,n V2 R0,V ) 1\N ol
. orlys) = W) 1-) , with  |y) = (—) D, udE
N |2\ _ N e > N 1\ ) 2e{0.1}¥
= H*|?) =Hlx)® ®H|x,x>—(\/§]5&m”\( D¥1Z)y, vre{o, 1}, Internal state |%):(7) Z 1) (1)@
. ) 2oy and the scalar weight u(Z) = Z (-1 @+
with scalar product X2 = x;z; + - - + xyzy modulo 2. (quant. Hadamard transfo.) oy
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Deutsch-Jozsa algorithm (4/5)

1 .
Solpy=— > w@E) with u@)= ) (~1)/I.

Ze{0,1}V Fel0,1}V

For [2) =10) =0)®"  then u(z=0) =

Xe(0,1}V

(_1)./'0’) .

o When f(-) constant : u(Z = 0) = 2V(=1)/® = £2¥ = in |¢) the amplitude of |} is
+1, and since i) is with unit norm = |¢) = + |6>, and all other u(Z # 6):0.
= When |¢) is measured, N states |0) are found.

e When f{(+) balanced : u(Z = 6) =0 = [|y) is not or does not contain state Iﬁ).
= When |¢) is measured, at least one state |1) is found.

— Illustrates quantum ressources of parallelism, coherent superposition, interference.
(When f{(-) is neither constant nor balanced, |) contains a little bit of |6 )

Deutsch-Jozsa algorithm (5/5)
[1] D. Deutsch; “Quantum theory, the Church-Turing principle and the universal quantum
computer”; Proceedings of the Royal Society of London A 400 (1985) 97-117.

The case N = 2.

[2] D. Deutsch, R. Jozsa; “Rapid solution of problems by quantum computation”; Proceedings of
the Royal Society of London A, 439 (1993) 553-558.

Extension to arbitrary N > 2.

[3] E. Bernstein, U. Vazirani; “Quantum complexity theory”; SIAM Journal on Computing 26
(1997) 1411-1473.
Extension to f(¥) = @¥or f(¥) = @¢® b, to find binary N-word @ —> by producing output
) =a).

[4] R. Cleve, A. Ekert, C. Macchiavello, M. Mosca; “Quantum algorithms revisited”; Proceedings
of the Royal Society of London A, 454 (1998) 339-354.

Superdense coding (Bennett 1992) : exploiting entanglement

1
Alice and Bob share a qubit pair in entangled state [4B) = 7(\00) +1 1>) = |Boo)-
2

Alice chooses two classical bits, used to encode by applying to her qubit A
one of {I,, X, Y, Z}, delivering the qubit 4’ sent to Bob.

Alice

2 chits peb
< CDILS I% 1 gbit A’ 9 chite L ®L|AB) = |Boo)
7 X 2 chits X®T 4B) = Bo)
% Decoder [F—#F—= 2 ol
A 7 B Z®1,14B) = B}

iY®L|4B) = |B11)
|AB) 2 entangled qubits

Bob receives this qubit 4’. For decoding, Bob measures |4’ B) in the Bell basis
{lﬁon> L1Bon)  1B1o) » |/3|1>}, from which he recovers the two classical bits.
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Teleportation (Bennett 1993) : of an unknown qubit state (1/3) Teleportation (2/3) Teleportation (3/3)
Qubit Q in unknown arbitrary state (/o) = g [0) + a; [1). 1 1
. |¢'1>=|l//Q>|,300>=W[00|O>(|00)+|11>)+011|1>(|00>+|11))] |¢1)=5[W00>((¥0|O>+C¥1|1>)+V3m>(a’0|1)+011 10)) +
Alice and Bob share a qubit pair in entangled state |4B) = ﬁ(IOO) +1 1}) = |Boo)-
1 _ _
Al = —[@01000) + a0 [011) + @, [100) + e [111)]. 1810) (@010) = a1 1) + 1B11) (@0 1) = |°>)]'
o) —ahe 5 chits Bob V2 . . . . .
i Measurement - The first two qubits 04 measured in Bell basis {|5,,)} yield the two cbits xy,
in Bell basis factorizable as [y) = 7[7(|00) 1 1))((10 0Y + |1>) + used to transform the third qubit B by X” then Z*, which reconstructs |y o).
A {|ﬁ3'11/>} 2 \/E
(0 . . - 1 1
‘ ! Q> ‘%001) + |10>)(010 1+ IO)) + When Q4 is measured in |By) then B is in aq[0) + a;|1) 2,2 o)
X 1
[i1) ‘J)> 1 When Q4 is measured in |81 ) then Bisin ag|l) + a; [0) — - N o)
’ 7§(|00>—|11>)(&0|O>—(11|1))+ , _ o Lz
Alice measures the pair of qubits QA4 in the Bell basis (so ) is locally destroyed), When 04 is measured in [81) then B is in a0 [0) — a1 |1) > o)
and the two resulting cbits x, y are sent to Bob. 1 ] . . .. X Z
—(l01) =10 1y —a0))|, Wh A d then B - 0) —  — .
Bob on his qubit B applies the gates X” and Z* which reconstructs [). \/E(I - >)(ao D =ail >) en Q4 is measured in [811) then Bis in- ao |1) ~ a110) Wo)
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Princeps references on superdense coding ...

[1] C. H. Bennett, S. J. Wiesner; “Communication via one- and two-particle operators on
Einstein-Podolsky-Rosen states™; Physical Review Letters 69 (1992) 2881-2884.

[2] K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger; “Dense coding in experimental
quantum communication”; Physical Review Letters 76 (1996) 4656-4659.

... and teleportation

[3] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters; “Teleporting an
unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels”;
Physical Review Letters 70 (1993) 1895-1899.

