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Une définition (large)

Exploiter les propriétés et phénomènes quantiques

pour le traitement de l’information et le calcul.

Motivations pour le quantique

pour le traitement de l’information :

1) Quand on utilise des systèmes élémentaires (photons, électrons, atomes,

nanodevices, . . . ).

2) Pour bénéficier d’effets purement quantiques (parallèlisme, intrication, . . . ).

3) Domaine de recherche récent, riche et largement ouvert.
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Some recent textbooks

M. Nielsen & I. Chuang E. Desurvire M. Wilde

2000, 676 pages 2009, 691 pages 2013, 655 pages

arXiv:1106.1445v5 [quant-ph] M. Wilde, “From classical to quantum Shannon theory”, 670 pages.
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Quantum system
Represented by a state vector |ψ〉
in a complex Hilbert spaceH ,

with unit norm 〈ψ|ψ〉 = ‖ψ‖2 = 1.

In dimension 2 : the qubit (photon, electron, atom, . . . )

State |ψ〉 = α |0〉 + β |1〉
in some orthonormal basis {|0〉 , |1〉} ofH2,

with complex α, β ∈  such that |α|2 + |β|2 = 〈ψ|ψ〉 = ‖ψ‖2 = 1.

|ψ〉 =
[

α

β

]

, |ψ〉† = 〈ψ| = [α∗, β∗] =⇒ 〈ψ|ψ〉 = ‖ψ‖2 = |α|2 + |β|2 scalar.

|ψ〉 〈ψ| =
[

α

β

]

[α∗, β∗] =

[

αα∗ αβ∗

α∗β ββ∗

]

= Πψ orthogonal projector on |ψ〉.
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Measurement of the qubit

When a qubit in state |ψ〉 = α |0〉 + β |1〉
is measured in the orthonormal basis {|0〉 , |1〉},

=⇒ only 2 possible outcomes (Born rule) :

state |0〉 with probability |α|2 = | 〈0|ψ〉 |2 = 〈0|ψ〉〈ψ|0〉 = 〈0|Πψ|0〉, or
state |1〉 with probability |β|2 = | 〈1|ψ〉 |2 = 〈1|ψ〉〈ψ|1〉 = 〈1|Πψ|1〉.

Measurement :

• a probabilistic process,
• as a projection of the state |ψ〉 in an orthonormal basis,
• with statistics evaluable over repeated experiments with same preparation |ψ〉.
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Hadamard basis

Another orthonormal basis ofH2

{

|+〉 =
1√
2

(

|0〉 + |1〉
)

; |−〉 =
1√
2

(

|0〉 − |1〉
) }

.

⇐⇒ Computational orthonormal basis

{

|0〉 =
1√
2

(

|+〉 + |−〉
)

; |1〉 =
1√
2

(

|+〉 − |−〉
) }

.

|0〉

|1〉

|+〉

|−〉

π/4
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Experiments

Stern-Gerlach apparatus for particles with two states of spin (electron, atom).

Two states of polarization of a photon :

(Nicol prism, Glan-Thompson,

polarizing beam splitter, . . . )

8/85

Bloch sphere representation of the qubit

Qubit in state

|ψ〉 = α |0〉 + β |1〉 with |α|2 + |β|2 = 1.

⇐⇒ |ψ〉 = cos(θ/2) |0〉 + eiϕ sin(θ/2) |1〉

with θ ∈ [0, π] ,
ϕ ∈ [0, 2π[ .

As a quantum object,

the qubit has infinitely many accessible values

in its two continuous degrees of freedom (θ, ϕ),

yet when it is measured it can only be found in one of two states

(just like a classical bit).
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In dimension N (finite) (extensible to infinite dimension)

State |ψ〉 =
N∑

n=1

αn |n〉 , in some orthonormal basis
{

|1〉 , |2〉 , . . . |N〉
}

ofHN ,

with αn ∈  , and

N∑

n=1

|αn|2 = 〈ψ|ψ〉 = 1.

Proba. Pr{|n〉} = |αn|2 in a projective measurement of |ψ〉 in basis
{

|n〉
}

.

Inner product 〈k|ψ〉 =
N∑

n=1

αn

δkn
︷︸︸︷

〈k|n〉 = αk coordinate.

S =

N∑

n=1

|n〉 〈n| = IN identity ofHN (closure or completeness relation),

since, ∀ |ψ〉 : S |ψ〉 =
N∑

n=1

|n〉
αn

︷︸︸︷

〈n|ψ〉 =
N∑

n=1

αn |n〉 = |ψ〉 =⇒ S = IN .
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Multiple qubits

A system (a word) of N qubits has a state inH⊗N
2

,

a tensor-product vector space with dimension 2N ,

and orthonormal basis {|x1x2 · · · xN〉}
~x ∈ {0, 1}N

.

Example N = 2 :

Generally |ψ〉 = α00 |00〉 + α01 |01〉 + α10 |10〉 + α11 |11〉 (2N coord.).

Or, as a special separable state (2N coord.)

|φ〉 =
(

α1 |0〉 + β1 |1〉
)

⊗
(

α2 |0〉 + β2 |1〉
)

= α1α2 |00〉 + α1β2 |01〉 + β1α2 |10〉 + β1β2 |11〉 .

A multipartite state which is not separable is entangled.
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Entangled states

• Example of a separable state of two qubits AB :

|AB〉 =
1
√
2

(

|0〉 + |1〉
)

⊗
1
√
2

(

|0〉 + |1〉
)

=
1

2

(

|00〉 + |01〉 + |10〉 + |11〉
)

.

When measured in the basis {|0〉 , |1〉}, each qubit A and B can be found in state |0〉 or |1〉
independently with probability 1/2.

Pr{A in |0〉} = Pr{|AB〉 = |00〉} + Pr{|AB〉 = |01〉} = 1/4 + 1/4 = 1/2.

• Example of an entangled state of two qubits AB :

|AB〉 =
1
√
2

(

|00〉 + |11〉
)

. Pr{A in |0〉} = Pr{|AB〉 = |00〉} = 1/2.

When measured in the basis {|0〉 , |1〉}, each qubit A and B can be found in state |0〉 or |1〉
with probability 1/2 (randomly, no predetermination before measurement).

But if A is found in |0〉 necessarily B is found in |0〉,
and if A is found in |1〉 necessarily B is found in |1〉,
no matter how distant the two qubits are before measurement.
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Bell basis

A pair of qubits inH⊗2
2

is a quantum system with dimension 22 = 4,

with original (computational) orthonormal basis
{

|00〉 , |01〉 , |10〉 , |11〉
}

.

Another useful orthonormal basis ofH⊗2
2

is the Bell basis
{

|β00〉 , |β01〉 , |β10〉 , |β11〉
}

,

with |β00〉 =
1
√
2

(

|00〉 + |11〉
)

|β01〉 =
1
√
2

(

|01〉 + |10〉
)

|β10〉 =
1
√
2

(

|00〉 − |11〉
)

|β11〉 =
1
√
2

(

|01〉 − |10〉
)

.
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Observables
For a quantum system inHN with dimension N,

a projective measurement is defined by an orthonormal basis {|1〉 , . . . |N〉} ofHN ,

and the N orthogonal projectors |n〉 〈n|, for n = 1 to N.

Also, any Hermitian (i.e. Ω = Ω
†) operator Ω onHN ,

has its eigenstates forming an orthonormal basis {|ω1〉 , . . . |ωN〉} ofHN .

Therefore, any Hermitian operator Ω onHN defines a valid measurement,

and has a spectral decomposition Ω =

N∑

n=1

ωn |ωn〉 〈ωn| , with the real eigenvalues ωn.

Also, any physical quantity measurable on a quantum system is represented in quantum

theory by a Hermitian operator (an observable) Ω.

When system in state |ψ〉, measuring observable Ω is equivalent to performing a projec-

tive measurement in eigenbasis {|ωn〉}, with projectors |ωn〉 〈ωn| = Πn, and yields the

eigenvalue ωn with probability Pr{ωn} = | 〈ωn|ψ〉 |2 = 〈ψ|ωn〉 〈ωn |ψ〉 = 〈ψ|Πn|ψ〉.

