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“I believe that science is not simply a matter of exploring new horizons. One must also make the new

knowledge readily available, and we have in this work a beautiful example of such a pedagogical effort.”
Claude Cohen-Tannoudji, in foreword to the book “Introduction to Quantum Optics” arXiv:1106.1445v5 [quant-ph] M. Wilde, “From classical to quantum Shannon theory”, 670 pages.
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Quantum system Measurement of the qubit Hadamard basis
Represented by a state vector |y) When a qubit in state [y) = «/[0) + B|1) Another orthonormal basis of H, 1)
in a complex Hilbert space H, is measured in the orthonormal basis {|0), 1)}, 1 1 l+)

ith unit WP =1. {+:—0+1; —:—0—1}.
with unit norm (Y|y) = [yl = only 2 possible outcomes (Born rule) : ) \/E(l )+l >) = 2(| -l >)

. . . state |0) with probability |al?> = [ (Oly) [> = (Ol ){¥|0) = (O[I1,10), or /4

In dimension 2 : the qubit  (photon, electron, atom, ...) state |1) with probability |82 = [ (11¢) 2 = (L)1) = (1[T,1). |0)
State |y) = «|0) + B11)
in some orthonormal basis {|0), [1)} of H>, C ional orth 1 basi

. = Computational orthonormal basis -
with complex @, 8 € C such that |af* + |81 = () = [Wl* = 1. Measurement : usually : - .

o 1 1
, e a probabilistic process, { 10y = _(|+> + |_>) coD = _(|+> - |_>) } .
) = [l ] W' =@l =[BT = Wlp) = WI* = |af* + |8 scalar. e as a destructive projection of the state [i) in an orthonormal basis, 2 V2
B o with statistics evaluable over repeated experiments with same preparation |i).
al aa”  afff
) <yl = [ ][O/x,ﬁ*] = [ . _ | =11, orthogonal projector on |¢).
B ap gl
4/102 5/102 6/102

Experiments Coll. Magnet Bloch sphere representation of the qubit In dimension N (finite) (extensible to infinite dimension)

z ‘ @ E— Qubit in state
I ::,__,_ﬂ Sceven ) = @ [0) +B11) with af? + B = 1.

N
State |y = Z a, |n) , in some orthonormal basis {Il) 2y, ... IN)} of Hy,
n=1

v

N
with @, € C, and Z lal? = (i) = 1.

n=1

& ) = cos(8/2)|0) + € sin(0/2) |1)

ith 6 € [0, 7],
Stern-Gerlach apparatus for particles with two states of spin (electron, atom). W 10, ]

¢ €[0,2x][. Proba. Pr{|n)} = |a,* in a projective measurement of |y) in basis {In)}.
detector ’ Two states L in H, are antipodal on sphere. ¥ Skn
—_—
Inner product (kly) = Z a, {kln) = a; coordinate.
n=1
Two states of polarization of a photon : As a quantum object, N
(Nicol prism, Glan-Thompson, the qubit has infinitely many accessible values S = Z [n) (n| = Iy identity of Hy (closure or completeness relation),
polarizing beam splitter, . ..) in its two continuous degrees of freedom (6, ¢), n=1 a
i 2‘ yet when it is measured it can only be found in one of two states since, V|0 : Sly) = Z Iny ) = Z anlny = ) = S = Iy.
(just like a classical bit). =1 =1
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Multiple qubits
A system (a word) of N qubits has a state in wa s

a tensor-product vector space with dimension 2%,

and orthonormal basis {|x;x; - - - xy)} .
e lo, 1y

Example N =2 :
Generally [/) = agp [00) + @ [01) + @10 [10) + aq1 [11) (2N coord.).
Or, as a special separable state (2N coord.)

I = (@110) + B1 1)) @ (2 [0) + B2 1))
= 2102 100) + @18, [01) + B2 [10) + B 1) .

A multipartite state which is not separable is entangled.

An entangled state behaves as a nonlocal whole: what is done on one part may
influence the other part, no matter how distant they are.

Entangled states

o Example of a separable state of two qubits AB :

1 1
%(|o> +ID)e -
When measured in the basis {|0), |1)}, each qubit A and B can be found in state [0) or |1)
independently with probability 1/2.

Pr{A in |0)} = Pr{|AB) = [00)} + Pr{lAB) = [01)} = 1/4 + 1/4 = 1/2.

1
|AB) = (10 +11)) = E(\oo>+|01>+ [10) +111)).

o Example of an entangled state of two qubits AB :
1
V2

When measured in the basis {|0), |1)}, each qubit A and B can be found in state |0) or |1)

|AB) = (IOO) + \11)). Pr{A in |0)} = Pr{|AB) = |00)} = 1/2.

with probability 1/2 (randomly, no predetermination before measurement).
But if A is found in |0) necessarily B is found in |0),
and if A is found in |1) necessarily B is found in [1),

no matter how distant the two qubits are before measurement.

Bell basis
A pair of qubits in ‘7{?2 is a quantum system with dimension 22 = 4,

with original (computational) orthonormal basis {IOO) ,|01),]10),]1 1)}.

Another useful orthonormal basis of 7—(5’2 is the Bell basis
[|ﬁ00> 2 Bory s 1B10) » Wn)},
1

with 1Bro) = ~7=(100) + 1))
1

By = 3(|01>+ 110))
1

o) = @(|00>— 1)
1

By = @(|01>—|10>).
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Observables Heisenberg uncertainty relation (1/2) Heisenberg uncertainty relation (2/2)
For a quantum system in Hy with dimension N,
a projective measurement is defined by an orthonormal basis {|1), . ..|N)} of Hy, For two operators A and B : commutator [A,B] = AB-BA, For two observables A and B measured in state [if) :
and the N orthogonal projectors |n) (n|, forn =1 to N. anticommutator {A,B} = AB +BA, the average (scalar) : (A = (W|A) ,
1 1 . . R A
Also, any Hermitian (i.e. Q = Q) operator Q on Hy, s0 that AB = ~[A.B] + —{A.B] . the centered or dispersion operator : A = A - (A)I,
has its eigenstates forming an orthonormal basis {|w;), ... |wy)} of Hy. 2 2 — <K2> — (A2> _ (A)2 scalar variance
Therefore, any Hermitian operator Q on A(,H v defines a valid measurement, When A and B Hermitian : [A, B] is antiHermitian and {A, B} is Hermitian, o
and has a spectral decomposition Q = an lwy) {wyl,  with the real eigenvalues w,. and for any ) then (Y|[A,Blly) € iR and (Y|{A,B}ly) € IR ; then also [A,B] =[A,B].
n=1
1 1 o 1 2 ~\ = 1
Also, any physical quantity measurable on a quantum system is represented in quantum WIABlY) = — (WIIA, Blly) +— (WA, Blly) = |<l//|AB|'J’>| 2 *|<¢’|[A, B]|lﬁ>| ; Whence <A2> <BZ> > - |([A, B])|2 Heisenberg uncertainty relation ;
. I L 4 4
theory by a Hermitian operator (an observable) Q. imaginary (part) real (part)
When system in state i), measuring observable Q is equivalent to performing a projec- and for two vectors A ) and B i), the Cauchy-Schwarz inequality is or with the scalar dispersions AA = (<K2>)1/2 and AB = (<§2>)1/2’
tive measurement in eigenbasis {|w,)}, with projectors |w,) (w,| = I1,, and yields the |<W|AB|W>|2 < <W|A2|W> (l//|Bz|l//> 1
eigenvalue w, with probability Priw,} = [(w,l¥) > = (Wlw,) {w.lr) = WITL ). 1 s then AAAB > §|([A, B])| Heisenberg uncertainty relation.
5 2 2 —
The average is (Q) = 3, w, Pr{w,} = WIQW) . so that (WIA[y) (WIBy) = 4|<¢|[A, Bl -
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Computation on a qubit
Through a unitary operator U on H, (a2 x 2 matrix) : (ie. U™t =UM)

normalized vector |) € H, — U |y) normalized vector € H, .

input output

) U Ul

= uantum gate

(always reversible)

Hadamard gate H=— ](lenllly gale ]2 = .

0 1
H? =1, &= H™! = H = HY Hermitian unitary.
HI0)=[+) and H|I)=]-) )

= in a compact notation H|x) = —2(|O) +(-1)* |1)) , Yxe{0,1}.
16/102

Pauli gates

o [0 1]y [0 -
T oo T o)

N

|

X?>=Y?=2%>=1,. Hermitian unitary. XY = =YX =iZ, ZX =Y, etc.

{I,, X, Y, Z} a basis for operators on .
1

Hadamard gate H =
£ V2

(x+2).
X =0, theinversion or Not quantum gate. ~ X|[0) = [1), X]I) =[0).
1

= 75 [e—izr/zt o/

is the square-root of Not, a typically quantum gate (no classical analog).

1+i 1-1i el gmin/d

1-i 1+

o e

}:wzzx,
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In general, the gates U and U give the same measurement statistics at the
output, and are thus physically equivalent, in this respect.

Any single-qubit gate can always be expressed as ¢U; with
& ¢ &
U = exp(—i—ﬁd‘) = cos(—)Iz - isin(—)ﬂ& R
2 2 2

where 71 = [n,, ny, n,]" is a real unit vector of R?,
and a formal “vector” of 2 X 2 matrices ¢ = [0y, 0y, 0],

implementing in the Bloch sphere representation
a rotation of the qubit state of an angle & around the axis 7 in R?.