Grover quantum search algorithm (1/3)  Phys. Rev. Let. 79 (1997) 325.

e Finds an item out of N in an unsorted database,
in O(VN) complexity instead of O(N) classically.

e An N-dimensional quantum system in Hy with orthonormal basis {|1),- - -,|N)},
the basis states [n), n = 1,... N, representing the N items stored in the database.

o A set of N real values {wy, - - -, wy} representing the address of each item |r) in the

database.
1 N

o The unsorted database is in the state [y) = — ).
)

o A query of the database, in order to obtain the address w, of an item |n),

N
is performed by a measurement of the observable Q = Z w, ny{(n.

n=1
® Any specific item |n,) is obtained as measurement outcome with its eigenvalue
(address) w,,, with the probability [(nly) > = 1/N (since (noly) = 1/ VN ).

%)
v
oo
n

Grover quantum search algorithm (2/3) Glv)

o For this specific item |n) that we want to retrieve (obtain its address wy, ),
it is possible to amplify this uniform probability [(n[) |2 =1/N.

1 N

_ [n) normalized state L [ng) == |¢) in plane (|no) , |n,)).
Wi

o Define unitary operator Uy = Iy — 2 |no){(no| = Uy |n.) = |n.) and Ug |9y = — |no).
So in plane (|ng), [n, )), the operator Uy performs a reflection about |n, ).

eLet|n,)=

(U oracle).

o Let |y, ) normalized state L |y) in plane (|no), |n.)).

 Define the unitary operator Uy = 2 |y) (| = Iy = Uy |¥) = ) and Uy, [, ) = — | 1).

So in plane (|ng), |1, )), the operator Uy, performs a reflection about [i/).

e In plane (|ng) , | )), the composition of two reflections is a rotation Uy, Uy = G (Grover
amplification operator). It verifies G |ng) = Uy Ug Ing) = =Uy, |no) = |no) — % ).

The rotation angle 6 between |ng) azg G |ng), via the scalar product of [ng) and G |ng), verifies

2
cos(f)):(no\G\m,):l—ﬁzl—;éﬁz— at N> 1.
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Grover quantum search algorithm (3/3)

2
o In plane (|ng), |, )), the rotation G = Uy Uy is with angle 6 =~ W/ .

2 4 2
e Gly) = UyUo Iy = Uy(l) - 7 Inoy) = (1 - N)“” + 7 o

So after rotation by @ the rotated state G |¢) is closer to |ng).

o G|) remains in plane (|ng), |7, )), and any state in plane (|ng), |n, )) by G is rotated by 6.

So G? i) rotates |y) by 26 toward |ng), and G i) rotates |y) by k6 toward |ng).

o The angle @ of [/) and |ng) is such that cos(®) = (ngly) = 1/VN=0= acos(l/ \//\7)
® N -
eSoK = 5 ~ T acos(l/ \/N) iterations of G rotate i) onto |ng).
T ks
Atmost © = E (when N > 1) = at most K ~ Z VN.

o So when the state GX |y/) & |ng) is measured, the probability is almost 1 to obtain |ng) and its
address w,, = The searched item is found in O( VN) operations instead of O(N) classically.

Other quantum algorithms

e Shor factoring algorithm (1997) :

Factors any integer in polynomial complexity

(instead of exponential classically).

15 = 3 x 5, with spin-1/2 nuclei (Vandersypen et al., Nature 2001).

21 = 3 x 7, with photons (Martin-Lopez et al., Nature Photonics 2012).

e http://math.nist.gov/quantum/zoo/

“A comprehensive catalog of quantum algorithms . ..”

Quantum cryptography

e The problem of cryptography

Message X, a string of bits.

Cryptographic key K, a completely random (i.i.d.) string of bits.

The cryptogram or encrypted message C(X, K) = X @ K (encrypted string of bits).
This is Vernam cipher or one-time pad,
with provably perfect security, since mutual information /(C; X) = H(X) — H(X|C) = 0.

Problem : establishing a secret (private) key
between emitter (Alice) and receiver (Bob).

With quantum signals,
any measurement by an eavesdropper (Eve) perturbs the system,

and hence reveals the eavesdropping, and also identifies perfect security conditions.

37/85 38/85 39/85
e BB84 protocol (Bennett & Brassard 1984) 1) e B92 protocol with two nonorthogonal states (Bennett 1992) [+) e Protocol by broadcast of an entangled qubit pair
4 Alice has a string of 4N bits. She encodes with a qubit + To encode the bit @ Alice uses a qubit in state [0) if a =0 + With an entangled pair, Alice and Bob do not need a quantum channel between them
in a basis state either from {|0), [1)} or {|+),|-)} : _ e ) two, and can exchange only classical information to establish their private secret key.
randomly chosen for each bit. and in state |+) ( 10)+ |1>)/ V2ifa=1. /4 ) Each one of Alice an Bob just needs a quantum channel from a common server

+ Then Bob chooses to measure each received qubit either in
basis {|0), |1)} or {|+),]|—)} so as to decode each transmitted bit.

+ Once the whole string of 4N bits from Alice has been received
by Bob, Alice publicly discloses the sequence of her basis choices.

I-)
+ Bob keeps only the positions where his choices of basis coincide with those of Alice
to obtain a secret key, of length approximately 2N.

+ If Eve intercepts and measures Alice’s qubit and forward her measured state to Bob,
roughly half of the time Eve forwards an incorrect state, and from this Bob half of the
time decodes an incorrect bit value.

+ From their 2N coinciding bits, Alice and Bob classically exchange N at random. In
case of eavesdropping, around N/4 of these N test bits will differ.
If all NV test bits coincide, then the remaining N bits form the shared secret key.