The average is 〈Ω〉 = ∑

n ωn Pr{ωn} = 〈ψ|Ω|ψ〉 .
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Computation on a qubit

Through a unitary operator U onH2 (a 2 × 2 matrix) : (i.e. U−1
= U† )

normalized vector |ψ〉 ∈ H2 −→ U |ψ〉 normalized vector ∈ H2 .

≡ quantum gate
input

|ψ〉 U

output

U|ψ〉

Hadamard gate H =

1
√
2

[

1 1

1 −1

]

. Identity gate I2 =

[

1 0

0 1

]

.

H2
= I2 ⇐⇒ H−1

= H = H† Hermitian unitary.

H |0〉 = |+〉 and H |1〉 = |−〉
=⇒ in a compact notation H |x〉 =

1√
2

(

|0〉 + (−1)x |1〉
)

, ∀ x ∈ {0, 1}.
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Pauli gates

X = σx =

[

0 1

1 0

]

, Y = σy =

[

0 −i
i 0

]

, Z = σz =

[

1 0

0 −1

]

.

X2
= Y2

= Z2 = I2 . Hermitian unitary. XY = −YX = iZ, ZX = iY, etc.

{I2,X,Y,Z} a basis for operators onH2.

Hadamard gate H =
1√
2

(

X + Z
)

.

X = σx the inversion or Not quantum gate. X |0〉 = |1〉, X |1〉 = |0〉.

W =

√
X =

√
σx =

1

2

[

1 + i 1 − i
1 − i 1 + i

]

=

1
√
2

[

eiπ/4 e−iπ/4

e−iπ/4 eiπ/4

]

=⇒W2
= X ,

is the square-root of Not, a typically quantum gate (no classical analog).
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In general, the gates U and eiφU give the same measurement statistics at the

output, and are thus physically equivalent, in this respect.

Any single-qubit gate can always be expressed as eiφUξ with

Uξ = exp

(

−i
ξ

2
~n ~σ

)

= cos

(
ξ

2

)

I2 − i sin
(
ξ

2

)

~n ~σ ,

where ~n = [nx, ny, nz]
⊤ is a real unit vector of  3,

and a formal “vector” of 2 × 2 matrices ~σ = [σx, σy, σz],

implementing in the Bloch sphere representation

a rotation of the qubit state of an angle ξ around the axis ~n in 3.

For example : W =
√
σx = e

iπ/4
[

cos(π/4) I2 − i sin(π/4)σx
]

.

17/85

Computation on a pair of qubits

Through a unitary operator U onH⊗2
2

(a 4 × 4 matrix) :

normalized vector |ψ〉 ∈ H⊗2
2
−→ U |ψ〉 normalized vector ∈ H⊗2

2
.

≡ quantum gate

(always reversible)

input

|ψ〉 U

output

U|ψ〉

Completely defined for instance by the transformation of the four state vectors

of the computational basis
{

|00〉 , |01〉 , |10〉 , |11〉
}

.
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• Example : Controlled-Not gate

Via the XOR binary function : a ⊕ b = a when b = 0, or = a when b = 1 ;

invertible a ⊕ x = b⇐⇒ x = a ⊕ b = b ⊕ a.

Used to construct a unitary invertible quantum C-Not gate :

(T target, C control)

|CT 〉

T

C

|C,C ⊕ T 〉

C ⊕ T

C

U =





1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0





|CT 〉 −→ |C,C ⊕ T 〉
|00〉 −→ |00〉
|01〉 −→ |01〉
|10〉 −→ |11〉
|11〉 −→ |10〉

(C-Not)2 = I2 ⇐⇒ (C-Not)−1 = C-Not = (C-Not)† Hermitian unitary.
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Computation on a system of N qubits

Through a unitary operator U onH⊗N
2

(a 2N × 2N matrix) :

normalized vector |ψ〉 ∈ H⊗N
2

−→ U |ψ〉 normalized vector ∈ H⊗N
2

.

≡ quantum gate : N input qubits
U−−−−−−−→ N output qubits.

Completely defined for instance by the transformation of the 2N state vectors of

the computational basis.

Any N-qubit quantum gate or circuit may always be composed

from two-qubit C-Not gates and single-qubit gates (universality).

This forms the grounding of quantum computation.
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No cloning theorem (1982)

¿ Possibility of a circuit (a unitary U) that would take any state |ψ〉, associated to an
auxiliary register |s〉, to transform the input |ψ〉 |s〉 into the cloned output |ψ〉 |ψ〉 ?

|ψ1〉 |s〉
U−−−−−→ U(|ψ1〉 |s〉) = |ψ1〉 |ψ1〉 (would be).

|ψ2〉 |s〉
U−−−−−→ U(|ψ2〉 |s〉) = |ψ2〉 |ψ2〉 (would be).

Linear superposition |ψ〉 = α1 |ψ1〉 + α2 |ψ2〉

|ψ〉 |s〉 U−−−−−→ U(|ψ〉 |s〉) = U(α1 |ψ1〉 |s〉 + α2 |ψ2〉 |s〉)
= α1 |ψ1〉 |ψ1〉 + α2 |ψ2〉 |ψ2〉 since U linear.

But |ψ〉 |ψ〉 = |ψ〉 ⊗ |ψ〉 =
(

α1 |ψ1〉 + α2 |ψ2〉
)(

α1 |ψ1〉 + α2 |ψ2〉
)

= α2
1
|ψ1〉 |ψ1〉 + α1α2 |ψ1〉 |ψ2〉 + α1α2 |ψ2〉 |ψ1〉 + α22 |ψ2〉 |ψ2〉

, U(|ψ〉 |s〉) in general. =⇒ No cloning U possible.
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Quantum parallelism

For a system of N qubits,

a quantum gate is any unitary operator U fromH⊗N
2

ontoH⊗N
2
.

The quantum gate U is completely defined

by its action on the 2N basis states ofH⊗N
2

:
{

|~x〉 , ~x ∈ {0, 1}N
}

,

just like a classical gate.

Yet, the quantum gate U can be operated

on any linear superposition of the basis states
{

|~x〉 , ~x ∈ {0, 1}N
}

.

This is quantum parallelism, with no classical analog.
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Parallel evaluation of a function (1/3)

A classical function f (·) from N bits to 1 bit

~x ∈ {0, 1}N −−−−−→ f (~x) ∈ {0, 1}.

Used to construct a unitary operator U f as an invertible f -controlled gate :

Uf

~x ~x

y y ⊕ f (~x)

with binary output y ⊕ f (~x) = f (~x) when y = 0, or = f (~x) when y = 1.
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Parallel evaluation of a function (2/3)

Uf

~x ~x

y y ⊕ f (~x)

For every basis state |~x〉, with ~x ∈ {0, 1}N :

|~x〉 |y = 0〉
U f

−−−−−−−−−−−−→ |~x〉 | f (~x)〉

|~x〉 |y = 1〉 −−−−−−−−−−−−→ |~x〉
∣
∣
∣
∣ f (~x)

〉

|~x〉 |+〉 −−−−−−−−−−−−→ |~x〉
1√
2

[

| f (~x)〉 +
∣
∣
∣
∣ f (~x)

〉]

= |~x〉 |+〉

|~x〉 |−〉 −−−−−−−−−−−−→ |~x〉
1√
2

[

| f (~x)〉 −
∣
∣
∣
∣ f (~x)

〉]

= |~x〉 |−〉 (−1) f (~x)
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Parallel evaluation of a function (3/3)

|+〉⊗N

|y〉

Uf

~x ~x

y y ⊕ f (~x)

|+〉⊗N =

(
1
√
2

)N ∑

~x∈{0,1}N
|~x 〉 superposition of all basis states,

|+〉⊗N ⊗ |0〉
U f

−−−−−−−→
(
1
√
2

)N∑

~x∈{0,1}N
|~x 〉 | f (~x) 〉 superposition of all values f (~x).

|+〉⊗N ⊗ |−〉
U f

−−−−−−−→
(
1
√
2

)N∑

~x∈{0,1}N
|~x 〉 |−〉 (−1) f (~x)

¿ How to extract, to measure, useful informations from superpositions ?
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Deutsch-Jozsa algorithm (1992) : Parallel test of a function (1/5)

A classical function f (·)
∣
∣
∣
∣
∣

{0, 1}N −→ {0, 1}
2N values −→ 2 values,

can be constant (all inputs into 0 or 1) or balanced (equal numbers of 0, 1 in output).