For example : W = /& = /4| cos(r/4) I — isin(r/4) o]
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An optical implementation

0
0 ef
optically implemented by a Mach-Zehnder interferometer

A one-qubit phase gate U; =

] = ¢ exp(—iéo/2)

Computation on a pair of qubits
Through a unitary operator U on ‘H?z (a4 x4 matrix) :

normalized vector |y) € ‘Hfz — U|¥) normalized vector € ‘Hfz .

e Example : Controlled-Not gate

Via the XOR binary function: a®b =a whenb =0, or =a whenb =1
invertiblea®x=b x=adb=bda.

Used to construct a unitary invertible quantum C-Not gate :

input output
/ - out = quantum gate — . (T target, C control)
P 4 phase shift £ > (always reversible) [4) U Ule) r CoT
N A
—_— [ 4
ICTY — |C.CoT) cT) C.CoT)
—_— V4 [00) — 100) , 1 000
— / C C
m Completely defined for instance by the transformation of the four state vectors 01y — 101 U= 0100
of the computational basis {100 [01).,[10).[11)}. 110y — I11) g g ? (‘)
acting on individual photons with two states of polarization |0) and |1) - I —110)
which are selectively shifted in phase, But works equally on any superposition of quantum states , | i N .
to operate as well on any superposition a [0) + 8[1) — a/|0) + e |1). = quantum parallelism. (C-Not)” = I & (C-Not)™ = C-Not = (C-Not)’ Hermitian unitary.
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Computation on a system of N qubits No cloning theorem (1982) Quantum parallelism
Through a unitary operator U on ‘HfN (a 2V x 2V matrix) : ¢, Possibility of a circuit (a unitary U) that would take any state [¢), associated to an For a system of N qubits,
normalized vector |/) € 7_{;9N — Uy normalized vector ‘H;w ) auxiliary register |s), to transform the input [¢) |s) into the cloned output [/ [1) ? a quantum gate is any unitary operator U from (HfN onto ‘HfN.
U .
= quantum gate : N input qubits U N output qubis. [ry) |s) ——— U(1) Is)) = 1) 1) (would be). The quantum gate U is completely defined
U by its action on the 2 basis states of H™ : {Ii’) ,Xe |0, 1}N},
Completely defined for instance by the transformation of the 2V state vectors 2} sy —— U2} Is)) = h2) W2} (would be). just like a classical gate.
of the computational basis ; Li .
but works equally on any superposition of them (parallelism). tnear suEerposmon W0 = arlyn) +azlyz) Yet, the quantum gate U can be operated
) o [y |s)y ——— Uy |s)) = U((yl [r1)]s)y + @z |va) |5)) on any linear superposition of the basis states {If) ,xe {0, I}N}.
Any N-qubit quantum gate or circuit may always be composed — WD W) + s ) ) since U Tinear o ) ) )
from two-qubit C-Not gates and single-qubit gates (universality). A 2R ’ This is quantum parallelism, with no classical analog.
And in principle this ensures experimental realizability. But ) ) = ) ® |y = (0/1 W) + an |¢'2>)((¥1 W) + s |l//2>)
) ) ) = Qi) ) + @12 ) ) + araa ) ) + @3 o) o)
This forms the grounding of quantum computation. 2U(¥)]s)  in general. = No cloning U possible.
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Parallel evaluation of a function (1/3) Parallel evaluation of a function (2/3) Parallel evaluation of a function (3/3)
A classical function f(-) from N bits to 1 bit 7 7 | _|_>®N 7 7
2e {0, 1}V —— f(®) €{0,1}. U, U
f !
Used to construct a unitary operator U as an invertible f-controlled gate : —y y b f (f) - ‘3/) —Y YD f(f) —
— — . . N. 1 N
—4 T Uf i For every basis state |X), with ¥ € {0, 1}" : )8 = (7) Z IZ)  superposition of all basis states,
Uy . 2/ oy
. D1y = 0) ———— ID1/@) )
Dy =1 > 19[700) 14V ® 0y —— (\—F) STIIA® ) superposition of all values £().
e . - 2 N
with binary output y @ f(¥) = f(¥) wheny =0, or= f(¥) wheny =1, 1 — (0.1}
vith binary ouputy© /() = /) when y /(0 wheny 01+ 10170 + [F®)] = 10 1)
(invertible as [y ® f(D] & f(D) = y® f(H) & f(D) = y® 0 = y). V2 Uy 1Y
. o _ ) —— ($) >, W EyY
9 1) 195 @) = [F@) | =101 -1 o
(, How to extract, to measure, useful informations from superpositions ?
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Deutsch-Jozsa algorithm (1992) : Parallel test of a function (1/5)

A classical function ) oy — {1
: 2N values —> 2 values,
can be constant (all inputs into 0 or 1) or balanced (equal numbers of 0, 1 in output).

2N
Classically : Between 2 and > + 1 evaluations of f(-) to decide.

Quantumly : One evaluation of f(-) is enough (on a suitable superposition).

Lemmal: Hx) = L(\o>+(71>‘\1>): ! S DTk, Yaelon)
V2 \/—:e((l‘ll

1 N

— Hm"m:H\,r,>®--<®H|x,v>:(6)

with scalar product X¥Z = x;z; + -+ - + xyzy modulo 2.

-2y, vRe{0, 1)V,
i

Ze(0,1)V

(quant. Hadamard transfo.)
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Deutsch-Jozsa algorithm (2/5)

|+>®N+,f 7 H®N
Uy

y & f(@)

t t t
1) |42) |13)

|=) —=ly

1\
Input state i) = [+)°V |-) = (7) 1) 1-)
‘/E fe%)lv

1N .
Internal state |y,) = (—) 1)) (- 1)@
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Deutsch-Jozsa algorithm (3/5)

Output state |y3) = (H®N ® 12) [fr2)

1 )N
=|=) 2, F Y

1\N )
:(E)Z D EDERD 1P by Lemma 1,

Tel0,1)V Ze(0,1)V

N

1
with |¢/>:(—) Z uw@)|2)

Ze{0,1}V

or l3) =) |-) .

and the scalar weight u(?) = Z (=1)f0+xz

Fe{0,1}V
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Deutsch-Jozsa algorithm (4/5)

1 .
So y) = — Z w2y with @) = Z (=1)fO+z

Ze(0, 1)V Fe(0,1}V

For |Z) = |6> - |0>®N then u(? = 6) _ Z (_1)]’()?) .

Fe(0,1}V

o When f£(-) constant : u(Z=0) = 2V(—=1)/® = £2¥ — in |y) the amplitude of |0 ) is
+1, and since i) is with unit norm = |) = + I6>, and all other u(Z # 6):0‘
= When |¢) is measured, N states |0) are found.

e When f(-) balanced : u(Z = 6) =0 = [|y) is not or does not contain state I5).
= When |¢) is measured, at least one state |1) is found.

— Illustrates quantum ressources of parallelism, coherent superposition, interference.
(When f(-) is neither constant nor balanced, |y) contains a little bit of I6).)

Deutsch-Jozsa algorithm (5/5)
[1] D. Deutsch; “Quantum theory, the Church-Turing principle and the universal quantum
computer”; Proceedings of the Royal Society of London A 400 (1985) 97-117.

The case N = 2.

[2] D. Deutsch, R. Jozsa; “Rapid solution of problems by quantum computation”; Proceedings of
the Royal Society of London A 439 (1993) 553-558.
Extension to arbitrary N > 2.

[3] E. Bernstein, U. Vazirani; “Quantum complexity theory”; SIAM Journal on Computing 26
(1997) 1411-1473.
Extension to f(¥) = @¥or f(¥) = d¢® b, to find binary N-word & — by producing output
) =ld).

[4] R. Cleve, A. Ekert, C. Macchiavello, M. Mosca; “Quantum algorithms revisited”; Proceedings
of the Royal Society of London A 454 (1998) 339-354.

Superdense COdiIlg (Bennett 1992) : exploiting entanglement

1
Alice and Bob share a qubit pair in entangled state |[AB) = \/_(\O(D +1 1)) = |Boo)-

2
Alice chooses two classical bits, used to encode by applying to her qubit A
one of {I,, X, iY, Z}, delivering the qubit A’ sent to Bob.