+ Bob, depending on a random bit @’ he generates,
measures each received qubit either in basis {|0),[1)} if ' = 0
orin {|+),|-)} if @’ = 1. From his measurement, Bob obtains the result 5 = 0 or 1.

+ Then Bob publishes his series of b, and agrees with Alice to keep only those pairs

{a,a’} for which b = 1,
this providing the final secret key a for Alice and 1 -4’ = a for Bob.
This is granted because @ =@’ = b =0 andhence b=1=a+#d =1-a.

+ A fraction of this secret key can be publicly exchanged between Alice and Bob

to verify they exactly coincide, since in case of eavesdropping by interception and
resend by Eve, mismatch ensues with probability 1/4.

N. Gisin, et al.; “Quantum cryptography”; Reviews of Modern Physics 74 (2002) 145-195.

dispatching entangled qubit pairs prepared in one stereotyped quantum state.

+ Alice and Bob share a sequence of entangled qubit pairs all prepared in the same
entangled (Bell) state |4B) = (J00) +[11))/ V2 .

+ Alice and Bob measure their respective qubit of the pair in the basis {|0) , 1)}, and they
always obtain the same result, either 0 or 1 at random with equal probabilities 1/2.

+ To prevent eavesdropping, Alice and Bob can switch independently at random to
measuring in the basis {|+),|-)}, where one also has |4B) = (|++> + \——))/ V2.

So when Alice and Bob measure in the same basis, they always obtain the same results,
either 0 or 1.

4 Then Alice and Bob publicly disclose the sequence of their basis choices.
The positions where the choices coincide provide the shared secret key.

+ A fraction of this secret key is extracted to check exact coincidence, since in case of
eavesdropping by interception and resend, mismatch ensues with probability 1/4.
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T 441223 5. s 3 Quantum correlations (172)
IDQ o - ‘ — o
v Alice and Bob share a pair of qubits in the entangled (Bell) state [yap) = T
ID Quantique AND STATE
Redefifing the e OF GENEVA Alice or Bob on its qubit can measure observables of the form Q(6) = sin(#)X + cos(0)Z,
Qu Gi S G having eigenvalues 1.
ID Quantique .
QUA\QM,SA;E@%W ~ PHOTON COUNTING ~ RANDOMNESS eneva overnme nt T Alice measures Q(a) to obtain 4 = +1, and Bob measures Q(B) to obtain B = +1,
Secure Data Transfer for Elections then we have the average (4B) = (Wag | Q) ® Q(B) | Yap) = — cos(a — ).
Gigabit Ethernet Encryption with Quantum Key Distribution
For any four random binary variables 4,, 4, B, B> with values +1,
“We have to provide ['= (4, + 42)B) — (4 — 42)By = A\ By + A2B + A2By — A1 By = 2,
25;';".31,32%2’,“‘{8 because since 4, 4, = 1, either (4; + 4,)B; = 0 or (4; — 4;)B, =0,
Sl obrhgsi and in each case the remaining term is +2.
) YRy e i gty the pracaRt ey, Thiiyak
G QRPN vl At il co O DA R ) So for any probability distribution on (4, 45, B}, B,), necessarily
corrupted in transit The Solution
gﬁ:vazzﬁ entry & (T) =(A41B) + Ay By + A2By — A1 By) = (A1 B1) + (42B1) + (A2 B2) — (41 By)
verifies -2 <(I') < 2. Bell inequalities (1964).
technology evaluations 43/85 - 44/85 45/85




Quantum correlations (2/2)

A long series of experiments repeated on identical copies of |yap) :
EPR experiment (Einstein, Podolsky, Rosen, 1935).

Alice chooses to randomly switch between measuring A; = Q(a,) or A, = Q(as),
and Bob chooses to randomly switch between measuring B, = Q(8,) or B, = Q(8,).

For (') = (4,B)) + (42By) + (4,B,) — (4, B,) one obtains
(I') = —cos(ar — B1) — cos(az — f1) — cos(az — Bo) + cos(a — fa).

The choice @) =0, @, =n/2 and B, =n/4, B, = 3n/4 leads to

(I') = —cos(n/4) — cos(r/4) — cos(n/4) + cos(3n/4) = -2 V2 < -2.
Bell inequalities are violated by quantum measurements.
Experimentally verified (Aspect et al., Phys. Rev. Let. 1981, 1982).

Local realism and separability (classical) replaced by
a nonlocal nonseparable reality (quantum).
46/85

EPR paradox (Einstein-Podolski-Rosen) :

A. Einstein, B. Podolsky, N. Rosen ; “Can quantum-mechanical description of physical reality
be considered complete ?”’; Physical Review, 47 (1935) 777-780.

Bell inequalities :

J. S. Bell ; “On the Einstein—Podolsky—Rosen paradox™; Physics, 1 (1964) 195-200.

Aspect experiments :

A. Aspect, P. Grangier, G. Roger ; “Experimental test of realistic theories via Bell’s theorem™;
Physical Review Letters, 47 (1981) 460—463.
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HIGHLIGHTS

o Anew Bell-type inequality for derived.
. a4 lized metric of

o Itis applied to classical 3 as 3

o Superiority and complementarity of the generalized Bell inequality is demonstrated.

o Itis able to detect nonlocal quantum correlation from a larger set of observables.

ARTICLE INFO ABSTRACT

Artice istary: Anew Bell-type inequality Py to quantify

Received 14 April 2014 dependence between the classical outcomes of measurements performed on a bipartite
typical of an “This quality is

standard correlation-based Bell inequalities, and with other known Bell-type inequalities

based on the Shannon entropy for which it constitutes a generalization. For an optimal

Received in revised form 13 July 2014
Available online 23 July 2014

53};?’;‘;"‘” range of the Tsallis order, the new inequality is able to detect nonlocal quantum correla-
‘Quantum correlation set mor
Bell inequalities powerful and compared to the pr Bell-type inequali-

EPR experiment ties.