Classically : Between 2 and
2N

2
+ 1 evaluations of f (·) to decide.

Quantumly : One evaluation of f (·) is enough (on a suitable superposition).

Lemma 1 : H |x〉 =
1
√
2

(

|0〉 + (−1)x |1〉
)

=

1
√
2

∑

z∈{0,1}
(−1)xz |z〉 , ∀ x ∈ {0, 1}

=⇒ H⊗N |~x 〉 = H |x1〉 ⊗ · · · ⊗ H |xN〉 =




1
√
2





N
∑

~z∈{0,1}N
(−1)~x~z |~z 〉 , ∀ ~x ∈ {0, 1}N ,

with scalar product ~x~z = x1z1 + · · · + xNzN modulo 2. (quant. Hadamard transfo.)
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Deutsch-Jozsa algorithm (2/5)

|+〉⊗N

|−〉

H⊗N
Uf

~x ~x

y y ⊕ f (~x)

|ψ1〉 |ψ2〉 |ψ3〉

Input state |ψ1〉 = |+〉⊗N |−〉 =
(
1
√
2

)N ∑

~x∈{0,1}N
|~x 〉 |−〉

Internal state |ψ2〉 =
(
1
√
2

)N∑

~x∈{0,1}N
|~x 〉 |−〉 (−1) f (~x)

27/85

Deutsch-Jozsa algorithm (3/5)

Output state |ψ3〉 =
(

H⊗N ⊗ I2
)

|ψ2〉

=

(
1
√
2

)N∑

~x∈{0,1}N
H⊗N |~x 〉 |−〉 (−1) f (~x)

=

(
1

2

)N∑

~x∈{0,1}N

∑

~z∈{0,1}N
(−1)~x~z |~z 〉 |−〉 (−1) f (~x) by Lemma 1,

or |ψ3〉 = |ψ〉 |−〉 , with |ψ〉 =
(
1

2

)N∑

~z∈{0,1}N
u(~z ) |~z 〉

and the scalar weight u(~z ) =
∑

~x∈{0,1}N
(−1) f (~x)+~x~z
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Deutsch-Jozsa algorithm (4/5)

So |ψ〉 =
1

2N

∑

~z∈{0,1}N
u(~z ) |~z 〉 with u(~z ) =

∑

~x∈{0,1}N
(−1) f (~x)+~x~z .

For |~z 〉 = |~0 〉 = |0〉⊗N then u(~z = ~0 ) =
∑

~x∈{0,1}N
(−1) f (~x) .

•When f (·) constant : u(~z = ~0 ) = 2N(−1) f (~0) = ±2N =⇒ in |ψ〉 the amplitude of |~0 〉 is
±1, and since |ψ〉 is with unit norm =⇒ |ψ〉 = ± |~0 〉, and all other u(~z , ~0 )=0.
=⇒When |ψ〉 is measured, N states |0〉 are found.

•When f (·) balanced : u(~z = ~0 ) = 0 =⇒ |ψ〉 is not or does not contain state |~0 〉.
=⇒When |ψ〉 is measured, at least one state |1〉 is found.

−→ Illustrates quantum ressources of parallelism, coherent superposition, interference.

(When f (·) is neither constant nor balanced, |ψ〉 contains a little bit of |~0 〉.)

29/85

Deutsch-Jozsa algorithm (5/5)

[1] D. Deutsch; “Quantum theory, the Church-Turing principle and the universal quantum

computer”; Proceedings of the Royal Society of London A 400 (1985) 97–117.

The case N = 2.

[2] D. Deutsch, R. Jozsa; “Rapid solution of problems by quantum computation”; Proceedings of

the Royal Society of London A, 439 (1993) 553–558.

Extension to arbitrary N ≥ 2.

[3] E. Bernstein, U. Vazirani; “Quantum complexity theory”; SIAM Journal on Computing 26

(1997) 1411–1473.

Extension to f (~x) = ~a~x or f (~x) = ~a~x ⊕ ~b, to find binary N-word ~a −→ by producing output

|ψ〉 = |~a 〉.

[4] R. Cleve, A. Ekert, C. Macchiavello, M. Mosca; “Quantum algorithms revisited”; Proceedings

of the Royal Society of London A, 454 (1998) 339–354.
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Superdense coding (Bennett 1992) : exploiting entanglement

Alice and Bob share a qubit pair in entangled state |AB〉 =
1
√
2

(

|00〉 + |11〉
)

= |β00〉.

Alice chooses two classical bits, used to encode by applying to her qubit A

one of {I2,X, iY,Z}, delivering the qubit A′ sent to Bob.

Alice Bob
2 cbits I2

X

iY

Z

Decoder
2 cbits1 qbit A′

2 entangled qubits|AB〉

A
B

I2 ⊗ I2 |AB〉 = |β00〉
X ⊗ I2 |AB〉 = |β01〉
Z ⊗ I2 |AB〉 = |β10〉
iY ⊗ I2 |AB〉 = |β11〉

Bob receives this qubit A′. For decoding, Bob measures |A′B〉 in the Bell basis
{

|β00〉 , |β01〉 , |β10〉 , |β11〉
}

, from which he recovers the two classical bits.
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Teleportation (Bennett 1993) : of an unknown qubit state (1/3)

Qubit Q in unknown arbitrary state |ψQ〉 = α0 |0〉 + α1 |1〉.

Alice and Bob share a qubit pair in entangled state |AB〉 =
1
√
2

(

|00〉 + |11〉
)

= |β00〉.

Alice Bob|ψQ〉
Measurement
in Bell basis
{|βxy〉}

2 cbits

y x

Xy Zx

|ψQ〉
2 entangled qubits|AB〉

A

B

|ψ1〉 |ψ2〉

Alice measures the pair of qubits QA in the Bell basis (so |ψQ〉 is locally destroyed),
and the two resulting cbits x, y are sent to Bob.

Bob on his qubit B applies the gates Xy and Zx which reconstructs |ψQ〉.
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Teleportation (2/3)

|ψ1〉 = |ψQ〉 |β00〉 =
1√
2

[

α0 |0〉
(

|00〉 + |11〉
)

+ α1 |1〉
(

|00〉 + |11〉
)]

=
1√
2

[

α0 |000〉 + α0 |011〉 + α1 |100〉 + α1 |111〉
]

,

factorizable as |ψ1〉 =
1

2

[ 1√
2

(

|00〉 + |11〉
)(

α0 |0〉 + α1 |1〉
)

+

1√
2

(

|01〉 + |10〉
)(

α0 |1〉 + α1 |0〉
)

+

1√
2

(

|00〉 − |11〉
)(

α0 |0〉 − α1 |1〉
)

+

1√
2

(

|01〉 − |10〉
)(

α0 |1〉 − α1 |0〉
)]

,
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Teleportation (3/3)

|ψ1〉 =
1

2

[

|β00〉
(

α0 |0〉 + α1 |1〉
)

+ |β01〉
(

α0 |1〉 + α1 |0〉
)

+

|β10〉
(

α0 |0〉 − α1 |1〉
)

+ |β11〉
(

α0 |1〉 − α1 |0〉
)]

.

The first two qubits QA measured in Bell basis {|βxy〉} yield the two cbits xy,
used to transform the third qubit B by Xy then Zx, which reconstructs |ψQ〉.

When QA is measured in |β00〉 then B is in α0 |0〉 + α1 |1〉
I2−−−→ · I2−−−→ |ψQ〉

When QA is measured in |β01〉 then B is in α0 |1〉 + α1 |0〉
X−−−→ · I2−−−→ |ψQ〉

When QA is measured in |β10〉 then B is in α0 |0〉 − α1 |1〉
I2−−−→ · Z−−−→ |ψQ〉

When QA is measured in |β11〉 then B is in α0 |1〉 − α1 |0〉
X−−−→ · Z−−−→ |ψQ〉.
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Princeps references on superdense coding . . .

[1] C. H. Bennett, S. J. Wiesner; “Communication via one- and two-particle operators on

Einstein-Podolsky-Rosen states”; Physical Review Letters 69 (1992) 2881–2884.