) it Alice Bob
s 2| Lqpit Db 2OEMB=B0)
Y Decoder |—F~— X®L|AB) = |Bor)
¥ Z B Z®LIAB) = |Bi)
Y®LIAB) = |B11)
|AB) 2 entangled qubits

Bob receives this qubit A”. For decoding, Bob measures |A’B) in the Bell basis
{Woo) s 1Bo1) s 1Bro) s Iﬁn)}, from which he recovers the two classical bits.
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Teleportation (Bennett 1993) : of an unknown qubit state (1/3) Teleportation (2/3) Teleportation (3/3)
Qubit Q in unknown arbitrary state o) = ag[0) + a; [1). 1 1
' 1) = o) 1Boo) = 7—[00 10) (100 + [11)) + ey [1) (100) + 1)) 1) = —[woo>(ao 10) + a1 11)) + Bor) (a0 1) + @1 10)) +
Alice and Bob share a qubit pair in entangled state |AB) = $(|00> +11 1)) = |Boo)- 2 2
1 _ _
Al = —=[@01000) + a9 [011) + @, [100) + a; [111)]. 1810)(2010) = a1 1) + B11) (e 1) - |0>)] :
|1b(2> lice 2 chits  Bob V2 _ ) ) _ .
5 Measurement ir 1 The first two qubits QA measured in Bell basis {|3,,)} yield the two cbits xy,
in Bell basis N . . . ! x .
factorizable as = - [_ 00% + 1110 10) + a; 1)) + used to transform the third qubit B by X" then Z*, which reconstructs [1/¢).
N (18 iy =3 ﬁ(| )+ [11))(a0 [0) + a1 [1))
P 1 ~ ~ i L, !
t ! Q> W(|01> + IIO))(a/() 1+ a |0>) + When QA is measured in |Bop) then B is in aq[0) + a; |1) I o)
X I
[t) ) 1 When QA is measured in [By;) then Bisin ag|l) + @ [0) — - -2, o)
' \—5(|00>—|11>)(ao|0>—m|1>)+ , , . Loz
Alice measures the pair of qubits QA in the Bell basis (so |¢/o) is locally destroyed), When QA is measured in |10) then Bis in ag|0) —a; [1) — - — |¥p)
and the two resulting cbits x, y are sent to Bob. 1 ] . . .. X z
—(l01) — |10 1y —a110))]|, Wh A d then B y—a0) — - — .
Bob on his qubit B applies the gates X’ and Z* which reconstructs |i/). \/E(I )=l >)(a/()| )-ai >) en QA is measured in |811) then Bis in ao[1) — a1 10) o)
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Princeps references on superdense coding ...

[1] C. H. Bennett, S. J. Wiesner; “Communication via one- and two-particle operators on
Einstein-Podolsky-Rosen states™; Physical Review Letters 69 (1992) 2881-2884.

Grover quantum search algorithm (1/3)  Phys. Rev. Lez. 79 (1997) 325.

e Finds an item out of N in an unsorted database,
in O(VN) complexity instead of O(N) classically.

Grover quantum search algorithm (2/3)

o For this specific item |ng) that we want to retrieve (obtain its address wy, ),

it is possible to amplify this uniform probability |(no[) 2 =1/N.

N
e An N-dimensional quantum system in Hy with orthonormal basis {|1),-- -, |N)} . 1 . .
. . L. o Lo . ’ ’ ’ Let|n,) = ——— |n) normalized state L |ng) = |y) in plane (|ng) , |11 )). "
[2] K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger; “Dense coding in experimental the basis states |n), n = 1, ... N, representing the N items stored in the database. VN-1 ’;”0 Up |¢)
quantum communication”; Physical Review Letters 76 (1996) 4656-4659. .
o A set of N real values {w), - - -, wy) representing the address of each item |n) in the ° Peﬁne unitary operator U = Iy — 2{no){no| = Uo I"Q = In.) and Uo Ino) = ~no)-
database. Query item |n) —» retrieved address w So in plane (|ng) , [, )), the operator Uy performs a reflection about [n,).  (Ug oracle).
. ‘ " 1 ¥ Let normalized state L |) in plane .
... and teleportation o The unsorted database corresponds to the preparation in state |y) = — Z [n). o Lethn ) in plane (02 In..))
‘/N =1 o Define the unitary operator Uy, = 2 [) (¢/| = Iy = Uy [¥) = [¥) and Uy [ ) = — | 1).
[3] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters; “Teleporting an e A query of the database, in order to obtain the address w,, of a specific item |no), So in plane (Iny) , |n. ), the operator Uy, performs a reflection about [i/).
unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels”; N B o )
Physical Review Leiters 70 (1993) 1895-1899. can be performed by a measurement of the observable Q = Z wn ) (7. o In plane (|ng), |n. ), the composition of two reflections is a rotation Uy,Uy = G (Grover
n=1 - . 2
o Any specific item |ny) would be obtained as measurement outcome with its eigenvalue amplification operator). It verifies Gilo) = Uy Uo Ino) = =Uy Ino) = o) = N -
(address) w,,, with the probability [(noly) | = 1/N (since (moly) = 1/ VN ), The rotation angle 6 between |ng) and G |ng), via the scalar product of [ng) and G |ng), verifies
2
= on average O(N) repeated queries required to pull out (J119) , wy,). cos(8) = (mo|Glmg) = 1 — == 1- % — 0~ % atN > 1.
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Grover quantum search algorithm (3/3) Other quantum algorithms Quantum cryptography
. _ - 2 o The problem of cryptography
o In plane (Ing) , |n.)), the rotation G = Uy Uy is with angle 6 ~ N e Shor factoring algorithm (1997) :
) . ) ) Message X, a string of bits.
«Gly) = UyUp Iy = Uw(\‘/’) _Z |n0)) — (1 _ i) ) + 2 no)- Factors any integer in polynomial complexity Cryptographic key K, a completely random string of bits with proba. 1/2 and 1/2.
VN N VN (instead of exponential classically). . .
So after rotation by @ the rotated state G |¢) is closer to |ng). U The cryptogram or encrypted message C(X, K) = X @ K (encrypted string of bits).
o G |y remains in plane (|ng), |, )), and any state in plane (|ng), |7, )) by G is rotated by 6. 0l¥) 15 = 3 x 5, with spin-1/2 nuclei (Vandersypen et al., Nature 2001). This is Vernam cipher or one-time pad,
) . with provably perfect security, since mutual information /(C; X) = H(X) — H(X|C) = 0.
So G” |y) rotates [y/) by 26 toward |ng), and G* [y} rotates [i) by k toward |no). 21 = 3 x 7, with photons (Martin-Lopez et al., Nature Photonics 2012).
Problem : establishing a secret (private) key
* The angle © of |) and |np) is such that cos(®) = (noly) = 1/ VN = © = acos(l/ ‘/N) between emitter (Alice) and receiver (Bob).
@ \m . o iQ o
eSoK=—~— acos(l/ \/ﬁ) iterations of G rotate |) onto |ng). ° http'//mdth'mSt'gOV/qucmtum/ZOO/
0 2 « . . . With quantum signals,
‘A comprehensive catalog of quantum algorithms ...
Atmost® =~ (when N > 1) = at most K ~ T VN. any measurement by an eavesdropper (Eve) perturbs the system,
2 4 and hence reveals the eavesdropping, and also identifies perfect security conditions.
o So when the state GK [) = |np) is measured, the probability is almost 1 to obtain |ng) and its
address w,, = The searched item is found in O( \/N) operations instead of O(N) classically.
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° rotocol (Bennett rassar ° rotocol with two nonorthogonal states (Benne + e Protoco roadcast of an entangled qubit pair
BB84 p 1 (B & B d 1984) 1) B92 p 1 with hogonal B tt 1992 P 1 by broad: f gled qubit p
+ Alice has a string of 4N random bits. She encodes with [+) + To encode the bit a Alice uses a qubit in state [0) if a =0 ¢ With an entangled pair, Alice and Bob do not need a quantum channel between them
a qubit in a basis state either from {|0), [1)} or {[+),[-)} din state |+ =(10) + |1 A ifa=1 two, and can exchange only classical information to establish their private secret key.
randomly chosen for each bit. and in state |+) (I s >)/ V2ifa=1. /4 [0) Each one of Alice an Bob just needs a quantum channel from a common server
/ . ., dispatching entangled qubit pairs prepared in one stereotyped quantum state.
+ Then Bob chooses to measure each received qubit either in 7r/4 ‘0> + Bob, depending ona rand(.)m‘bll a he generates, .
basis {|0), [1)} or {|+),]|-)} so as to decode each transmitted bit. measures each received qubit either in basis {|0), |1)} if @ = 0 + Alice and Bob share a sequence of entangled qubit pairs all prepared in the same
orin {|+),|-)} if @ = 1. From his measurement, Bob obtains the result b = 0 or 1. entangled (Bell) state |AB) = (|00> +1 1>)/ \a
4 Once the whole string of 4N bits from Alice has been received £ - :
i i i i ices. + Then Bob publishes his series of b, and agrees with Alice to keep only those pairs . . . . . .
by Bob, Alice publicly discloses the sequence of her basis choices [=) P € ponly P + Alice and Bob measure their respective qubit of the pair in the basis {|0) ,|1)}, and they

+ Bob keeps only the positions where his choices of basis coincide with those of Alice
to obtain a secret key, of length approximately 2N.

+ If Eve intercepts and measures Alice’s qubit and forward her measured state to Bob,
roughly half of the time Eve forwards an incorrect state, and from this Bob half of the
time decodes an incorrect bit value.

+ From their 2N coinciding bits, Alice and Bob classically exchange N bits at random.
In case of eavesdropping, around N/4 of these N test bits will differ.
If all N test bits coincide, then the remaining N bits form the shared secret key.
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{a,a’} for which b =1,
this providing the final secret key a for Alice and 1 —a’ = a for Bob.
This is granted because a =a’ = b =0 andhence b=1=a#d =1-a.

+ A fraction of this secret key can be publicly exchanged between Alice and Bob
to verify they exactly coincide, since in case of eavesdropping by interception and
resend by Eve, mismatch ensues with probability 1/4.

N. Gisin, et al.; “Quantum cryptography”; Reviews of Modern Physics 74 (2002) 145-195.
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always obtain the same result, either 0 or 1 at random with equal probabilities 1/2.

+ To prevent eavesdropping, Alice and Bob can switch independently at random to
measuring in the basis {|+),|-)}, where one also has |[AB) = (|++) + \——))/ V2.

So when Alice and Bob measure in the same basis, they always obtain the same results,
either O or 1.