Quantum information ©2014 Elsevier BV. All ights reserved.
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GHZ states (1/5)
3-qubit entangled states.

(1989, Greenberger, Horne, Zeilinger)

Three players, each receiving a binary input x; = 0/1, for j = 1,2,3,
with four possible input configurations x;x,x; € {000,011, 101, 110}.

Each player j responds by a binary output y;(x;) = 0/1, function only of its own input x;,
for j=1,2,3.

Game is won if the players collectively respond according to the input—output matches :
X1X2X3 = 000 —————— > y1),y3 suchthat y, @y, ®y; =0,

x1x2x3 € {011,101, 110} ——— yyy,y; such that y, @y, ®y; = 1.

To select their responses y;(x;), the players can agree on a collective strategy before,

but not after, they have received their inputs x;.

GHZ states (2/5)

A strategy winning on all four input configurations
would consist in three binary functions y;(x;) meeting the four constraints :

11(0) @ y2(0) @ y3(0) =0
nOeyney(l)=1
neyyey(l) =1
ney(l)ey0) =1

0 @ 0 0 =1, bysummation of the four constraints,
= 0 =1, so the four constraints are incompatible.

So no (classical) strategy exists that would win on all four input configurations.
Any (classical) strategy is bound to fail on some input configuration(s).

‘We show a strategy using quantum resources winning on all four input configurations,
(by escaping local realism, y;(0) = 0/1 and y;(1) = 0/1 not existing simultancously).

GHZ states (3/5)

Before the game starts, each player receives one qubit from a qubit triplet prepared in the
entangled state (GHZ state) 1

W) = [wias) = E(|ooo> = [011) = [101) = 110)).
And the players agree on the common (prior) strategy :

if x; = 0, player j obtains y; as the outcome of measuring its qubit in basis {|0), [1)},
if x; = 1, player j obtains y; as the outcome of measuring its qubit in basis {|+),[-)}.

We prove this is a winning strategy on all four input configurations :

1) When x;x;x3 = 000, the three players measure in {|0), |1)}
= )1 ®y2 @ y; = 0 is matched.

49/85 50/85 51/85
GHZ states (4/5) GHZ states (5/5) Density operator (1/2)
2) When x,x,x3 = 011, only player 1 measures in {{0), |1)}. 3) When x,x,x3 = 101, only player 2 measures in {|0),1)}. Quantum system in (pure) state |¢/;), measured in an orthonormal basis {|n)} :
1 1 1 1 ili 3= N2 = )
vy = 5(|000>—|011>—|101>—|110>) = §[|0>(\00>— \11>)—\1>(|01>+|10>)], W) = 5(|000>7|011>7 1101) - 110)) = 5[|4o->(\0»0>—\1 H)- k(0 D+t .o>)] = probability Pr{ln)| Iy} = |l ) P = (aly;) (wjln) .
. _ i : _ I _ 1 |A0A>(‘+ el +>) B I-l~>(\+ -l _)) Several possible states |if;) with probabilities p; (with 3, p; = 1) :
Since (0) = () +19). )= —5(0)-1) = 2
2 2 = Pr(in)) = 3, p; Prim) ) = <l (2,0, W) ) ) = Calpln)
1
[00) —[11) = %l(\*—) + |—>)(|+) + \—)) - (H—) - I—))(I+) - \—))J = 5(‘+0_> +=04) = [+14) + |‘]‘>) = 1@y, ®y; = 1 matched. with density operator p = Y, p; ;) (W1 -
X and Pr{|n)} = (n|p|n) = tr(p |n) (n]) = tr(p11,) .
- % (|++> I U L \--)) - (\++> =) = |+ + \__))] 4) When x;x,x3 = 110, only player 3 measures in {|0), |1)}.
1 1 The quantum system is in a mixed state, corresponding to the statistical ensemble
= o)+ ) W = =(1000) - o11) - 1101) = [110)) = —[\--o>(\oo->—m->)—|~ 1>(|01->+uo->)] A A
. 2 2 {p) W)}, described by the density operator p.
01) +110) = E[(\+> +190)(10 = 190) + (1#) = 1)1+ + \->)] =) = =) s _ %l"’m(“ SV R >)J
. Lemma : For any operator A with trace tr(A) = 3, (1| A |n), one has
= y) = E(\o Fy 0=+ = [+ +)+]1— _>) = ), @y, ®y; = 1 matched. = %(|+—0>+|—+0>—I++ D +-- 1>) =y, &y, ®y; = | matched. (A ) (@) =2, (nl Al (Bln) = 2, (Bln) (n| A ) = <1/1I(Z,, \ﬂ)(ﬂI)A ) = (Bl Alp) .
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Density operator (2/2)

Density operator p = 3% p; ;) (W1

= p = p' Hermitian ;
Y1), Wlohyy = 3, pil v ) P = 0 = p > 0 positive ;
trace tr(p) = X; p; r(W,) WD = X;py = 1.

On Hy, eigen decomposition p = i A, 120) (A, , with

n=1
eigenvalues {4,} a probability distribution,

eigenstates {|4,)} an orthonormal basis of Hy.

N
Purity tr(p®) = Z /l% = 1 for a pure state, and tr(p?) < 1 for a mixed state.

n=1

A valid density operator on H)y = any positive operator p with unit trace,

provides a general representation for the state of a quantum system in Hy.

Average of an observable

N
A quantum system in Hy has observable Q of diagonal form Q = Z Wy W) Wy

n=1

When the quantum system is in state p, measuring Q amounts to performing
a projective measurement on p in the orthonormal eigenbasis {|w; ), . . . lwy)} of Hy,

with the N orthogonal projectors |w,) {w,|, forn = 1 to N.