[2] K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger; “Dense coding in experimental

quantum communication”; Physical Review Letters 76 (1996) 4656–4659.

. . . and teleportation

[3] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters; “Teleporting an

unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels”;

Physical Review Letters 70 (1993) 1895–1899.
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Grover quantum search algorithm (1/3) Phys. Rev. Let. 79 (1997) 325.

• Finds an item out of N in an unsorted database,

in O(
√
N) complexity instead of O(N) classically.

• An N-dimensional quantum system inHN with orthonormal basis {|1〉 , · · · , |N〉},
the basis states |n〉, n = 1, . . .N, representing the N items stored in the database.

• A set of N real values {ω1, · · · , ωN } representing the address of each item |n〉 in the
database.

• The unsorted database is in the state |ψ〉 =
1
√
N

N∑

n=1

|n〉.

• A query of the database, in order to obtain the address ωn of an item |n〉,

is performed by a measurement of the observable Ω =

N∑

n=1

ωn |n〉 〈n|.

• Any specific item |n0〉 is obtained as measurement outcome with its eigenvalue
(address) ωn0 , with the probability |〈n0|ψ〉 |2 = 1/N (since 〈n0|ψ〉 = 1/

√
N ).
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Grover quantum search algorithm (2/3)

• For this specific item |n0〉 that we want to retrieve (obtain its address ωn0 ),
it is possible to amplify this uniform probability |〈n0 |ψ〉 |2 = 1/N.

• Let |n⊥〉 =
1

√
N − 1

N∑

n,n0

|n〉 normalized state ⊥ |n0〉 =⇒ |ψ〉 in plane (|n0〉 , |n⊥〉).

• Define unitary operator U0 = IN − 2 |n0〉〈n0 | =⇒ U0 |n⊥〉 = |n⊥〉 and U0 |n0〉 = − |n0〉.
So in plane (|n0〉 , |n⊥〉), the operator U0 performs a reflection about |n⊥〉. (U0 oracle).

• Let |ψ⊥〉 normalized state ⊥ |ψ〉 in plane (|n0〉 , |n⊥〉).

• Define the unitary operator Uψ = 2 |ψ〉 〈ψ| − IN =⇒ Uψ |ψ〉 = |ψ〉 and Uψ |ψ⊥〉 = − |ψ⊥〉.
So in plane (|n0〉 , |n⊥〉), the operator Uψ performs a reflection about |ψ〉.

• In plane (|n0〉 , |n⊥〉), the composition of two reflections is a rotation UψU0 = G (Grover

amplification operator). It verifies G |n0〉 = UψU0 |n0〉 = −Uψ |n0〉 = |n0〉 −
2√
N
|ψ〉.

The rotation angle θ between |n0〉 and G |n0〉, via the scalar product of |n0〉 and G |n0〉, verifies

cos(θ) = 〈n0 |G|n0〉 = 1 −
2

N
≈ 1 −

θ2

2
=⇒ θ ≈

2√
N

at N ≫ 1.

G|ψ〉

|ψ〉

|n⊥〉

|n0〉

U0 |ψ〉

θ

θ/2

θ/2
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Grover quantum search algorithm (3/3)

• In plane (|n0〉 , |n⊥〉), the rotation G = UψU0 is with angle θ ≈
2√
N
.

• G |ψ〉 = UψU0 |ψ〉 = Uψ

(

|ψ〉 −
2√
N
|n0〉

)

=

(

1 −
4

N

)

|ψ〉 +
2√
N
|n0〉.

So after rotation by θ the rotated state G |ψ〉 is closer to |n0〉.

• G |ψ〉 remains in plane (|n0〉 , |n⊥〉), and any state in plane (|n0〉 , |n⊥〉) by G is rotated by θ.

So G2 |ψ〉 rotates |ψ〉 by 2θ toward |n0〉, and Gk |ψ〉 rotates |ψ〉 by kθ toward |n0〉.

• The angle Θ of |ψ〉 and |n0〉 is such that cos(Θ) = 〈n0 |ψ〉 = 1/
√
N =⇒ Θ = acos

(

1/
√
N
)

.

• So K =
Θ

θ
≈
√
N

2
acos

(

1/
√
N
)

iterations of G rotate |ψ〉 onto |n0〉.

At most Θ =
π

2
(when N ≫ 1) =⇒ at most K ≈

π

4

√
N .

• So when the state GK |ψ〉 ≈ |n0〉 is measured, the probability is almost 1 to obtain |n0〉 and its
address ωn0 =⇒ The searched item is found in O(

√
N) operations instead of O(N) classically.

G|ψ〉

|ψ〉

|n⊥〉

|n0〉

U0 |ψ〉

θ

θ/2

θ/2
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Other quantum algorithms

• Shor factoring algorithm (1997) :

Factors any integer in polynomial complexity

(instead of exponential classically).

15 = 3 × 5, with spin-1/2 nuclei (Vandersypen et al., Nature 2001).

21 = 3 × 7, with photons (Martı́n-López et al., Nature Photonics 2012).

• http://math.nist.gov/quantum/zoo/

“A comprehensive catalog of quantum algorithms . . . ”
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Quantum cryptography

• The problem of cryptography

Message X, a string of bits.

Cryptographic key K, a completely random (i.i.d.) string of bits.

The cryptogram or encrypted message C(X,K) = X ⊕ K (encrypted string of bits).

This is Vernam cipher or one-time pad,

with provably perfect security, since mutual information I(C; X) = H(X) − H(X|C) = 0.

Problem : establishing a secret (private) key

between emitter (Alice) and receiver (Bob).

With quantum signals,

any measurement by an eavesdropper (Eve) perturbs the system,

and hence reveals the eavesdropping, and also identifies perfect security conditions.
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• BB84 protocol (Bennett & Brassard 1984)

q Alice has a string of 4N bits. She encodes with a qubit
in a basis state either from {|0〉 , |1〉} or {|+〉 , |−〉}
randomly chosen for each bit.

q Then Bob chooses to measure each received qubit either in
basis {|0〉 , |1〉} or {|+〉 , |−〉} so as to decode each transmitted bit.

q Once the whole string of 4N bits from Alice has been received
by Bob, Alice publicly discloses the sequence of her basis choices.

q Bob keeps only the positions where his choices of basis coincide with those of Alice
to obtain a secret key, of length approximately 2N.

q If Eve intercepts and measures Alice’s qubit and forward her measured state to Bob,
roughly half of the time Eve forwards an incorrect state, and from this Bob half of the
time decodes an incorrect bit value.

q From their 2N coinciding bits, Alice and Bob classically exchange N at random. In
case of eavesdropping, around N/4 of these N test bits will differ.
If all N test bits coincide, then the remaining N bits form the shared secret key.

|0〉

|1〉

|+〉

|−〉

π/4

40
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• B92 protocol with two nonorthogonal states (Bennett 1992)

q To encode the bit a Alice uses a qubit in state |0〉 if a = 0

and in state |+〉 =
(

|0〉 + |1〉
)

/
√

2 if a = 1.

q Bob, depending on a random bit a′ he generates,
measures each received qubit either in basis {|0〉 , |1〉} if a′ = 0
or in {|+〉 , |−〉} if a′ = 1. From his measurement, Bob obtains the result b = 0 or 1.

q Then Bob publishes his series of b, and agrees with Alice to keep only those pairs
{a, a′} for which b = 1,
this providing the final secret key a for Alice and 1 − a′ = a for Bob.
This is granted because a = a′ =⇒ b = 0 and hence b = 1 =⇒ a , a′ = 1 − a.

q A fraction of this secret key can be publicly exchanged between Alice and Bob
to verify they exactly coincide, since in case of eavesdropping by interception and
resend by Eve, mismatch ensues with probability 1/4.