+ Then Alice and Bob publicly disclose the sequence of their basis choices.
The positions where the choices coincide provide the shared secret key.

+ A fraction of this secret key is extracted to check exact coincidence, since in case of
eavesdropping by interception and resend, mismatch ensues with probability 1/4.
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Quantum correlations (1/2)
[01) —[10)
v

Alice or Bob on its qubit can measure observables of the form Q(6) = sin(6)X + cos(6)Z ,

Alice and Bob share a pair of qubits in the entangled (Bell) state [yap) =

having eigenvalues +1.

Alice measures Q(«) to obtain A = +1, and Bob measures Q(f) to obtain B = +1,
then we have the average (AB) = (Yap | Q@) ® Q(B) |Yap) = —cos(a — ).

For any four random binary variables A, A,, B, B, with values +1,
T'=(A +A)B — (Al —A2)B, = A\B; + AyB) + AyBy — A1 By = £2,
because since A;, A, = +1, either (A} + Ay)B; =0or (A, — Ay)B, =0,

and in each case the remaining term is +2.

So for any probability distribution on (A, A,, By, B,), necessarily
(I) =<A1B1 + A2B1 + A2 By — A1 By) = (A1 B1) + (A2 B1) + (A2 By) — (A1 By)

storage”
B ion e verifies -2 < (I') < 2. Bell inequalities (1964).
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EPR paradox (Einstein-Podolski-Rosen) : PR ST
Quantum correlations (2/2) A. Einstein, B. Podolsky, N. Rosen ; “Can quantum-mechanical description of physical reality —————————————
. . . . . . be considered complete ?; Physical Review, 47 (1935) 777-780. flinme
A long series of experiments repeated on identical copies of [yap) : Bell " & Physica A
R . X ell inequalities : N é ﬁ
EPR experiment (Einstein, Podolsky, Rosen, 1935). J.S. Bell; “On the Einstein—Podolsky—-Rosen paradox™; Physics, 1 (1964) 195-200. fournal homepage: www.eisevier comocate/physa -
. . . Aspect experiments :
Al hooses to randomly switch bet: A =Q A, = Q) . . - L
1ce chooses to randomly switch between measuring Ay () or Ay (@2), A. Aspect, P. Grangier, G. Roger ; “Experimental test of realistic theories via Bell’s theorem”; s A ki o LW il @
i i = = . . CrossMark
and Bob chooses to randomly switch between measuring B; = Q(8)) or B, = Q(8,). Physical Review Letters, 47 (1981) 460-463. Beik R ifeaualiiEsin EIR sgperifient
. Frangois Chapeau-Blondeau*
For (I') = (A1By) + (AyB;) + (A2 B,) — (A1 By) one obtains B AR A0S Aebensbudnpuing
() = —cos(ay = B1) = cos(az = 1) = cos(az = f2) + cos(a = ). Contents lists available at ScienceDirect
HIGHLIGHTS
. Ph o A + Anew Bel-aype inequaliy for l con
The choice a; =0, @, =n/2 and B = n/4, B = 3r/4 leads to ysica " xuiappnedmmsmlonumesolquamum’;\mo{mmemmnmmsmmg
© Superiority and complementarity of the generalized Bell inequality is demonstrated.
(I'y = —cos(nr/4) — cos(r/4) — cos(n/4) + cos(3m/4) = -2 \5 < =2. il e e i oot S o W e ST A
Bell inequalities are violated by quantum measurements. 1li f F lati ith e e e —
Tsallis entropy for assessing quantum correlation wit @Cmm T e e
-3 2 28 8. . “: e "E" - 'dependence between the classical outcomes of measurements performed on a bipartite
Experimentally verified (Aspect ef al., Phys. Rev. Let. 1981, 1982). Bell-rype insnpalies in SF8 experient e T L T T
Frangois Chapeau Blondeau * Fvm— based or[;KhETShﬁnml;:mr:epy ’0[»wh|:h1|( cms:llu(tsdl g(ntrilllnn;m For an upnn;ul
. » . - ot rang ofhe Tl order, e new ey i abie o deect norlocal quanum e
Local realism and separability (classical) replaced by o g e e e s Sysenes(ARS, Uniersié dns, 62 v e Damedo, él'ﬂu"éﬂ".:ﬁfffyﬂm R imcmrsnsel moma gt o< el i e K mese
a nonlocal nonseparable reality (quantum). ot xt o O ©2014 Eisevier BV, Al ights reserved.
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GHZ states (1/5)
3-qubit entangled states.

(1989, Greenberger, Horne, Zeilinger)

Three players, each receiving a binary input x; = 0/1, for j = 1,2,3,
with four possible input configurations x;x,x3 € {000,011, 101,110}.  T1 —->|:|—-> hn

To —-)D——) Y2
T3 —-)D——) Ys

Game is won if the players collectively respond according to the input—output matches :

Each player j responds by a binary output y;(x;) = 0/1,
function only of its own input x;, for j = 1,2,3.

X1X2X3 = 000 —————— y,y,y3 suchthat y, @y, ®@y; =0  (conserve parity),
x1xx3 € {011,101, 110} — y1y,y; suchthat y; &y, ®y; =1 (reverse parity).
To select their responses y;(x;), the players can agree on a collective strategy before,

but not after, they have received their inputs x;.
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GHZ states (2/5)

A strategy winning on all four input configurations

would consist in three binary functions y;(x;) meeting the four constraints :

y1(0) @ y2(0) @ y3(0) = 0 2 __)D__, i
O ey(heysl) =1
ey eyl =1 np pwe
N @y @y(0) = 1 w5 Heus
0 © 0 & 0 =1, bysummation of the four constraints,
= 0 =1, so the four constraints are incompatible.

So no (classical) strategy exists that would win on all four input configurations.
Any (classical) strategy is bound to fail on some input configuration(s).

We show a strategy using quantum resources winning on all four input configurations,
(by escaping local realism, y;(0) = 0/1 and y;(1) = 0/1 not existing simultaneously).
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GHZ states (3/5)

Before the game starts, each player receives one qubit from a qubit triplet prepared in the
entangled state (GHZ state) |
W) = i) = 5(|000> ~011) = 1101) - [110)).
And the players agree on the common (prior) strategy :

if x; = 0, player j obtains y; as the outcome of measuring its qubit in basis {|0), 1)},
if x; = 1, player j obtains y; as the outcome of measuring its qubit in basis {|+),[-)}.

‘We prove this is a winning strategy on all four input configurations :

1) When x;x,x3 = 000, the three players measure in {|0), |1)}
= y1 ®y, ®y; = 0 is matched.
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GHZ states (4/5)
2) When x;x,x3 = 011, only player 1 measures in {|0),[1)}.
1 1
)y = 5(|000> —[011) = [101) = [110)) = E[|0>(\oo> - 1) -1 (lon + |10>)].
. 1 1
Since 10) = ~=(#)+19). )= 5(0)-10) =

1
00) - [11) = —
100) —111) 2

1+ + 1)+ 1)) = (0 = 19)(1+) - \—>)]

; (e 1=y 1=+ 1)) = (0 = [+=) = =) + |——>)]

=)+

[01) +1]10) =

(1 + 1)1 = 1)) + (14 = 1)1+ +1-))

1
- =+ = |-=)
3 [++) =)

1
= ) = 5(|0+—)+\0—+)—|l++)+|1——)) =y ® )y ®y; = | matched.

GHZ states (5/5)

3) When x;x,x3 = 101, only player 2 measures in {|0), [1)}.

1 1
) = 5(\0()())7 011) = 1101) = 110)) = E[|'0-)(\0»0>7|1 D)= F (0 1+ -0))]
= %[LO»(H-—>+\—<+>)—|<1->(\+<+>—|—»—>)]

1
= 5(|+0—>+ |=0+) = [+14) +|-1-)) = y1 @y, @ y3 = | matched.

4) When x;x,x3 = 110, only player 3 measures in {|0),[1)}.
1 1
) = 5(\000) =011y = [101) = [110)) = 5[|»-0>(|00->— 1) =1 (01 + |10»>)J
1
= 5[" O (= + =)= 1>(|++->—|——->)}

1
= 5(|+—0>+\—+0)—|++1>+|——1>) =y, ®y, ®y; = | matched.

Density operator (1/2)
Quantum system in (pure) state [¢;), measured in an orthonormal basis {|n)} :

= probability Pr{lm)|ly;)} = | alyj) P = ¢y (i)

Several possible states |i;) with probabilities p; (with 3; p; = 1) :
= Pr{im)}=%,;p, Pr“n)“l//j)} =(nl (ijj ;) (%l) [ny =(nlpln)
with density operator p = 3 p; ;) (W)l -

and Pr{ln)) = (nlp|n) = tr(p|n) (n]) = tr(p1,) .

The quantum system is in a mixed state, corresponding to the statistical ensemble

{p), )}, described by the density operator p.

