Séminaire LARIS, 8 juillet 2014.

Information quantique,
calcul quantique :

des rudiments a la recherche (en 45 min !).
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Motivations pour le quantique

pour le traitement de I'information :

1) Quand on utilise des systémes élémentaires (photons, électrons,

atomes, nanodevices, ... ).

2) Pour bénéficier d’effets purement quantiques (parallélisme,

intrication, ... ).

3) It’s fun !
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Quantum system Measurement of the qubit
Represented by a state vector |¢) When a qubit in state [¢)) = «|0) + 8]1)
in a complex Hilbert space H, is measured in the orthonormal basis {|0),|1)},
ith unit no = lY|I* =1.
with unit norm () = || = only 2 possible outcomes (Born rule) :
) ) . state |0) with probability |a|? = | (0[) |2, or
In dimension 2 : the qublt (photon, electron, atom, ) state ’1> with probability ’B‘Q — | <1|¢> |2_
State ) = a|0) + B |1)
in some orthonormal basis {|0),|1)} of Ha,
with |af? +[8[* = 1. Measurement :
e a probabilistic process,
) = [a} )t =@ =", 8] = @) = |[¥|® = |af* + |8|° scalar. e as a projection of the state |¢) in an orthonormal basis,
&) : - . .
e with statistics evaluable over repeated experiments with same
« v s aa”  af” , .
[9) (Y| = [ } [a”, B"] = { . *] =TI, orthogonal projector on [¢). preparation [1)).
B g BB
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Bloch sphere representation of the qubit

Qubit in state
1) = a|0) + B ]1) with |a]* +[B]* = 1.
< 1) = cos(0/2)]0) + € sin(6/2) |1)

As a quantum object
the qubit has infinitely many degrees of freedom (6, ¢),
yet when it is measured it can only be found in one of two states

(just like a classical bit). 5/25

Multiple qubits

A system (a word) of N qubits has a state in H$™,

a tensor-product vector space with dimension 2%,
d orth 1 basi - :

and orthonormal basis {|ziz2 xN>}f c oY

Example N =2 :

Generally [¢) = ago [00) + a1 [01) + a1 [10) + a1 [11) .

Or, as a special separable state
9) = (110} + 81 11)) @ (a2 [0) + B2 1))
= X109 |00> —+ 04152 |01> —+ 51042 |10> + 6152 |11> .

A multipartite state which is not separable is entangled.

Entangled states

e Example of a separable state of two qubits AB :
1 1 1
4B) = —=(10) + 1) ® = (10} + 1)) = £ (100) +]01) +]10) +]11)) .

When measured in the basis {|0),|1)}, each qubit A and B can be found in
state |0) or |1) independently with probability 1/2.

e Example of an entangled state of two qubits AB :

|AB) = % (100) +111)) -

When measured in the basis {|0),|1)}, each qubit A and B can be found in
state |0) or |1) with probability 1/2 (randomly, no predetermination before measure).
But if A is found in |0) necessarily B is found in |0),

and if A is found in |1) necessarily B is found in |1),

no matter how distant the two qubits are before measurement.

Computation on a qubit
Through a unitary operator U on Hs (a 2 X 2 matrix) :

normalized vector |¢)) € Ho — U |¢)) normalized vector € Hs .

input output
) —= U

= quantum gate
— Ulv)

Hadamard gate H = — -
adamard gate H = — .
V2

R P P

{1,X,Y,Z} a basis for operators on Hs.

O 1

0
Pauli gates X = [1
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Computation on a pair of qubits
Through a unitary operator U on H 2 (a 4 x 4 matrix) :

normalized vector |¢) € HE? — U [¢) normalized vector € H$? .

Computation on a system of N qubits

Through a unitary operator U on HS"Y (a 2V x 2V matrix) :

normalized vector |¢p) € HEYN — U |tp) normalized vector € HEN .

input output U
= quantum gate — e = quantum gate : N input qubits ——— N output qubits.
(always reversible) 1) U Uly)
Any N-qubit quantum gate may be composed
Controlled-Not, gate : from C-Not gates and single-qubit gates (universatility).
’ T cerT
CT) —|C,CeT) |CT) ] IC,CaT)
|00) — ]00) o > > o 10 00 This forms the grounding of quantum computation.
o1) — Jo1) s fo1oo
|10)  — |11) 0001
111) — |10) 0010
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Deutsch-Jozsa algo. (1992) : Parallel evaluation of a function Deutsch-Jozsa algorithm B
A classical function £0) {o,1}"  —  {0,1} (Desurvire 2009, O e
2N values —» 2 values, Cambridge Univ. Press) =)
can be constant or balanced (equal numbers of 0,1 in output). =z -+ B o
2N " # [A’%H e \.)} M;flh
Classically : Between 2 and — + 1 evaluations of f(-) to decide. i 2 T itis
2 - %[22
We call |x) the query register, similarly to the “register” in the classical von Neumann
architecture {Chapter 15 the difference being that it is made of gubirs. At @, we obtain”®
Quantumly : One evaluation of f(-) is enough. s I
:E% & M.ﬂ;i @ fix)) o
1 1/2 ®N 1 1/2 e T
) = (_N) <|0> + |1>) =\|5~5 Z |z122 - TN ) L=F
2 2 EE{O 1}N And at @, after passing the top n-qubit through the parallel gate H®", we obtain:
W) = HO ()
fix) prompey | =3 K
Quantum ) b :le_nli;c—n- I |v.i| ]
o circuit qu 1t To develop the right-hand side in Eq (199) we must calculste H®|x) =
H® jxpxs. .. x,). Itis an easy exercise to establish that
. |_. 1 chit e e e -
W> f( ) . Decoder H -x,fglf\l =), (19.10)
N qubits N ,qultS |_> RO Sas(n te, T § P
’ W) = :Lﬂ {ZE"‘ i \::-] ) (19,11
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Superdense coding (Bennett 1992) : exploiting entanglement