N. Gisin, et al.; “Quantum cryptography”; Reviews of Modern Physics 74 (2002) 145–195.

|0〉

|+〉

π/4

41
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• Protocol by broadcast of an entangled qubit pair

qWith an entangled pair, Alice and Bob do not need a quantum channel between them
two, and can exchange only classical information to establish their private secret key.
Each one of Alice an Bob just needs a quantum channel from a common server
dispatching entangled qubit pairs prepared in one stereotyped quantum state.

q Alice and Bob share a sequence of entangled qubit pairs all prepared in the same

entangled (Bell) state |AB〉 =
(

|00〉 + |11〉
)

/
√

2 .

q Alice and Bob measure their respective qubit of the pair in the basis {|0〉 , |1〉}, and they
always obtain the same result, either 0 or 1 at random with equal probabilities 1/2.

q To prevent eavesdropping, Alice and Bob can switch independently at random to

measuring in the basis {|+〉 , |−〉}, where one also has |AB〉 =
(

|++〉 + |−−〉
)

/
√

2.

So when Alice and Bob measure in the same basis, they always obtain the same results,
either 0 or 1.

q Then Alice and Bob publicly disclose the sequence of their basis choices.
The positions where the choices coincide provide the shared secret key.

q A fraction of this secret key is extracted to check exact coincidence, since in case of
eavesdropping by interception and resend, mismatch ensues with probability 1/4.

42
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Quantum correlations (1/2)

Alice and Bob share a pair of qubits in the entangled (Bell) state |ψAB〉 =
|01〉 − |10〉

√
2

.

Alice or Bob on its qubit can measure observables of the form Ω(θ) = sin(θ)X+ cos(θ)Z ,

having eigenvalues ±1.

Alice measures Ω(α) to obtain A = ±1, and Bob measures Ω(β) to obtain B = ±1,

then we have the average 〈AB〉 = 〈ψAB |Ω(α) ⊗ Ω(β) |ψAB〉 = − cos(α − β).

For any four random binary variables A1, A2, B1, B2 with values ±1,

Γ = (A1 + A2)B1 − (A1 − A2)B2 = A1B1 + A2B1 + A2B2 − A1B2 = ±2 ,

because since A1, A2 = ±1, either (A1 + A2)B1 = 0 or (A1 − A2)B2 = 0,

and in each case the remaining term is ±2.

So for any probability distribution on (A1, A2, B1, B2), necessarily

〈Γ〉 = 〈A1B1 + A2B1 + A2B2 − A1B2〉 = 〈A1B1〉 + 〈A2B1〉 + 〈A2B2〉 − 〈A1B2〉
verifies −2 ≤ 〈Γ〉 ≤ 2 . Bell inequalities (1964).
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Quantum correlations (2/2)

A long series of experiments repeated on identical copies of |ψAB〉 :

EPR experiment (Einstein, Podolsky, Rosen, 1935).

Alice chooses to randomly switch between measuring A1 ≡ Ω(α1) or A2 ≡ Ω(α2),

and Bob chooses to randomly switch between measuring B1 ≡ Ω(β1) or B2 ≡ Ω(β2).

For 〈Γ〉 = 〈A1B1〉 + 〈A2B1〉 + 〈A2B2〉 − 〈A1B2〉 one obtains

〈Γ〉 = − cos(α1 − β1) − cos(α2 − β1) − cos(α2 − β2) + cos(α1 − β2).

The choice α1 = 0, α2 = π/2 and β1 = π/4, β2 = 3π/4 leads to

〈Γ〉 = − cos(π/4) − cos(π/4) − cos(π/4) + cos(3π/4) = −2
√

2 < −2.

Bell inequalities are violated by quantum measurements.

Experimentally verified (Aspect et al., Phys. Rev. Let. 1981, 1982).

Local realism and separability (classical) replaced by

a nonlocal nonseparable reality (quantum).
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EPR paradox (Einstein-Podolski-Rosen) :

A. Einstein, B. Podolsky, N. Rosen ; “Can quantum-mechanical description of physical reality

be considered complete ?”; Physical Review, 47 (1935) 777–780.

Bell inequalities :

J. S. Bell ; “On the Einstein–Podolsky–Rosen paradox”; Physics, 1 (1964) 195–200.

Aspect experiments :

A. Aspect, P. Grangier, G. Roger ; “Experimental test of realistic theories via Bell’s theorem”;

Physical Review Letters, 47 (1981) 460–463.
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GHZ states (1/5) (1989, Greenberger, Horne, Zeilinger)

3-qubit entangled states.

Three players, each receiving a binary input x j = 0/1, for j = 1, 2, 3,

with four possible input configurations x1x2x3 ∈ {000, 011, 101, 110}.

Each player j responds by a binary output y j(x j) = 0/1, function only of its own input x j,

for j = 1, 2, 3.

Game is won if the players collectively respond according to the input–output matches :

x1x2x3 = 000 −−−−−−−−−−−−−−−−−−→ y1y2y3 such that y1 ⊕ y2 ⊕ y3 = 0,

x1x2x3 ∈ {011, 101, 110} −−−−−−−−→ y1y2y3 such that y1 ⊕ y2 ⊕ y3 = 1.

To select their responses y j(x j), the players can agree on a collective strategy before,

but not after, they have received their inputs x j.
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GHZ states (2/5)

A strategy winning on all four input configurations

would consist in three binary functions y j(x j) meeting the four constraints :

y1(0) ⊕ y2(0) ⊕ y3(0) = 0

y1(0) ⊕ y2(1) ⊕ y3(1) = 1

y1(1) ⊕ y2(0) ⊕ y3(1) = 1

y1(1) ⊕ y2(1) ⊕ y3(0) = 1

0 ⊕ 0 ⊕ 0 = 1 , by summation of the four constraints,

=⇒ 0 = 1 , so the four constraints are incompatible.

So no (classical) strategy exists that would win on all four input configurations.

Any (classical) strategy is bound to fail on some input configuration(s).

We show a strategy using quantum resources winning on all four input configurations,

(by escaping local realism, y j(0) = 0/1 and y j(1) = 0/1 not existing simultaneously).
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GHZ states (3/5)

Before the game starts, each player receives one qubit from a qubit triplet prepared in the

entangled state (GHZ state)

|ψ〉 =
∣
∣
∣ψ123

〉

=

1

2

(

|000〉 − |011〉 − |101〉 − |110〉
)

.

And the players agree on the common (prior) strategy :

if x j = 0, player j obtains y j as the outcome of measuring its qubit in basis {|0〉 , |1〉},
if x j = 1, player j obtains y j as the outcome of measuring its qubit in basis {|+〉 , |−〉}.

We prove this is a winning strategy on all four input configurations :

1) When x1x2x3 = 000, the three players measure in {|0〉 , |1〉}
=⇒ y1 ⊕ y2 ⊕ y3 = 0 is matched.
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GHZ states (4/5)

2) When x1x2x3 = 011, only player 1 measures in {|0〉 , |1〉}.

|ψ〉 =
1

2

(

|000〉 − |011〉 − |101〉 − |110〉
)

=

1

2

[

|0〉
(

|00〉 − |11〉
)

− |1〉
(

|01〉 + |10〉
)
]

.

Since |0〉 =
1√
2

(

|+〉 + |−〉
)

, |1〉 =
1√
2

(

|+〉 − |−〉
)

=⇒

|00〉 − |11〉 =
1

2

[
(

|+〉 + |−〉
)(

|+〉 + |−〉
)

−
(

|+〉 − |−〉
)(

|+〉 − |−〉
)
]

=
1

2

[
(

|++〉 + |+−〉 + |−+〉 + |−−〉
)

−
(

|++〉 − |+−〉 − |−+〉 + |−−〉
)
]

= |+−〉 + |−+〉 ;

|01〉 + |10〉 =
1

2

[
(

|+〉 + |−〉
)(

|+〉 − |−〉
)

+

(

|+〉 − |−〉
)(

|+〉 + |−〉
)
]

= |++〉 − |−−〉 ;

=⇒ |ψ〉 =
1

2

(

|0 + −〉 + |0 − +〉 − |1 + +〉 + |1 − −〉
)

=⇒ y1 ⊕ y2 ⊕ y3 = 1 matched.
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GHZ states (5/5)

3) When x1x2x3 = 101, only player 2 measures in {|0〉 , |1〉}.

|ψ〉 =
1

2

(

|000〉 − |011〉 − |101〉 − |110〉
)

=

1

2

[

|·0·〉
(

|0 · 0〉 − |1 · 1〉
)

− |·1·〉
(

|0 · 1〉 + |1 · 0〉
)
]

=
1

2

[

|·0·〉
(

|+ · −〉 + |− · +〉
)

− |·1·〉
(

|+ · +〉 − |− · −〉
)
]

=
1

2

(

|+0−〉 + |−0+〉 − |+1+〉 + |−1−〉
)

=⇒ y1 ⊕ y2 ⊕ y3 = 1 matched.