Lemma : For any operator A with trace tr(A) = Y}, (n| A|n), one has

(AW (G =2, (A (@ln) = 5, (@i} nl Al = (@I( X, In) <nI)AIt//> = (¢lAW) .
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Density operator (2/2) Average of an observable Density operator for the qubit
. N .
Density operator p = 3 p; /) (¢l A quantum system in Hy has observable Q of diagonal form Q = Z W) . {oo =1, 0, 0,0} abasis of L(H,) (vector space of operators on ),
= p = p' Hermitian ; n=1 orthogonal for the Hilbert-Schmidt inner product tr(ATB).
Yy, Wlol) = 3 pil (bl P = 0 = p > 0 positive ; . ) . 1 | »
) Wlplwy = 2 p il (Wl p20p Wher.l lh? quantum system is 1n. state p, measuring Q amou1.1ts to performing ) Any p = ,([2 + O+ 10y + VZO'Z) = —(Iz + ro‘).
trace tr(p) = X, p; () (i) = X, p = 1. a projective measurement on p in the orthonormal eigenbasis {lw; ), . . . lwy)} of Hy, 2 2
’ " with the N orthogonal projectors |w,) {(w,|, for n = 1 to N. = tr(p) = 1.
On Hy, eigen decomposition p = Z’l” |4,) (A, , with p= p“ = =71, = r;, I, =1, = Iy, Iy, 1z real.
. | N babili :fl buti The outcome yields the eigenvalue w, € R with probability
e%genva ues {4,} a probability distri l'lllon’ Pri{w,} = (wal plw,) = tr(p lw,) {w,)). Eigenvalues 1, = —(1 + ||?||) >0= |7 <1.
eigenstates {|4,)} an orthonormal basis of Hy. 2
u i 7|l < 1 for mixed states,
Purity tr(p?) = Z /lﬁ — 1 for a pure state, and tr(p?) < 1 for a mixed state. Over repeated measurements of © on the system prepared in the same state p, [171]
p the average value of Q is |7l =1 for pure states.
. . _ .. . . N N N _ T 3
A Va.hd density operator on ﬂN = any positive operator p with unit t'race, @ = Z w, Prlw,] = Z n tr(p ) (wal) = tr(p Z W, lon) (w,,l) 7= [ry, 1y, 7z]" in Bloch ball of R”.
provides a general representation for the state of a quantum system in Hy. g o =
State evolution |;) — U |y;) = p — UpU* . = r(pQ). -1
Wy Wp=p="Up 58/102 59/102 60/102

Observables on the qubit
Any operator on H, has general form Q = a1, + d &,
with determinant det(Q) = @ — @2, two eigenvalues a = Va2,

. . 1
and two projectors on the two eigenstates |+d) (+d| = 5(12 +dd/ @)

For an observable, Q Hermitian requires @y € R and @ = [a,,a,,a.]” € R3.

1 a 1
Probabilites Pr{lid’)} = 5(1 + ?ﬂ] when measuring a qubit in state p = 5(12 + ?(?).
d

An important observable measurable on the qubitis Q = dd with ||@|| =1,
known as a spin measurement in the direction @ of R?, 1
yielding as possible outcomes the two eigenvalues +||@|| = 1, with Pr{£1} = 5(1 + ?d).

2N 2

Lemma : For any 7 and @ in IR?, one has : (*@)d¢d*) = (Fd)l, +i(Fxad)d.
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Generalized measurement

In a Hilbert space Hy with dimension N, the state of a quantum system
is specified by a Hermitian positive unit-trace density operator p.

e Projective measurement :

Defined by a set of N orthogonal projectors |n) (n| = I, ,

verifying 3, |n) ¢ = 3,11, = Iy,

and Pr{|n)} = tr(pIl,) . Moreover ), Pr{ln)} = 1,Vp & 3, I, = In.

e Generalized measurement (POVM) : (positive operator valued measure)
Equivalent to a projective measurement in a larger Hilbert space (Naimark th.).
Defined by a set of an arbitrary number of positive operators M,,,

verifying Y, M,, = Iy,
and Pr{M,,} = tr(oM,,) . Moreover 3, Pr{M,,} = 1,Yp & 3, M,, = In.
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A generalized measurement (POVM) for the qubit
2
POVM {Mk = Zleo el fork=0.1,.. K=1, andK>2,

2rk 2rk
with  leg) :cos(—)|0)+sin(—)|l) .
K K
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Information in a quantum system

How much information can be stored in a quantum system ?

A classical source of information : a random variable X, with J possible states x;, for
J =1,2,...J, with probabilities Pr{X = x;} = p; .

J
Information content by Shannon entropy : H(X) = — Z pjlog(p;) <log(J) .
=1

With a quantum system of dimension N in Hy, each classical state x; is coded
by a quantum state ;) € Hy or p; € L(Hy) ,for j=1,2,...J.

Since there is a continuous infinity of quantum states in Hy,
an infinite quantity of information can be stored in a quantum system of dim. N
(an infinite number J), as soon as N = 2 with a qubit.

But how much information can be retrieved out ?

Entropy from a quantum system

For a quantum system of dim. N in Hy, with a state p (pure or mixed),

a generalized measurement by the POVM with K elements Ay, fork = 1,2,... K.
Measurement outcome Y with K possible values y, fork = 1,2,... K,

of probabilities Pr{Y = y;} = tr(pAy) .

K
Shannon output entropy H(Y) = — Z Pr{Y =y} log(Pr{Y = yk}) .

k=1
K

=- Z tr(pAy) log(tr(pAk)) .
k=1

For any given state p (pure or mixed), K-element POVMs can always be found
achieving the limit H(Y) ~ log(K) at large K.

In this respect, with H(Y) — co when K — oo,
an infinite quantity of information can be drawn from a quantum system of dim. N,
as soon as N = 2 with a qubit.

But how much of the input information can be retrieved out ?

With a quantum system of dim. N in Hy, each classical state x; is coded
by a quantum state [;) € Hy or p; € L(Hy) ,for j=1,2,...J.

A generalized measurement by the POVM with K elements A, for k= 1,2,... K.

Measurement outcome Y with K possible values y;, fork = 1,2,... K,
of conditional probabilities Pr{Y = yi|X = x;} = tr(p;Ar) ,
J

and total probabilities Pr{Y = y;} = Z Pr{Y = yilX = x;}p; = tr(pA)

J =1
with p = Z pjp; the average state.
=1

The input—output mutual information I(X;Y) = H(Y) — H(Y|X) < X(p) < H(X) ,
J

with the Holevo information X(p) = S(p) — ijS (pj) <log(N),
J=1

and von Neumann entropy S(p) = — lr[p log(p)] .
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The von Neumann entropy The accessible information Compression of a quantum source 1/2)
For a quantum system of dimension N with state p on Hy : For a given input ensemble {(p;, p;)} : A quantum source emits states or symbols p; with probabilities p;, for j = 1to J.
. . . J
Sp) =— tr[p log(p)] . the accessible information I..(X;Y) = ggsﬁ I(X;Y) <X(pj.p)) With p = Z pip; . the D-ary quantum entropy is S p(p) = — trlp IOgD(P)I ,
=1 J
- H itian has di 15 ZN: A A is the maximum amount of information about X and the Holevo information is Xp(pj,p,) = S p(p) = Z ;i So(p;) -
unit-trace Hermitian has diagonal form p = s . . =
P & P . iR which can be retrieved out from Y, =
n=
by using the maximally efficient generalized measurement or POVM. For lossless coding of the source, the average number of D-dimensional quantum
N systems required per source symbol is lower bounded by Xp(p;, ;) .
whence S(p) == )" 4,log(4,) € [0, log(N)] .
n=l For pure states p; = |/;) (¢;l, the lower bound Xp(p;,p;) = S p(p) is achievable
o S(p) =0 fora pure state p = [¥)| (by coding successive symbols in blocks of length L — o).
e S(p) =log(N) at equiprobability when A, = 1/N and p = Iy/N . B. Schumacher; “Quantum coding”; Physical Review A 51 (1995) 2738-2747.
R. Jozsa, B. Schumacher; “A new proof of the quantum noiseless coding theorem™;
Journal of Modern Optics 41 (1994) 2343-2349.
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Compression of a quantum source (2/2) Quantum noise (1/2) Quantum noise (2/2)
For mixed states p;, the compressed rate is lower bounded by X(p;,p;) < S p(p) but A quantum system of Hy in state p interacting with its environment represents an open A general transformation of a quantum state p can be expressed by the
this lower bound X p(p;, p;) is not known to be generally achievable. quantum system. The state p usually undergoes a nonunitary evolution. quantum operation p — N(p) = X, ApA] , with 3, AJA, = Ty,
The compressed rate S p(p) is however always achievable (by purification of the p; and With pe,, the state of the environment at the onset of the interaction, the joint state representing a linear completely positive trace-preserving map,
a M P Q1 > Ly 1 P Q1 >
optimal compression of these purified states). £ ® peny can be considered as that of an isolated system, undergoing a unitary evolution mapping a density operator on Hy into a density operator on Hy. 0
Depending on the mixed p;’s, and the index of faithfulness, there may exist an by U as p & pen — U(p @ pen)U" 1 z
achievable lower bound between X p(p;, p;) and S p(p). (Wilde 2016, §18.4) At the end of the interaction, the state of the quantum system of interest is obtained by For an arbitrary qubit state defined by p = 5(13 +7 ‘?)
o . artial trz i : = . i i Pl <
The problem of general characterization of an achievable lower bound for the the partial trace over the environment : p — N(p) trcm,[U(p ® pen)U ] M with [I7]l < 1,
compressed rate of mixed states still remains open. (Wilde 2016, §18.5) Very often, the environment incorporates a huge number of degrees of freedom, and is this is equivalent to the affine map # — A7+ ¢,
L ) ) ) ) o largely uncontrolled ; it can be understood as quantum noise inducing decoherence. with A a 3x3 real matrix
M. Horodecki; “Limits for compression of quantum information carried by ensembles of mixed ¥
states”; Physical Review A 57 (1997) 3364-3369. A very nice feature is that, independently of the complexity of the environment, Eq. (1) and ¢ a real vector in IR,
: _ i . ) e ADDI . o
H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa, B. Schumacher; “On quantum coding for can always be put in the form p — N(p) = 3, A¢pA, operator-sum or Kraus mapping the Bloch ball onto itself.
ensembles of mixed states”; Journal of Physics A 34 (2001) 6767-6785. representation, with the Kraus operators A, which need not be more than N2, satisfying
M. Koashi, N. Imoto; “Compressibility of quantum mixed-state signals”; Physical Review Letters 2 A;A[ =1Iy.
87 (2001) 017902,1-4. 1
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Quantum noise on the qubit (1/4)

Quantum noise on a qubit in state p can be represented by random applications of some
of the 4 Pauli operators {I,, o, o7y, 0.} on the qubit, e.g.