The outcome yields the eigenvalue w, € IR with probability
Priw,} = (wl plw,) = tr(p |wy) {wal).

Over repeated measurements of Q on the system prepared in the same state p,
the average value of Q is

@= Z w, Prlw, ) = Z wntplon) i) = o 3 ko) o)

n=1

Density operator for the qubit
{o0 =L, 0, 0,0} a basis of Hs,
orthogonal for the Hilbert-Schmidt inner product tr(A'B).

Any p = %(Iz + 1Oy + 10y + rzcrz) = %(Iz + ?a’").
= tr(p) = 1.

p=pl=rc=r n=1,

T Tz =10 = ry s real.

1
Eigenvalues A, = 5(1 = [71) 2 0 = 17l < 1.

II7]l <1 for mixed states,
[I7]l = 1 for pure states.

7= [ry.ry,r-]" in Bloch ball of R*.

State evolution |y;) — U,y = p — UpU* . = tr(pQ).
Wi = Ul =p—Up 55/85 56/85 57/85
Observables on the qubit Generalized measurement A generalized measurement (POVM) for the qubit
Any operator on 7, has general form Q = aol, +d &, In a Hilbert space Hy with dimension N, the state of a quantum system )
with determinant det(Q2) = af — @2, two cigenvalues ap + V&>, is specified by a Hermitian positive unit-trace density operator p. POVM {E lex) (ek\}, fork=0,1,...K-1, andK >2,
1
and two projectors on the two eigenvectors |+d) (+d| = ,(12 +dd/ VéTZ)
2 o Projective measurement : 2k
. . N N Defined by a set of N orthogonal projectors |n) (n| = IT, with eg) = COS( )IO) + sm( )ll)
For an observable, Q Hermitian requires ap € R and @ = [a,, ay,a.]" € R’.
verifying ¥, [n) (n| = %, I, = Ly,
An important observable measurable on the qubitis Q = d ¢ with ||d|| =1, and Pr{jn)} = tr(pIL,). Moreover 3, Pr{ln)} = 1, Vp > 2 Il = Iy.
known as a spin measurement in the direction @ of R?, 0) o)
yielding as possible outcomes the two eigenvalues || || = =1, e Generalized measurement (POVM) : [0) 10)
1 1 . "
with probabilites Pr{1} = E(l 7 [z’) for a qubit in state p = E(I - 7(7:), Defined by a set of an arbitrary number of positive operators M,,,,
verifying ', M,, = Iy,
. s o) 1 1 g . e g - P = = =
(since Pr{1}=tr(p ) (xd])= S5 Updd) with (FF)@e) = ()L + (7 ae). and Pr{M,,} = tr(oM,,) . Moreover 3, Pr{M,,} = 1,¥p & 3, M,, = Ly. = = =
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Information in a quantum system Entropy from a quantum system But how much of the input information can be retrieved out ?
How much information can be stored in a quantum system ? For a quantum system of dim. IV in Hy, with a state p (pure or mixed), \bNith a q“:‘m““: stystem of;i‘i{m Nin H\Ze;jh Cl‘f‘SSi?al Sltaée Xj 1JS coded
. . . . . . a generalized measurement by the POVM with K elements Ay, fork =1,2,... K. Y a quantum state |yy;) € Hy or p; € L(Hy), for j=1.2,...J.
A classical source of information : a random variable X, with J possible states x;, for ) )
Jj=1,2,...J, with probabilities Pr{X = x;} = p, . Measurement outcome Y with K possible values y, for k = 1,2, ... K, A generalized measurement by the POVM with K elements Ay, for k= 1,2,... K.
J of probabilities Pr{¥ =y} = tr(pAy) . Measurement outcome Y with K possible values yy, fork = 1,2,...K,
Information content by Shannon entropy : H(X) = — Z pilog(p;) . of conditional probabilities Pr{Y = yk| X = x;} = tr(p;A)
=1 Shannon output entropy H(Y) = Pr{Y = yi} log(Pr{Y = yi}
) . . ) Z ( ) and total probablhtles Pr{Y =y} = Z Pr{Y = yilX = x;}p; = tr(pAy) ,
With a quantum system of dimension N in Hy, each classical state x; is coded 1( =
by a quantum state ;) € Hy or p; € L(Hy),for j=1,2,...J. Z tr(pAy) log tr(pAk)) with p = ijpj the average state.
k=1 =
Since there is a continuous infinity of quantum states in Hy, =
an infinite quantity of information can be stored in a quantum system of dim. N For any given state p (pure or mixed), K-element POVMs can always be found The input-output mutual information /(X; Y) = H(Y) — H(Y|X) < X(p) < H(X) ,
(an infinite number J), as soon as N = 2 with a qubit. achieving the limit H(Y) ~ log(K) at large K. J
with the Holevo information X(p) = S(p) — iS(p;) < lo N
In this respect, with H(Y) — co when K — oo, e 2 ;p, ©: e)
But how much information can be retrieved out ? an infinite quantity of information can be drawn from a quantum system of dim. N, _
as soon as N = 2 with a qubit. and von Neumann entropy S (p) tr[p log(p)] .
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The von Neumann entropy
For a quantum system of dimension N with state p on Hy :

S(p) = ~ufplog(p)]

N
p unit-trace Hermitian has diagonal form p = Z A XA,

n=1

N
whence S(p) = - Z/ln log(4,) € [0,log(N)] .

n=1

o S(p) = 0 for a pure state p = Y)Y ,

e S(p) = log(N) at equiprobability when A, = 1/N and p = Iy/N .
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Quantum noise (1/2)

A quantum system of Hy in state p interacting with its environment represents an open
quantum system. The state p usually undergoes a nonunitary evolution.