4) When x1x2x3 = 110, only player 3 measures in {|0〉 , |1〉}.

|ψ〉 =
1

2

(

|000〉 − |011〉 − |101〉 − |110〉
)

=
1

2



|· · 0〉
(

|00·〉 − |11·〉
)

− |· · 1〉
(

|01·〉 + |10·〉
)




=
1

2



|· · 0〉
(

|+ − ·〉 + |− + ·〉
)

− |· · 1〉
(

|+ + ·〉 − |− − ·〉
)




=
1

2

(

|+ − 0〉 + |− + 0〉 − |+ + 1〉 + |− − 1〉
)

=⇒ y1 ⊕ y2 ⊕ y3 = 1 matched.
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Density operator (1/2)

Quantum system in (pure) state |ψ j〉, measured in an orthonormal basis {|n〉} :

=⇒ probability Pr{|n〉 |ψ j〉} = | 〈n|ψ j〉 |2 = 〈n|ψ j〉 〈ψ j|n〉 .

Several possible states |ψ j〉 with probabilities p j (with
∑

j p j = 1) :

=⇒ Pr{|n〉} = ∑

j p j Pr{|n〉 |ψ j〉} = 〈n|
(∑

j p j |ψ j〉 〈ψ j|
)

|n〉 = 〈n| ρ |n〉 ,

with density operator ρ =
∑

j p j |ψ j〉 〈ψ j| .

and Pr{|n〉} = 〈n| ρ |n〉 = tr(ρ |n〉 〈n|) = tr(ρΠn) .

The quantum system is in a mixed state, corresponding to the statistical ensemble

{p j, |ψ j〉}, described by the density operator ρ.

Lemma : For any operator A with trace tr(A) =
∑

n 〈n|A |n〉, one has

tr(A |ψ〉 〈φ|) =∑

n 〈n|A |ψ〉 〈φ|n〉 = ∑

n 〈φ|n〉 〈n|A |ψ〉 = 〈φ|
(∑

n |n〉 〈n|
)

A |ψ〉 = 〈φ|A |ψ〉 .
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Density operator (2/2)

Density operator ρ =
∑

j p j |ψ j〉 〈ψ j|

=⇒ ρ = ρ† Hermitian ;

∀ |ψ〉 , 〈ψ|ρ|ψ〉 = ∑

j p j| 〈ψ|ψ j〉 |2 ≥ 0 =⇒ ρ ≥ 0 positive ;

trace tr(ρ) =
∑

j p j tr(|ψ j〉 〈ψ j|) =
∑

j p j = 1.

On HN , eigen decomposition ρ =

N∑

n=1

λn |λn〉 〈λn| , with

eigenvalues {λn} a probability distribution,

eigenstates {|λn〉} an orthonormal basis of HN .

Purity tr(ρ2) =

N∑

n=1

λ2
n = 1 for a pure state, and tr(ρ2) < 1 for a mixed state.

A valid density operator on HN ≡ any positive operator ρ with unit trace,

provides a general representation for the state of a quantum system in HN .

State evolution |ψ j〉 → U |ψ j〉 =⇒ ρ→ UρU† .
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Average of an observable

A quantum system in HN has observable Ω of diagonal form Ω =

N∑

n=1

ωn |ωn〉 〈ωn|.

When the quantum system is in state ρ, measuring Ω amounts to performing

a projective measurement on ρ in the orthonormal eigenbasis {|ω1〉 , . . . |ωN〉} of HN ,

with the N orthogonal projectors |ωn〉 〈ωn|, for n = 1 to N.

The outcome yields the eigenvalue ωn ∈  with probability

Pr{ωn} = 〈ωn| ρ |ωn〉 = tr(ρ |ωn〉 〈ωn|).

Over repeated measurements of Ω on the system prepared in the same state ρ,

the average value of Ω is

〈Ω〉 =
N∑

n=1

ωn Pr{ωn} =
N∑

n=1

ωn tr(ρ |ωn〉 〈ωn|) = tr

(

ρ

N∑

n=1

ωn |ωn〉 〈ωn |
)

= tr(ρΩ).
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Density operator for the qubit

{σ0 = I2, σx, σy, σz} a basis of H2,

orthogonal for the Hilbert-Schmidt inner product tr(A†B).

Any ρ =
1

2

(

I2 + rxσx + ryσy + rzσz
)

=
1

2

(

I2 + ~r ~σ
)

.

=⇒ tr(ρ) = 1.

ρ = ρ† =⇒ rx = r
∗
x, ry = r

∗
y , rz = r

∗
z =⇒ rx, ry, rz real.

Eigenvalues λ± =
1

2

(

1 ± ‖~r ‖
)

≥ 0 =⇒ ‖~r ‖ ≤ 1.

‖~r ‖ < 1 for mixed states,

‖~r ‖ = 1 for pure states.

~r = [rx, ry, rz]
⊤ in Bloch ball of  3.
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Observables on the qubit

Any operator on H2 has general form Ω = a0I2 + ~a ~σ,

with determinant det(Ω) = a2
0
− ~a 2, two eigenvalues a0 ±

√
~a 2,

and two projectors on the two eigenvectors |±~a〉 〈±~a| =
1

2

(

I2 ± ~a ~σ/
√
~a 2

)

.

For an observable, Ω Hermitian requires a0 ∈  and ~a = [ax, ay, az]
⊤ ∈  3.

An important observable measurable on the qubit is Ω = ~a ~σ with ‖~a ‖ = 1,

known as a spin measurement in the direction ~a of 3,

yielding as possible outcomes the two eigenvalues ±‖~a ‖ = ±1,

with probabilites Pr{±1} =
1

2

(

1 ± ~r~a
)

for a qubit in state ρ =
1

2

(

I2 + ~r ~σ
)

,

(

since Pr{±1}= tr
(

ρ |±~a〉 〈±~a|
)

=
1

2
±

1

2
tr(ρ~a ~σ) with (~r ~σ)(~a ~σ) = (~r~a) I2 + i(~r × ~a)~σ

)

.
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Generalized measurement

In a Hilbert space HN with dimension N, the state of a quantum system

is specified by a Hermitian positive unit-trace density operator ρ.

• Projective measurement :

Defined by a set of N orthogonal projectors |n〉 〈n| = Πn ,

verifying
∑

n |n〉 〈n| =
∑

nΠn = IN ,

and Pr{|n〉} = tr(ρΠn) . Moreover
∑

n Pr{|n〉} = 1 ,∀ρ⇐⇒ ∑

nΠn = IN .

• Generalized measurement (POVM) :

Defined by a set of an arbitrary number of positive operators Mm,

verifying
∑

mMm = IN ,

and Pr{Mm} = tr(ρMm) . Moreover
∑

m Pr{Mm} = 1 ,∀ρ⇐⇒ ∑

mMm = IN .
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A generalized measurement (POVM) for the qubit

POVM

{ 2

K
|ek〉 〈ek |

}

, for k = 0, 1, . . .K − 1, and K > 2,

with |ek〉 = cos

(2πk

K

)

|0〉 + sin

(2πk

K

)

|1〉 .

|0〉 |0〉 |0〉

K = 3 K = 5 K = 7
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Information in a quantum system

How much information can be stored in a quantum system ?

A classical source of information : a random variable X, with J possible states x j, for
j = 1, 2, . . . J, with probabilities Pr{X = x j} = p j .

Information content by Shannon entropy : H(X) = −
J∑

j=1

p j log(p j) .

With a quantum system of dimension N in HN , each classical state x j is coded
by a quantum state |ψ j〉 ∈ HN or ρ j ∈ L(HN) , for j = 1, 2, . . . J.

Since there is a continuous infinity of quantum states inHN ,
an infinite quantity of information can be stored in a quantum system of dim. N
(an infinite number J), as soon as N = 2 with a qubit.