Bit-flip noise : flips the qubit state with probability p by applying o, or leaves the
qubit unchanged with probability 1 — p :

1 0 0
F— AF=| 0 1-2p 0

0 0 1-2p

N

p— N(p) = (1 - p)p + popo,

Phase-flip noise : flips the qubit phase with probability p by applying o, or leaves the
qubit unchanged with probability 1 — p :
1-2p 0 0

Quantum noise on the qubit (2/4)

Depolarizing noise : leaves the qubit unchanged with probability 1 — p, or apply any
of o, oy or o, with equal probability p/3 :

P : :
p— N(p)=(1-pp+ g(tfxpfrl +0yp0) + 0po]

14 0 0
317

Quantum noise on the qubit (3/4)

Amplitude damping noise : relaxes the excited state |1) to the ground state |0) with
probability y (for instance by losing a photon) :

p— N(p) = AipA] + ArpA],

with A, = & = 4/710)(1|  taking |1) to |0) with probability y,
1
and A = =10) (0l + /1 —y[1)(1]  which leaves |0) unchanged and

0 -y

reduces the probability amplitude of resting in state |1).

Ji=y 0 0

p— N =(I-pp+prpot, F—AP=| 0 1-2p 0 |7 = FoArsd=l 0 Jl-y 0 4]0
0 0 1 0 0 -y Y
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. . More on quantum noise, noisy qubits : L.
Quantum noise on the qubit (4/4) Quantum state discrimination

Generalized amplitude damping noise : interaction of the qubit with a thermal bath at

temperature 7 : B i & &
p— N(p) = AipA| + MopA, + AspAy + AupA

with Ay = +/ : 0 Ao =+ \ p.y€l0,1]
P s P B 3 L
! 0 1=y 0 0
Ji=-v 0 0 0
Az = 41— , Ag= 41— N
3 f” 1 P ﬁ

V1i-v 0 0 0

= F— AP+ = 0 -y 0 P+ 0
0 0 1-y Q2p-1ly
Damping [0,1] 3y = 1 —e~/T1 — 1 as the interaction time 7 — co with the bath of the qubit relaxing to
equilibrium pe, = p|0) (0] + (1 — p)[1) (1], with equilibrium probabilities p = exp[—Eo/(kgT)]/Z and
1= p =exp[—E/(kgT)]/Z with Z = exp[—E/(kgT)] + exp[—E, /(kgT)] governed by the Boltzmann distribution
between the two energy levels Ey of [0) and E, > Ej of |1).
T=0=p=1=p,=[0)(0]. T-ooo=p=1/2=ps — (10)0+(1)(1)/2=1/2.
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Frangois Chapeau-Blondeau

@ IEEE TRANSACTIONS ON

INFORMATION
THEORY

i i ofa inevitable error: and such a general situation is frequent since
qubit, the optimal detector minimizing the probability of error s quantum noise and decoherence are prone to break the orthog-
applied to the situation where detection has to be performed from o el i
4 nolsy qubit affected by an arbitrary quantum noise separately - i st

f two initial quanty

PHYSICAL REVIEW A 91052310 (2015)
Optimized probing states for qubit phase estimation with general quantum noise

Frangois Chapeau-Blondeau
Laboratoire Angevin de Recherche en | rie des Systemes (LARIS), Université d’Angers,
62 avenue Notre Dame du Lac, 49000 Angers, France
(Received 27 March 2015; published 12 May 2015)

We exploit the theory of quantum estimation to investigate quantum state estimation in the presence of
noise. The quantum Fisher information is used to assess the estimation performance. For the qubit in Bloch
ral derived for score and then for the quantum Fisher information.

From this latter expression, it is proved that the Fisher information always increases with the purity of the |

measured qubit state. An arbitrary quantum noise affecting the qubit is taken into account for its impact on
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A quantum system can be in one of two alternative states pg or p;
with prior probabilities Py and P; = 1 — Py.

Question : What is the best measurement {My, M} to decide
with a maximal probability of success Py ?

Answer : One has Py, = Py tr(pgMg) + P; tr(p;M;) = Py + tr(TMy) ,
with the test operator T = Pyp; — Pypo.

Then Py is maximized by M{™ = " |4,)(4,,
A,>0
the projector on the eigensubspace of T with positive eigenvalues A,,.

The optimal measurement [M‘l’p‘, Mgp‘ =Iy—-MP []
(Helstrom 1976)

1 N

achieves the maximum P = —(1 + Z |/l,,|).
2 -
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Discrimination from noisy qubits
Quantum noise on a qubit in state p can be represented by random applications
of (one of) the 4 Pauli operators {I,, oy, oy, 0-} on the qubit, e.g.

Bit-flip noise : p — N(p) = (1 — p)p + pO’XpO'I,

Depolarizing noise : p — N(p) = (1 — p)p + g((rxp(r}; + o'yp(r; + o';pa'Z) .

With a noisy qubit, discrimination from N(pg) and N(p;).

— Impact of the probability p of action of the quantum noise,
on the performance P of the optimal detector,
in relation to stochastic resonance and enhancement by noise.

(Chapeau-Blondeau, Physics Letters A 378 (2014) 2128-2136.)
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Quantum state discrimination and enhancement by noise

® CrossMark

Frangois Chapeau-Blondeau

Laborutoire Angevin de Recherche en Ingenierie de Dame du Lac, 49000 Angers, France

ARTICLE INFO ABSTRACT

Aride history. Discrimination between two quantum stares is addressed as a quantum detection process where a
Received 12 February 2014 ‘measurement with two outcomes is performed and a conclusive binary decision results about the
Received in revised form 15 May 2014
Accepted 17 May 2014

Available online 27 May 2014
Communicated by CR. Doering

state. The performance is assessed by the overall probability of decision error. Based on the theory of
quantum detection, the optimal measurement and its performance are exhibited in general conditions.
An application is realized on the qubit, for which generic models of quantum noise can be investigated
for their impact on state discrimination from a noisy qubit. The quantum noise acts through random
Rwrds application of Pauli operators on the qubit prior to its measurement. For discrimination from a noisy
Quantum state discrimination qubit, various situations are exhibited where reinforcement of the action of the quantum noise can
Quantum noise be associated with enhanced performance. Such implications of the quantum noise are analyzed and
Quantum detection interpreted in relation to stochastic resonance and enhancement by noise in information processing.

signal detection © 2014 Elsevier BV. Al rights reserved.
Enhancement by noise
Stochastic resonance
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Discrimination among M > 2 quantum states

A quantum system can be in one of M alternative states p,,, form = 1 to M,
with prior probabilities P,, with ¥ P, = 1.

Problem : What is the best measurement {M,,} with M outcomes to decide
with a maximal probability of success Py ?

M
— Maximize Py, = Z Py, tr(p,,M,,,) according to the M operators M,,,
m=1

SUbjCCt to 0< M,n <lIy and fo’:] M,n =1Iy.

For M > 2 this problem is only partially solved, in some special cases.
(Barnett et al., Adv. Opt. Photon. 2009).
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Error-free discrimination between M = 2 states

Two alternative states py or p; of Hy, with priors Py and P; = 1 — Py,

are not full-rank in Hy, e.g. supp(py) C Hy <= [supp(po)]* D {6}.

If Sy = supp(po) N [supp(p1)]* # {5}, error-free discrimination of py is possible.
If S; = supp(p1) N [supp(po)]*- # {6}, error-free discrimination of p; is possible.
Necessity to find a three-outcome measurement {My, My, My}

Find 0 < My < Iy s.t. My = d@I1; “proportional” to IT; projector on [supp(p;)]*,

and 0 <M, <Iy s.t. My = g,II, “proportional” to I, projector on [supp(po)]*,
and My + M, < Iy = IM” + M + My = Iy with 0 < M, < l

maximizing Py, = Py tr(Mopo) + Py tr(Mp;) (= min Pype = 1 — Pgye)
This problem is only partially solved, in some special cases,
(Kleinmann et al., J. Math. Phys. 2010).
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Error-free discrimination between M > 2 states

M alternative states p,, of Hy, with prior P, form=1,...M ;

each p,, must be with defective rank < N.
Kon

e ————
For all m = 1 to M, define S,, = supp(p,,) N {ﬂ[SUPP(Pl)]J'}

l#m

For each nontrivial S,, # {6}, then p,, can go where none other p; can go.

= Error-free discrimination of p,, is possible,
by M,, such that 0 < M,, < Iy and M,, “proportional” to the projector on %,,.

To parametrize M,,, find an orthonormal basis {Iu”’)}d‘m(’(’") of K,
then M, Zd""”(’“) a’|uyy u| = @™ I, with IT,, projector on %,.