With pe,, the state of the environment at the onset of the interaction, the joint state
P ® Peny can be considered as that of a closed system, undergoing a unitary evolution
by U as p ® peny — U(p ®peuv)U+~

At the end of the interaction, the state of the quantum system of interest is obtained by
U(p @ pen)U' | M

Very often, the environment incorporates a huge number of degrees of freedom, and is

the partial trace over the environment : p — N(p) = treny

largely uncontrolled ; it can be understood as quantum noise inducing decoherence.

A very nice feature is that, independently of the complexity of the environment, Eq. (1)
can always be put in the form p — N(p) = X, A[p/\; operator-sum or Kraus
representation, with the Kraus operators A, which need not be more than N?, satisfying
SeAAL =1y,

N

v
[
[

Quantum noise (2/2)

A general transformation of a quantum state p can be expressed by the
quantum operation p — N(p) = ¥, AppAl , with 3, A;A( =1y,
representing a linear completely positive trace-preserving map,
mapping a density operator on Hy into a density operator on FHy.

1
For an arbitrary qubit state defined by p = E(Ig +7 (?')
with 7] < 1,
this is equivalent to the affine map 7 — A7+ ¢,

with 4 a 33 real matrix
and @ a real vector in IR?,
mapping the Bloch ball onto itself.
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Quantum noise on the qubit (1/4)

Quantum noise on a qubit in state p can be represented by random applications of some
of the 4 Pauli operators {I,, o, 07y, 0.} on the qubit, e.g.

Bit-flip noise : flips the qubit state with probability p by applying o, or leaves the
qubit unchanged with probability 1 — p :

1 0 0
F—AF=|0 1-2p 0 7.

0 0 1-2p

p— N(p) = (1 - plp + powpos,

Phase-flip noise : flips the qubit phase with probability p by applying o~., or leaves the
qubit unchanged with probability 1 — p

p— Np)=(l-pp+porpo., F—dAi=| 0
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Quantum noise on the qubit (2/4)

Depolarizing noise : leaves the qubit unchanged with probability 1 — p, or apply any
of o, o, or o. with equal probability p/3 :

P +
p— Np)=(1-pp+ g((rxpfri + oo + opal),

14 0 0
317
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Quantum noise on the qubit (3/4)

Amplitude damping noise : relaxes the excited state |1) to the ground state [0) with
probability y (for instance by losing a photon) :

p— N(p) = AipA] + AypAl,

with A, = taking |1) to |0) with probability 7y,

1

109 €01+ YT =y 1)1l
i

reduces the probability amplitude of resting in state |1).

and A; = which leaves |0) unchanged and

= F—o AP+ = 0
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Quantum noise on the qubit (4/4)
Generalized amplitude damping noise : interaction of the qubit with a thermal bath at

temperature 7 : . . . .
p— N(p) = AipA| + Aszé +AspA + AapA,

ith Ay = /p ! 0 Ay = +p 4 [0,1]
Wi 1= P B 2= VP 5 py €10, 1],
0 -y 0o 0
-y 0 0 0
A3 =+/1-p Ag=1-p
1 N2

0 0 -y @2p-1y

Damping [0,1]3 y = 1 — /71 — 1 as the interaction time ¢ — co with the bath of the qubit relaxing to
equilibrium pe, = p|0) (0] + (1 — p)[1) (1], with equilibrium probabilities p = exp[—Ey/(kzT)]/Z and

1 — p =exp[—E/(kgT)]/Z with Z = exp[—E/(ksT)] + exp[—E, /(kgT)] governed by the Boltzmann distribution
between the two energy levels Ey of [0) and E| > Ej of |1).

T=0=p=1=2pe=10)(0]. Too0o=p=1/2= ps— (00 +(1)(1N/2=T1,/2.
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More on quantum noise, noisy qubits :

00 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. &, AUGUST 2015

Optimization of Quantum States for Signaling
Across an Arbitrary Qubit Noise Channel
With Minimum-Error Detection

Frangois Chapeau-Blondeau

@ IEEE TRANSACTIONS ON

INFORMATION
THEORY

a inevitable errors and such a general situation s frequent since
qubit, the optimal detector minimizing the probability of error Is  quantum noise and decoherence are prone to break the orthog-
Applicd th the ltdation where dctection esto be BElONed (000 opgiity of two nitial ! quantum staes. A meaningful general
a nolsy qubit affected by an arbitrary quantum noise separately oo [ " AT TR 2 2

PHYSICAL REVIEW A 91. 052310 (2015)
Optimized probing states for qubit phase estimation with general quantum noise

Frangois Chapeau-Blondeau
Laboratoire Angevin de Recherche en Ingénierie des Systemes (LARIS), Université d’Angers,
62 avenue Notre Dame du Lac, 49000 Angers, France
(Received 27 March 2015; published 12 May 2015)

We exploit the theory of quantum estimation o investigate quantum state estimation in the presence of
s, THE GuanLin Faber information is used to assess the estimation performance. For the qubit in Bloch

are derived for the g score and then for the quantum Fisher information.
From this latter expression, it is proved that the Fisher information always increases with the purity of the
measured qubit state. An arbitrary quantum noise affecting the qubi is taken into account for its impact on
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Quantum state discrimination

A quantum system can be in one of two alternative states py or p;
with prior probabilities Py and Py = 1 — Py.

Question : What is the best measurement {My, M} to decide
with a maximal probability of success Pgyc ?

Answer : One has Py, = Py tr(poMy) + P; tr(o1M;) = Py + tr(TM;),
with the test operator T = P1p; — Popo.
Then Py, is maximized by M(]’Pl = Z [ ) Al

,>0
the projector on the eigensubspace of T with positive eigenvalues A,,.