But how much information can be retrieved out ?
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Entropy from a quantum system

For a quantum system of dim. N in HN , with a state ρ (pure or mixed),

a generalized measurement by the POVM with K elements Λk, for k = 1, 2, . . .K.

Measurement outcome Y with K possible values yk, for k = 1, 2, . . .K,
of probabilities Pr{Y = yk} = tr(ρΛk) .

Shannon output entropy H(Y) = −
K∑

k=1

Pr{Y = yk} log
(

Pr{Y = yk}
)

.

= −
K∑

k=1

tr(ρΛk) log
(

tr(ρΛk)
)

.

For any given state ρ (pure or mixed), K-element POVMs can always be found
achieving the limit H(Y) ∼ log(K) at large K.

In this respect, with H(Y) −→ ∞ when K −→ ∞ ,
an infinite quantity of information can be drawn from a quantum system of dim. N,
as soon as N = 2 with a qubit.
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But how much of the input information can be retrieved out ?

With a quantum system of dim. N in HN , each classical state x j is coded

by a quantum state |ψ j〉 ∈ HN or ρ j ∈ L(HN) , for j = 1, 2, . . . J.

A generalized measurement by the POVM with K elements Λk, for k = 1, 2, . . .K.

Measurement outcome Y with K possible values yk, for k = 1, 2, . . .K,

of conditional probabilities Pr{Y = yk |X = x j} = tr(ρ jΛk) ,

and total probabilities Pr{Y = yk} =
J∑

j=1

Pr{Y = yk |X = x j}p j = tr(ρΛk) ,

with ρ =

J∑

j=1

p jρ j the average state.

The input–output mutual information I(X;Y) = H(Y) − H(Y |X) ≤ χ(ρ) ≤ H(X) ,

with the Holevo information χ(ρ) = S (ρ) −
J∑

j=1

p jS (ρ j) ≤ log(N) ,

and von Neumann entropy S (ρ) = − tr
[

ρ log(ρ)
]

.
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The von Neumann entropy

For a quantum system of dimension N with state ρ on HN :

S (ρ) = − tr
[

ρ log(ρ)
]

.

ρ unit-trace Hermitian has diagonal form ρ =

N∑

n=1

λn |λn〉〈λn| ,

whence S (ρ) = −
N∑

n=1

λn log(λn) ∈ [0, log(N)] .

• S (ρ) = 0 for a pure state ρ = |ψ〉〈ψ| ,

• S (ρ) = log(N) at equiprobability when λn = 1/N and ρ = IN/N .
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Quantum noise (1/2)

A quantum system of HN in state ρ interacting with its environment represents an open

quantum system. The state ρ usually undergoes a nonunitary evolution.

With ρenv the state of the environment at the onset of the interaction, the joint state

ρ ⊗ ρenv can be considered as that of a closed system, undergoing a unitary evolution

by U as ρ ⊗ ρenv −→ U(ρ ⊗ ρenv)U
†.

At the end of the interaction, the state of the quantum system of interest is obtained by

the partial trace over the environment : ρ −→ N(ρ) = trenv

[

U(ρ ⊗ ρenv)U
†
]

. (1)

Very often, the environment incorporates a huge number of degrees of freedom, and is

largely uncontrolled ; it can be understood as quantum noise inducing decoherence.

A very nice feature is that, independently of the complexity of the environment, Eq. (1)

can always be put in the form ρ −→ N(ρ) =
∑

ℓ ΛℓρΛ
†
ℓ

operator-sum or Kraus

representation, with the Kraus operators Λℓ, which need not be more than N2, satisfying
∑

ℓ Λ
†
ℓ
Λℓ = IN .
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Quantum noise (2/2)

A general transformation of a quantum state ρ can be expressed by the

quantum operation ρ −→ N(ρ) =
∑

ℓ ΛℓρΛ
†
ℓ

, with
∑

ℓ Λ
†
ℓ
Λℓ = IN ,

representing a linear completely positive trace-preserving map,

mapping a density operator on HN into a density operator on HN .

For an arbitrary qubit state defined by ρ =
1

2

(

I2 + ~r ~σ
)

with ‖~r ‖ ≤ 1,

this is equivalent to the affine map ~r → A~r + ~c ,

with A a 3×3 real matrix
and ~c a real vector in 3,

mapping the Bloch ball onto itself.
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Quantum noise on the qubit (1/4)

Quantum noise on a qubit in state ρ can be represented by random applications of some

of the 4 Pauli operators {I2, σx, σy, σz} on the qubit, e.g.

Bit-flip noise : flips the qubit state with probability p by applying σx, or leaves the

qubit unchanged with probability 1 − p :

ρ −→ N(ρ) = (1 − p)ρ + pσxρσ†x , ~r −→ A~r =





1 0 0

0 1 − 2p 0

0 0 1 − 2p





~r .

Phase-flip noise : flips the qubit phase with probability p by applying σz, or leaves the

qubit unchanged with probability 1 − p :

ρ −→ N(ρ) = (1 − p)ρ + pσzρσ†z , ~r −→ A~r =





1 − 2p 0 0

0 1 − 2p 0

0 0 1





~r .
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Quantum noise on the qubit (2/4)

Depolarizing noise : leaves the qubit unchanged with probability 1 − p, or apply any
of σx, σy or σz with equal probability p/3 :

ρ −→ N(ρ) = (1 − p)ρ +
p

3

(

σxρσ
†
x + σyρσ

†
y + σzρσ

†
z

)

,

~r −→ A~r =





1 −
4

3
p 0 0

0 1 −
4

3
p 0

0 0 1 −
4

3
p





~r .
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Quantum noise on the qubit (3/4)

Amplitude damping noise : relaxes the excited state |1〉 to the ground state |0〉 with
probability γ (for instance by losing a photon) :

ρ −→ N(ρ) = Λ1ρΛ
†
1
+ Λ2ρΛ

†
2
,

with Λ2 =





0
√
γ

0 0




=
√
γ |0〉 〈1| taking |1〉 to |0〉 with probability γ,

and Λ1 =





1 0

0
√

1 − γ




= |0〉 〈0| +

√

1 − γ |1〉 〈1| which leaves |0〉 unchanged and

reduces the probability amplitude of resting in state |1〉.

=⇒ ~r −→ A~r + ~c =





√

1 − γ 0 0

0
√

1 − γ 0

0 0 1 − γ





~r +





0

0

γ





.
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Quantum noise on the qubit (4/4)
Generalized amplitude damping noise : interaction of the qubit with a thermal bath at

temperature T :
ρ −→ N(ρ) = Λ1ρΛ

†
1
+ Λ2ρΛ

†
2
+ Λ3ρΛ

†
3
+ Λ4ρΛ

†
4
,

with Λ1 =
√
p





1 0

0
√

1 − γ




, Λ2 =

√
p





0
√
γ

0 0




, p, γ ∈ [0, 1] ,

Λ3 =
√

1 − p





√

1 − γ 0

0 1




, Λ4 =

√

1 − p





0 0
√
γ 0




,

=⇒ ~r −→ A~r + ~c =





√

1 − γ 0 0

0
√

1 − γ 0

0 0 1 − γ





~r +





0

0

(2p − 1)γ





.

Damping [0, 1] ∋ γ = 1 − e−t/T1 → 1 as the interaction time t → ∞ with the bath of the qubit relaxing to

equilibrium ρ∞ = p |0〉 〈0| + (1 − p) |1〉 〈1|, with equilibrium probabilities p = exp[−E0/(kBT )]/Z and
1 − p = exp[−E1/(kBT )]/Z with Z = exp[−E0/(kBT )] + exp[−E1/(kBT )] governed by the Boltzmann distribution
between the two energy levels E0 of |0〉 and E1 > E0 of |1〉.
T = 0⇒ p = 1⇒ ρ∞ = |0〉 〈0| . T → ∞ ⇒ p = 1/2⇒ ρ∞ → (|0〉 〈0| + (|1〉 〈1|)/2 = I2/2 .
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More on quantum noise, noisy qubits :
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Quantum state discrimination

A quantum system can be in one of two alternative states ρ0 or ρ1

with prior probabilities P0 and P1 = 1 − P0.

Question : What is the best measurement {M0,M1} to decide
with a maximal probability of success Psuc ?