Find the M,, (the @™) with Y,, M,, < Iy maximizing Py, = Y., P trt(M,,0).

This problem is only partially solved, in some special cases, (Kleinmann, J. Math. Phys. 2010).
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Communication over a noisy quantum channel (1/3)

(X =x,p) — p; I Nipj) = pf, —| K-clement POVM |

Rate 1(X:Y) <X(o}, pj) = S(0') - ijsmp with o’ = Zp,p,
Jj=1 j=1

Y{(p;,p;)} and N(-) given, there always exists a POVM to achieve

IX;Y) =X}, pj)

ie. X (p;., pj) is an achievable maximum rate for error-free communication,

by coding successive classical input symbols X in blocks of length L — oo.

B. Schumacher, M. D. Westmoreland; “Sending classical information via noisy quantum channels”;
Physical Review A 56 (1997) 131-138.

A. S. Holevo; “The capacity of the quantum channel with general signal states™;
1EEE Transactions on Information Theory 44 (1998) 269-273.
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Communication over a noisy quantum channel (2/3)

For given N(:) therefore X, = (max))((N(p_,-), p,-)
p/’/)/

is the overall maximum and achievable rate for error-free communication
of classical information over a noisy quantum channel,

or the classical information capacity of the quantum channel,

for product states or successive independent uses of the channel.
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Communication over a noisy quantum channel (3/3)

For non-product states or successive non-independent but entangled uses of the
channel, due to a convexity property, the Holevo information is always
superadditive Xmax(N1 @ N2) = Xmax(N1) + Xmax(N2) . (Wilde 2016 Eq. (20.126))

For many channels it is found additive, X (N @ N2) = Xmax(N1) + Xmax(N2)
so that entanglement does not improve over the product-state capacity.

Yet for some channels it has been found strictly superadditive,

Xinax(N1 @ N2) > Xnax(N1) + Xmax(N>2) meaning that entanglement does

improve over the product-state capacity.

M. B. Hastings; “Superadditivity of communication capacity using entangled inputs”;
Nature Physics 5 (2009) 255-257.

Then, which channels ? which entanglements ? which improvement ? which
capacity ? ... (largely, these are open issues).
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Infinite-dimensional states (1/5)

A particle moving in one dimension has a state |y/) = Y(x)|x)dx in an

orthonormal basis {|x)} of a continuous infinite-dimensional Hilbert space H.

The basis states {|x)} in H satisfy (x|x’) = &(x — x’) (orthonormality),

|x) (x|dx =1 (completeness).

The coordinate € 3 y/(x) = (x|i) is the wave function, satisfying

1= f W(Pdx = f W) () dx = f W) gy dx = (W)

with [(x)| the probability density for finding the particle at position x when

measuring position operator (observable) X = x|x) (x| dx (diagonal form).

—0oo
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Infinite-dimensional states (2/5)

A particle moving in three dimensions has a state [) = | ¥(7#)|F)d7 in an

orthonormal basis {|7)} of a continuous infinite-dimensional Hilbert space H.

The basis states {|7*)} in H satisfy (#|#’) = 6(#— ') (orthonormality),

[#)y(F|d? =1 (completeness).

The coordinate € 3 y/(7) = (F|y) is the wave function, satisfying
1= [wiiar= [w@uwar= [win @ e =ww.

with [(7)? the probability density for finding the particle at position 7
when measuring the position observable R= f 7 |7y(#|d7 (diagonal form),
vector operator with components the 3 commuting position operators X=Rj,,
Y =R,, Z=R;, and orthonormal basis of eigenstates {|7)} i.e. R |#y = 7 |P).
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Infinite-dimensional states (3/5)

Another orthonormal basis of H is formed by {|7)} the eigenstates of the
momentum observable P or velocity V=F /m,
also satisfying (F|p’) = 6(7 — p’) (orthonormality),

flﬁ) (p|dp =1 (completeness), and I |7 = P |P) (eigen invariance).

After De Broglie, by empirical postulation, a particle with a well defined
momentum /5 is endowed with a wave vector k= pP/h and a wave function

o
#(F) = exp(ik ) = ) in position representation,

1 1 P
Q2 Qi P\

. _ B 1
defining the state |) = f¢(?)|7) dr = —(27rh)3/2 fexp( )I?) d7,
with (7|7) = ¢(7) .
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Infinite-dimensional states (4/5)

Particle with arbitrary state H > |f) = f (@) |7ydit = f‘{‘(ﬁ) |pydp,
= —_
(Fly) (Pl

. _ _ L1 BT
with T(ﬁ)—(ﬁllﬁ)—fw(?)(ﬁI?)dr— Qi fw(V)eXP( = )d?,

i.e. the wave function W'(7) in momentum representation is the
Fourier transform of the wave function ¢(7) in position representation.

Position operator R =f? |?)(F|dF acting on state [/) with wave function ¥(7)

in F-representation = R [y has wave function 7y/(7) in P-representation,

since ﬁlw)=f?|?)(?|d?|¢//)=f?|?>(?|w>d?=f FY(7) |F)dF.
Niga” .
W(7?) wf of Rly)
90/102




Infinite-dimensional states (5/5)

Momentum operator P= f PPy (pldp (its diagonal form)
acting on state |yy) with wave function W(7) in j-representation
=P [y has wave function 7W(5) in j-representation,

sinceﬁ’|w>=fﬁ|ﬁ><ﬁ|dﬁ Iw>:fﬁ|ﬁ><ﬁlw>dﬁ:fﬁ‘l’(ﬁ) 17)d5.
S—— N —
Y(3) wf of Ply)

FT! [ pY(p )] = —ihvw(? ) gives wave function(s) of P [ty in P-representation.

Canonical commutation relations [Ry, P/] = iid; 1, for k, ¢ = x,y,z,

I3
then ArpApp > 5 Ore  Heisenberg uncertainty relations.
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Continuous-time evolution of a quantum system
By empirical postulation Schrodinger equation (for isolated systems) :
d i 1 1)
W= = HIp = ) = e~ f Hat) () = U, 1) )
1 n
N

unitary U(t, 1)

Hermitian operator Hamiltonian H, or energy operator.

1 52
A particle of mass m in potential V(7 r) has Hamiltonian H = 2—3 + V(ﬁ, 1),
m
giving rise to the Schrodinger equation for the wave function (7, 1) = (F|)
d 2
F-representation iha— WA ) = ——AY(F D+ VEDY(F D) .
t 2m
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Quantum feedback control

PHYSICAL REVIEW A 80. 013805 (2009)

Quantum feedback by discrete quantum nondemolition measurements:
Towards on-demand generation of photon-number states

L. Dotsenko.">* M. Mirrahimi.* M. Brune." S. Haroche." J.-M. Raimond." and P. Rouchon*
'Laboratoire Kastler Brossel Ecole Normale Supérieure, CNRS, Université P. et M. Curie,
24 rue Lhomond, F-75231 Paris Cedex 5, France

:Cn//ége de France, 11 Place Marcelin Berthelot, F-75231 Paris Cedex 5, France
3INRIA Rocquencourt, Domaine de Vouceau, BP 105, 78153 Le Chesnay Cedex, France

“Centre Automatique et Systémes, Mathématiques et Systémes, Mines ParisTech,

60 Boulevard Saint-Michel, 75272 Paris Cedex 6, France
(Received 1 May 2009; published 9 July 2009)

We propose a quantum feedback scheme for the preparation and protection of photon-number states of light
trapped in 4 high-Q microwave cavity. A quantum nondemolition measurement of the cavity field provides
on the pr ion. The feedback loop is closed by injecting into the cav

coherent pulse adjusted 1o increase the probability of the target photon number, The efficiency and reliability
of the closed-loop state stabilization is assessed by quantum Monte Carlo simulations. We show that, in
realistic experimental conditions. the Fock states are efficiently produced and protected against decoherence.

DOI: 10.1103/PhysRevA.80.013805 PACS number(s): 42.50.Dv. 02.30.Yy, 42.50.Pq 93/102

System dynamics :

e Schrodinger equation (for isolated systems)

d ] i
=0y = =) = ) = expl- [ Ha) ) = U, ) )
dt h hJy

—_—
unitary U(1y.2)

Hermitian operator Hamiltonian H = Hy + H,, (control part H,).
d i o
Jp = 7;[[H,p] (Liouville — von Neumann equa.) = p(12) = U(t1, 12) p(t1) UT (11, 12).

t
e Lindblad equation (for open systems)
d i B B
—p=-—[H,pl+ Z(ZLIpL'Y —{L! L,-,p}), Lindblad op. L; for interaction with environment.
dt n 5 Y
Measurement : Arbitrary operators {E,,} such that ¥, EI,‘E,,, =1y,
Prim) = tr(EppEL,) = tr(pE},Epm) = tr(oM,,) with M,, = EJ,E,,, positive,

EnpE),

Post-measurement state Pm = T et
tr(EnpE;y)
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PHYSICAL REVIEW A 91, 052310 (2015)

Optimized probing states for qubit phase estimation with general quantum noise

Francois Chapeau-Blondeau
Laboratoire Angevin de Recherche en Ingénierie des Systemes (LARIS). Université d’Angers,
62 avenue Notre Dame du Lac, 49000 Angers, France
(Received 27 March 2015: published 12 May 2015)

We exploit the theory of g imation to i i 2 state in the presence of
noise. The quantum Fisher mromnuon is used to assess thc eslmmnon performance. For the qubit in Bloch
general exp are derived for the quantum score and then for the quantum Fisher information.
me this latter expression, it is proved that the Fisher information always increases with the purity of the
measured qubit state. An arbitrary quantum noise affecting the qubit is taken into account for its impact on
the Fisher information. The task is then specified to estimating the phase of a qubit in a rotation around an
arbitrary axis, equivalent to estimating the phase of an arbitrary si; ubit quantum gate. The analysis enables
determination of the optimal probing states best resistant to the noise, and proves that they always are pure
states but need to be specifically matched to the noise. This optimization is worked out for several noise models
important to the qubit. An adaptive scheme and a Bayesian approach are presented to handle phase-dependent
solutions.