The optimal measurement [MTP‘, Mg"t =Iy- M‘l’m}
N

1
achieves the maximum Pgi* = —(1 + Z I/Inl). (Helstrom 1976)
A=
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Discrimination from noisy qubits
Quantum noise on a qubit in state p can be represented by random applications
of (one of) the 4 Pauli operators {I, oy, 0, 0} on the qubit, e.g.

Bit-flip noise : p — N(p) = (1 — p)p + pa'xpa'i s

Depolarizing noise : p — N(p) = (1 = p)p + ‘g(crxpa']: + (Typoj, + a'zp(ri) .

With a noisy qubit, discrimination from N(pg) and N(p).

— Impact of the probability p of action of the quantum noise,
on the performance Pga* of the optimal detector,
in relation to stochastic resonance and enhancement by noise.

(Chapeau-Blondeau, Physics Letters A 378 (2014) 2128-2136.)

Physics Letters A 378 (2014) 2128-2136

Contents lists available at ScienceDirect
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Quantum state discrimination and enhancement by noise ®C
rossMark

Frangois Chapeau-Blondeau

Laborctoire Angevin Ingénierie des ) rAngers, Dame du Lac, France

ARTICLE INFO ABSTRACT

‘Anicle history: Discrimination berween two quantum states is addressed as a quantum detection process where a
Received 12 February 2014 measurement with two outcomes is performed and a conclusive binary decision results about the
Received in revised form 15 May 2014 state. The performance is assessed by the overall probability of decision error. Based on the theory of
i quantum detection, the optimal measurement and its performance are exhibited in general conditions.
wailable online 27 May 2014 . ” . S o
pompres e e Lot F An application is realized on the qubit, for which generic models of quantum noise can be investigated
for their impact on state discriminarion from a noisy qubit. The quantum noise acts through random
Xeywords application of Pauli operators on the qubit prior to its measurement. For discrimination from a noisy
Quantum state discrimination qubi, various situations are exhibited where reinforcement of the action of the quantum noise can
Quantum noise be associated with enhanced performance. Such implications of the quantum noise are analyzed and
Quantum detection interpreted in relation to stochastic resonance and enhancement by noise in information processing.

signal detection © 2014 Elsevier BV. All rights reserved.
Enhancement by noise
Stochastic resonance

Discrimination among M > 2 quantum states

A quantum system can be in one of M alternative states p,,, form = 1 to M,
with prior probabilities P,, with Z%:I P, =1

Problem : What is the best measurement {M,,} with M outcomes to decide
with a maximal probability of success Py, ?

M
= Maximize Py, = Z P, tr(p,yM,,,) according to the M operators M,,,
m=1

subjectto 0 <M, <Iy and Z;t’:] M,, = Iy.