Answer : One has Psuc = P0 tr(ρ0M0) + P1 tr(ρ1M1) = P0 + tr(TM1) ,

with the test operator T = P1ρ1 − P0ρ0.

Then Psuc is maximized by M
opt

1
=

∑

λn>0

|λn〉〈λn| ,

the projector on the eigensubspace of T with positive eigenvalues λn.

The optimal measurement
{

M
opt

1
, M

opt

0
= IN −M

opt

1

}

achieves the maximum Pmaxsuc =

1

2

(

1 +

N∑

n=1

|λn|
)

. (Helstrom 1976)
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Discrimination from noisy qubits

Quantum noise on a qubit in state ρ can be represented by random applications

of (one of) the 4 Pauli operators {I2, σx, σy, σz} on the qubit, e.g.

Bit-flip noise : ρ −→ N(ρ) = (1 − p)ρ + pσxρσ†x ,

Depolarizing noise : ρ −→ N(ρ) = (1 − p)ρ +
p

3

(

σxρσ
†
x + σyρσ

†
y + σzρσ

†
z

)

.

With a noisy qubit, discrimination from N(ρ0) and N(ρ1).

−→ Impact of the probability p of action of the quantum noise,

on the performance Pmaxsuc of the optimal detector,

in relation to stochastic resonance and enhancement by noise.

(Chapeau-Blondeau, Physics Letters A 378 (2014) 2128-2136.)
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Discrimination among M > 2 quantum states

A quantum system can be in one of M alternative states ρm, for m = 1 to M,

with prior probabilities Pm with
∑M
m=1 Pm = 1.

Problem : What is the best measurement {Mm} with M outcomes to decide

with a maximal probability of success Psuc ?

=⇒Maximize Psuc =

M∑

m=1

Pm tr(ρmMm) according to the M operators Mm,

subject to 0 ≤ Mm ≤ IN and
∑M
m=1Mm = IN .

For M > 2 this problem is only partially solved, in some special cases.

(Barnett et al., Adv. Opt. Photon. 2009).
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Error-free discrimination between M = 2 states

Two alternative states ρ0 or ρ1 ofHN , with priors P0 and P1 = 1 − P0,
are not full-rank inHN , e.g. supp(ρ0) ⊂ HN ⇐⇒ [supp(ρ0)]

⊥ ⊃ {~0}.

If S0 = supp(ρ0) ∩ [supp(ρ1)]
⊥
, {~0}, error-free discrimination of ρ0 is possible.

If S1 = supp(ρ1) ∩ [supp(ρ0)]
⊥
, {~0}, error-free discrimination of ρ1 is possible.

Necessity to find a three-outcome measurement {M0,M1,Munc} :

Find 0 ≤ M0 ≤ IN s.t. M0 = ~a0Π1 “proportional” to Π1 projector on [supp(ρ1)]
⊥,

and 0 ≤ M1 ≤ IN s.t. M1 = ~a1Π0 “proportional” to Π0 projector on [supp(ρ0)]
⊥,

and M0 +M1 ≤ IN ⇐⇒
[

M0 +M1 +Munc = IN with 0 ≤ Munc ≤ IN
]

,

maximizing Psuc = P0 tr(M0ρ0) + P1 tr(M1ρ1) (≡ min Punc = 1 − Psuc)

This problem is only partially solved, in some special cases,

(Kleinmann et al., J. Math. Phys. 2010).
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Error-free discrimination between M ≥ 2 states

M alternative states ρm ofHN , with prior Pm, for m = 1, . . .M ;

each ρm must be with defective rank < N.

For all m = 1 to M, define Sm = supp(ρm) ∩

Km
︷              ︸︸              ︷
{⋂

ℓ,m

[supp(ρℓ)]
⊥
}

.

For each nontrivial Sm , {~0}, then ρm can go where none other ρℓ can go.
=⇒ Error-free discrimination of ρm is possible,

by Mm such that 0 ≤ Mm ≤ IN and Mm “proportional” to the projector on Km.

To parametrize Mm, find an orthonormal basis {|umj 〉}
dim(Km)
j=1

of Km,
then Mm =

∑dim(Km)
j=1

amj |umj 〉 〈umj | = ~am Πm, with Πm projector on Km.

Find the Mm (the ~a
m) with

∑

mMm ≤ IN maximizing Psuc =
∑

m Pm tr(Mmρm).

This problem is only partially solved, in some special cases, (Kleinmann, J. Math. Phys. 2010).
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Quantum feedback control
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System dynamics :

• Schrödinger equation (for closed systems)
d

dt
|ψ〉 = −

i

~

H |ψ〉 =⇒ |ψ(t2)〉 = exp
(

−
i

~

∫ t2

t1

Hdt
)

︸                 ︷︷                 ︸

unitary U(t1 ,t2)

|ψ(t1)〉 = U(t1, t2) |ψ(t1)〉

Hermitian operator Hamiltonian H = H0 + Hu (control part Hu).

d

dt
ρ = −

i

~

[H, ρ] (Liouville – von Neumann equa.) =⇒ ρ(t2) = U(t1, t2) ρ(t1) U
†(t1, t2).

• Lindblad equation (for open systems)
d

dt
ρ = −

i

~

[H, ρ] +
∑

j

(

2L jρL
†
j
− {L†

j
L j, ρ}

)

, Lindblad op. L j for interaction with environment.

Measurement : Arbitrary operators {Em} such that
∑

m E
†
mEm = IN ,

Pr{m} = tr(EmρE
†
m) = tr(ρE†mEm) = tr(ρMm) with Mm = E

†
mEm positive,

Post-measurement state ρm =
EmρE

†
m

tr(EmρE
†
m)

.
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Technologies for quantum computer

q Quantum-circuit decomposition approach :

• Photons : with mirrors, beam splitters, phase shifters, polarizers.

• Trapped ions : confined by electric fields, qubits stored in stable electronic states,
manipulated with lasers. Interact via phonons.

• Light & atoms in cavity : Cavity quantum electrodynamics (Jaynes-Cummings
model).

2012 Nobel Prize of D. Wineland (USA) and S. Haroche (France).

• Nuclear spin : manipulated with radiofrequency electromagnetic waves.
• Superconducting Josephson junctions : in electric circuits and control by electric
signals.

(Quantronics Group, CEA Saclay, France.)

• Electron spins : in quantum dots or single-electron transistor, and control by electric
signals.

M. Veldhorst et al.; “A two-qubit logic gate in silicon”; Nature 526 (2015) 410–414.
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q Quantum annealing, adiabatic quantum computation :

For finding the global minimum of a given objective function, coded as the ground
state of an objective Hamiltonian.

Computation decomposed into a slow continuous transformation of an initial
Hamiltonian into a final Hamiltonian, whose ground states contain the solution.

Starts from a superposition of all candidate states, as stationary states of a simple
controllable initial Hamiltonian.

Probability amplitudes of all candidate states are evolved in parallel, with the
time-dependent Schrödinger equation from the Hamiltonian progressively deformed
toward the (complicated) objective Hamiltonian to solve.

Quantum tunneling out of local maxima helps the system converge to the ground
state solution.

A class of universal Hamiltonians is the lattice of qubits (with Pauli operators X, Z) :

H =

∑

j

h jZ j +
∑

k

gkXk +
∑

j,k

J jk(Z jZk + X jXk) +
∑

j,k

K jkX jZk .

J. D. Biamonte, P. J. Love; “Realizable Hamiltonians for universal adiabatic quantum

computers”; Physical Review A 78 (2008) 012352,1–7.
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A commercial quantum computer : Canadian D-Wave :

Since 2011 : a 128-qubit processor, with superconducting circuit implementation.

Based on quantum annealing, to solve optimization problems.

May 2013 : D-Wave 2, with 512 qubits. $15-million joint purchase by NASA & Google.

Aug. 2015 : D-Wave 2X, with 1000+ qubits.

M. W. Johnson, et al.; “Quantum annealing with manufactured spins”; Nature 473 (2011) 194–198.

T. Lanting, et al.; “Entanglement in a quantum annealing processor”; Phys. Rev. X 4 (2014) 021041.
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Merci de votre attention.

Si vous avez compris . . .

c’est que je me suis mal exprimé !

“Nobody really understands quantum mechanics.”

R. P. Feynman