DOI: 10.1103/PhysRevA.91.052310 PACS number(s): 03.67.—a, 42.50.Lc. 05.40.—a
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PHYSICAL REVIEW A 94, 022334 (2016)
Optimizing qubit phase estimation

Francois Chapeau-Blondeau
Laboratoire Angevin de Recherche en Ingénierie des Systémes (LARIS), Université d’Angers,
62 avenue Notre Dame du Lac, 49000 Angers, France
(Received 5 June 2016: revised manuscript received 2 August 2016: published 24 August 2016)

The theory of quantum state estimation is exploited here o investigate the most efficient strategies for this task.
especially targeting a LOI“PIL[L pu.um identifying optimal conditions in terms of Fisher information. quantum
and The approach is specified to estimation of the phase of a qubit in a

rotation around an arbitrary given axis, equivalent to estimating the phase of an arbitrary single-qubit quantum
gate. both in noise-free and then in noisy conditions. In noise-free conditions. we establish the possibility of
defining an optimal quantum probe. optimal quantum and optimal together capable of
achieving the ultimate best performance uniformly for any unknown phase. With arbitrary quantum noise, we
show that in general the optimal solutions are phase dependent and require adaptive techniques for practical
implementation. However, for the important case of the depolarizing noise, we again establish the possibility of
a quantum probe, quantum measurement, and estimator uniformly optimal for any unknown phase. In this way,
for qubit phase estimation, without and then with quantum noise. we characterize the phase-independent optimal
solutions when they generally exist, and also identify the complementary conditions where the optimal solutions
are phase dependent and only adaptively implementable.

DOI: 10.1103/PhysRevA .94.022334
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Abstract

For binary images, or bit planes of

v images, we i it the ibility of a
frames shared with the

quantum coding bya in the absence of
emilter. Direct imsge coding with one qubil per pixel and non-aligned frames leads (o decoding
errors equivalent to a quantum bit-flip noise increasing with the misalignment. We show the
feasibility of frame-invariant coding by using for each pixel a qubit pair prepared in one of two
contralled entangled states. With just ane camman axis shared hehveen the emitter and
receiver, exact decoding for each pixel can be obtained by means of two two-outcome projective
measurements operating separately on each qubit of the pair. With strictly no alignment

information between the emitter and receiver, exact decoding can be obtained by means of a

jointly on the qubit pair. In addition, the
frame-invariant coding is shown much more resistant Lo quantum bil-flip noise compared Lo
the dircet non invariant coding. For a cost per pixel of two (entangled) qubits instead of one,

complete frame-invariant image coding and enhanced noise resistance are thus obtained.
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Dimensionality expansion in quantum theory

© The most elementary and nontrivial object of quantum information is the qubit, representable with a state vector
|1) in the 2-dimensional complex Hilbert space ;.

Such a pure state [¢/;) of a qubit is thus a 2-dimensional object (a 2 x 1 vector).

On such a pure state |y ), any unitary evolution is described by a unitary operator belonging to the 4-dimensional
space L(#,). the space of linear applications or operators on 5.

A unitary evolution of a pure state [i/;) of a qubit is thus a 4-dimensional object (a 2 X 2 matrix).

* Accounting for the essential property of decoherence on a qubit, requires it be represented with the extended
notion of a density operator p), existing in the 4-dimensional space L(7,).

Such a mixed state p; of a qubit is thus a 4-dimensional object (a 2 X 2 matrix).

On such a mixed state p; of a qubit, any nonunitary evolution such as decoherence, should be described by an
operator belonging to the 16-dimensional space .L([(‘Hz)).

A nonunitary evolution of a mixed state p; of a qubit is thus a 16-dimensional object (a 4 X 4 matrix).

o The essential property of intrication starts to arise with a qubit pair. A qubit pair in a pure state |/, ) exists in the
4-dimensional Hilbert space H> ® H>, while a qubit pair in a mixed state is represented by a density operator p
existing in the 16-dimensional Hilbert space L(H, ® H>).

A mixed state p, of a qubit pair is thus a 16-dimensional object (a 4 X 4 matrix).

On such a mixed state p, of a qubit pair, any nonunitary evolution such as decoherence, should be described by an
operator belonging to the 256-dimensional space .C(L('Hz ®H, )).

A nonunitary evolution of a mixed state p, of a qubit pair is thus a 256-dimensional object (a 16 x 16 matrix).
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Technologies for quantum computer

4 Quantum-circuit decomposition approach :
e Photons : with mirrors, beam splitters, phase shifters, polarizers.

e Trapped ions : confined by electric fields, qubits stored in stable electronic states,
manipulated with lasers. Interact via phonons.

e Light & atoms in cavity : Cavity quantum electrodynamics (Jaynes-Cummings
model).

2012 Nobel Prize of D. Wineland (USA) and S. Haroche (France).
e Nuclear spin : manipulated with radiofrequency electromagnetic waves.

e Superconducting Josephson junctions : in electric circuits and control by electric
signals.

(Quantronics Group, CEA Saclay, France.)

e Electron spins : in quantum dots or single-electron transistor, and control by electric
signals.

M. Veldhorst et al.; “A two-qubit logic gate in silicon”; Nature 526 (2015) 410-414.
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+ Quantum annealing, adiabatic quantum computation :

For finding the global minimum of a given objective function, coded as the ground
state of an objective Hamiltonian.

Computation decomposed into a slow continuous transformation of an initial
Hamiltonian into a final Hamiltonian, whose ground states contain the solution.

Starts from a superposition of all candidate states, as stationary states of a simple
controllable initial Hamiltonian.

Probability amplitudes of all candidate states are evolved in parallel, with the
time-dependent Schrodinger equation from the Hamiltonian progressively deformed
toward the (complicated) objective Hamiltonian to solve.

Quantum tunneling out of local maxima helps the system converge to the ground
state solution.

A class of universal Hamiltonians is the lattice of qubits (with Pauli operators X, Z) :
H= Y hZi+ 3 aXe+ Y Jp@Zi+ XX + ) KX Zi .
N k Jk ik

J. D. Biamonte, P. J. Love; “Realizable Hamiltonians for universal adiabatic quantum
computers”; Physical Review A 78 (2008) 012352,1-7.
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A commercial quantum computer : Canadian D-Wave :

£ itp /v dvavesys ucs-senvices el | 4

D:\wave

Quantum computing

has arrived.

Since 2011 : a 128-qubit processor, with superconducting circuit implementation.

Based on quantum annealing, to solve optimization problems.

May 2013 : D-Wave 2, with 512 qubits. $15-million joint purchase by NASA & Google.
Aug. 2015 : D-Wave 2X with 1000 qubits. Jan. 2017 : D-Wave 2000Q with 2000 qubits.
Nature 473 (2011) 194-198.
T. Lanting, ez al.; “Entanglement in a quantum annealing processor”; Phys. Rev. X 4 (2014) 021041.

M. W. Johnson, et al.; “Quantum annealing with manufactured spins™;
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Quantum Experiments at Space Scale

From Wikipedia, the free encyclopedia

Quantum Experiments at Space Scale (QUESS, Chinese’ & =RDE
pinyin: Liangz! kéxué shiyan wéiing: Iiterally' “Quantum Science Experiment
Satellte"). Is an intemational research project in the field of quantum physics. A
satelite, nicknamed Micius or Mozl (Chinese: %) after the ancient Chinese
philosopher and scientist, is operated by the Chinese Academy of Sciences, as well
as ground stations in China. The University of Vienna and the Austrian Academy of
Sciences are running the sateliite’s European receiving stations ! QUESS is a
proof-of-concept mission designed to facilitate quanium optics experiments over
long distances to allow the development of quantum encryption and quantum
teleportation technology ¥ Quantum encryption uses the principle of entanglement
o facilitate communication that is totally safe against eavesdropping, let alone
decryption, by a third party. By producing pairs of entangled photons, QUESS will
allow ground stations separated by many thousands of kilometres to establish

Read Edit View history Q

Quantum Experiments at Space Scale

Names

Mission type  Technology demonstrator
Operator
COSPARID  2016-051A"

inese Academy of Science

Mission 2years (planned)
duration

Spacecraft properties
Manufacturer  Chinese Academy of Science
BOLmass  631kg(1.39110)

Start of mission

secure quantum channels ! QUESS itsef has fimited capabilies: 1t
needs line-of-sight, and can only operate when not in suniight  If QUESS is
successful. further Micius satellites will follow, allowing a European-Asian quantum-
encrypted network by 2020, and a global network by 2030.°1"

‘The mission will cost around USS100 million in total &

ILauncndale 17:40 UTC, sAugusxzmaliI

Rocket

Launch site
Contractor  Snanghal Academy of Spaceflignt
Technology
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