For M > 2 this problem is only partially solved, in some special cases.
(Barnett et al., Adv. Opt. Photon. 2009).
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Error-free discrimination between M = 2 states Error-free discrimination between M > 2 states Quantum feedback control
Two alternative states p, or p; of Hy, with priors Py and P, = 1 — Py, M alternative states p,, of Hy, with prior P, form=1,...M;
. 2 . .
are not full-rank in Hy, e.g. supp(po) € Hy < [supp(po)]* D {0}. each p,, must be with defective rank < N.
Ko
N
If Sy = su N [suy + # {0}, error-free discrimination of py is possible.
! PP(Po) N[ pp(pl)]i {a}’ N . . P . For all m = 1 to M, define S,, = supp(p») N {ﬁ[supp@[)]*}.
If Si = supp(p1) N [supp(po)]* # {0}, error-free discrimination of p; is possible.
L#m PHYSICAL REVIEW A 80, 013805 (2009)
Necessity to find a three-outcome measurement {My, My, My} s a
y {(Mo. My, Munc} For each nontrivial S,, # {0}, then p,, can go where none other p, can go. Quantum feedback by discrete quantum nondemolition measurements:
X ) X . feeriminati H : Towards on-demand generation of photon-number states
Find 0 < M, < Iy s.t. My = d@ll; “proportional” to IT; projector on [supp(p;)]*, = Error-free discrimination of p,, is possible,
. N . . . 1. Dotsenko,"** M. Mirrahimi.> M. Brune.' S. Haroche." J.-M. Raimond." and P. Rouchon*
and 0 <M, < Iy s.t. M; = @I, “proportional” to I projector on [supp(po)]*, by M,, such that 0 < M,, < Iy and M,, “proportional” to the projector on %,. \Laboratoire Kastler Brossel. Ecole Normale Supérieure, CNRS, Université P. et M. Curie,
. 24 Lh d, F-75231 Paris Cedex 5, Fi
and My + M, <[y = [Mo + M| + My = Iy with 0 <M, < I\v], T trize M. find cth 1 basis {| ,,,)}dim(’l(m) e College de me.’ "1 Ploce Maroalc Benhﬂe;’;, Pl TN -
maximizing P P tr(M p ) + P tr(M ) ) ( in P 1 P ) o parame Tr1ze m> 1INA an o} onorma as1s uj j=1 o ms INRIA Rocquencourt, Domaine de Vouceau, BP 105, 78153 Le Chesnay Cedex, France
suc = 170 0P0 1 1P1 =min Fype = 1 = Fsuc dim(%) > . . “Centre Automatique et Systémes, Mathématiques et Systemes, Mines ParisTech,
then M,,, = X500 @ |u!) (| = @™ 11,,,, with IT,, projector on %,. " :
j=1 j J g ms m m 60 Boule d Saint-Michel, 75272 Paris Cedex 6, France
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: : : : : . . - We propose a quantum feedback scheme for the preparation and protection of photon-number states of light
This problem is only partially solved, in some special cases, Find the M,, (the a ")y with 3, M,, < Iy maximizing Py = 3, Py tr(M,,04). trapped in a high-Q microwave cavity. A quantum nondemolition measurement of the cavity field provides
: on the ph by The feedback loop is closed by inj ¢
(Kleinmann ez al., J. Math. Phys. 2010). coherent pulse :ldjuxTvL| to increase the probability of the target photon number. The
. . . . . . of the closed-loop state stabilization is a ed by ntum Monte Carlo simulations. We show that. in
This problem is only partially solved, in some special cases, (Kleinmann, J. Math. Phys. 2010). realistic experimental conditions, the Fock states are efficiently produced and protected against decoherence.
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* Schrodinger equation (for closed systems) ¢ Quantum-circuit decomposition approach :
d i i rn Optimized probing states for qubit phase estimation with general quantum noise . . . . .
W) = ——H) = W(h)) = exp(_, f Hdt) (1)) = Uty ) (1)) P P g q P g q o Photons : with mirrors, beam splitters, phase shifters, polarizers.
dt n nJn ! . ; . . . . .
. , . . Frangois Chapeau-Blondeau - e Trapped ions : confined by electric fields, qubits stored in stable electronic states,
tary Ut 12) Laboratoire Angevin de Recherche en Ingénierie des Systémes (LARIS), Université d’Angers, manipulated with lasers. Interact via phonons
unita
B - v e 62 avenue Notre Dame du Lac, 49000 Angers, France P : p :
Hermitian operator Hamiltonian H = Ho + H, (control part Hy). (Received 27 March 2015; published 12 May 2015) o Light & atoms in cavity : Cavity quantum electrodynamics (Jaynes-Cummings
d i We exploit the theory of quantum estimation to investigate g state estimation in the presence of model).
;p = [H,p] (Liouville — von Neumann equa.) = p(t2) = U(t1,2) p(t1) U' (1, 12). noise. The quantum Fisher information is used to assess the estimation performance. For the qubit in Bloch . .
4 representation, general expressions are derived for the quantum score and then for the quantum Fisher information. 2012 Nobel Prize of D. Wineland (USA) and S. Haroche (France)~
. . - From this latter expression. it is proved that the Fisher information always increases with the purity of the i . . . .
e Lindblad equation (for open systems) S R e o b e iaE R Ak CGTL s T 1k M Dpiibbichs © Nuclear spin : manipulated with radiofrequency electromagnetic waves.
d i . . ) . ) . ] the Fisher information. The task is then specified to estimating the phase of a qubit in a rotation around an e Superconducting Josephson junctions : in electric circuits and control by electric
—p=——[H,p]+ Z(ZL,pLj - (L].L,-,p)), Lindblad op. L; for interaction with environment. arbitrary axis, equivalent to estimating the phase of an arbitrary single-qubit quantum gate. The analysis enables sionals
dt h 7 X X determination of the optimal probing states best resistant to the noise, and proves that they always are pure g :
states but need to be specifically matched to the noise. This optimization is worked out for several noise models (Quantronics Group CEA Saclay France )
. N importa ¢ qubit. An adaptive scheme and a Bayesian approach are pres ' c ’ ’ '
Measurement : Atbitrary operators (Ey} such that 3, EfEm = Ly, nnpo.ll ant to the qubit. An adaptive scheme and a Bayesian approach are presented to handle phase-dependent ) A ) ) )
. X ! solutions. e Electron spins : in quantum dots or single-electron transistor, and control by electric
P =tr(EpE,,) = tr(pE, E) = tr(pM, ith M,, = E,E iti i
rlm) = tr(EnpEy) = tr(pEpEn) = tr(pM) with My, = B,y positive, DOE: 10.1103/PhysRevA 91052310 PACS number(s): 03.67.—,42.50.Le, 05.40.—a signals.
Post-measurement state py, = EnpE, M. Veldhorst ef al.; “A two-qubit logic gate in silicon”; Nature 526 (2015) 410-414.
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4 Quantum annealing, adiabatic quantum computation :

For finding the global minimum of a given objective function, coded as the ground
state of an objective Hamiltonian.

Computation decomposed into a slow continuous transformation of an initial
Hamiltonian into a final Hamiltonian, whose ground states contain the solution.

Starts from a superposition of all candidate states, as stationary states of a simple
controllable initial Hamiltonian.

Probability amplitudes of all candidate states are evolved in parallel, with the

time-dependent Schrodinger equation from the Hamiltonian progressively deformed

toward the (complicated) objective Hamiltonian to solve.

Quantum tunneling out of local maxima helps the system converge to the ground
state solution.

A class of universal Hamiltonians is the lattice of qubits (with Pauli operators X, Z) :

H= Z hiZ; + ngxk + Z;:‘ Ji(ZZi + X;Xi) + Zk: KiX,Z .
J J Jo Jo

J. D. Biamonte, P. J. Love; “Realizable Hamiltonians for universal adiabatic quantum
computers”; Physical Review A 78 (2008) 012352,1-7.

A commercial quantum computer : Canadian D-Wave :

- it chavesys, aucs-senvices htm) | 4

Quantum computing

has arrived.

Since 2011 : a 128-qubit processor, with superconducting circuit implementation.

Based on quantum annealing, to solve optimization problems.

May 2013 : D-Wave 2, with 512 qubits. $15-million joint purchase by NASA & Google.
Aug. 2015 : D-Wave 2X, with 1000+ qubits.

M. W. Johnson, ef al.; “Quantum annealing with manufactured spins”; Nature 473 (2011) 194-198.

T. Lanting, et al.; “Entanglement in a quantum annealing processor”; Phys. Rev. X4 (2014) 021041.
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Merci de votre attention.

Si vous avez compris ...
c’est que je me suis mal exprimé !

“Nobody really understands quantum mechanics.”
R. P. Feynman