1
Alice and Bob share a qubit pair in the entangled state |¢) = 7 (|00> + ]11>).

Alice chooses two classical bits, pack them into a single qubit.

Bob receives this qubit, from which he recovers the two classical bits.
Alice Bob

1 gbit

2 cbits
—

2 chits
Decoder ||F—F—

N < K=

&) 2 entangled qubits

Teleportation (1993) is the opposite : a shared pair of entangled qubits
and two classical bits transmitted from Alice to Bob

enable the transfer of an arbitrary quantum state [¢) of a qubit.
13/25

Other quantum algorithms

e Grover quantum search algorithm (1996) :
Quantum search in an unsorted database.

Finds one item among N in O(v/N) steps (instead of O(N) classically).

e Shor factoring algorithm (1997) :

Factors any integer in polynomial complexity
(instead of exponential classically).

15 = 3 x 5, with spin-1/2 nuclei (Vandersypen et al., Nature 2001).

21 = 3 x 7, with photons (Martin-Lépez et al., Nature Photonics 2012).
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Density operator

Quantum system in (pure) state [1;), measured in an orthonormal basis {|k)} :

= probability Pr{|k)[[v;)} = | (klv;) |* = (klv;) (;1k) -

Several possible states [1);) with probabilities p; (with 3. p; =1) :

— Pr{lk)} = 52, py Pr{lR) |03} = (k| (X, 23 [s) (1) 1K) = Gkl plR)
with density operator p = 3= p; [1h;) (5] .

and Pr{|k)} = (k| p k) = tx(p |k) (k]) = tx(pILy) -

The quantum system is in a mixed state, corresponding to the statistical

ensemble {p;,|¥;)}, described by the density operator p.

Lemma : For any operator A with trace tr(A) =3, (k| A |k), one has
tr(A ) (Y1) =220 (kI A ) (Plk) =22, (YIk) (k| AlY) = (¢|<Zk k) (M)A [¥) = (Y] A |¥)
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Generalized measurement

In a Hilbert space Hy with dimension N, the state of a quantum system
is specified by a Hermitian positive unit-trace density operator p.

e Projective measurement :

Defined by a set of N orthogonal projectors |k) (k| = Il ,

verifying >, |k) (k| =3, IIx =1,

and Pr{|k)} = tr(pIlx) . Moreover >, Pr{lk)} =1,Vp <= >, Il = 1.

e Generalized measurement :
Defined by a set of an arbitrary number of positive operators M,,,
verifying >~ M,, =1,

and Pr{M,,} = tr(pM,,). Moreover »  Pr{M,,} =1,Vp<= > M, =1.
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Quantum state discrimination

A quantum system can be in one of two alternative states po or pi
with prior probabilities Py and P, =1 — F.

Question : What is the best measurement {Mg, M1} to decide
with a maximal probability of success Psuc 7

Answer : One has Psyc = Po tr(poMo) + P1tr(piM1) = Py + tr(TMy),

with the test operator T = Pip1 — Popo-

Then Py, is maximized by M(fpt = Z |An) (A,
An >0
the projector on the eigensubspace of T with positive eigenvalues A,,.

The optimal measurement {M{P*, MgP* = 1 — M{P*}

1 N
achieves the maximum Po™ = — (1 + Z |/\n|> (Helstrom 1976)
2 n=1
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Discrimination from noisy qubits
Quantum noise on a qubit in state p can be represented by random
applications of (one of) the 4 Pauli operators {1,X,Y,Z} on the qubit, e.g.

Bit-flip noise : p — N(p) = (1 — p)p + pXpX',

Depolarizing noise : p — N(p) = (1 —p)p + g(XpXT +YpYT + ZpZT) .

With a noisy qubit, discrimination from N(pg) and N (p1).

— Impact of the probability p of action of the quantum noise,
on the performance P2* of the optimal detector,
in relation to stochastic resonance and enhancement by noise.
(Chapeau-Blondeau, Physics Letters A 2014)
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Discrimination berween two quantum states is addressed as a quantum detection process where a
measurement with two outcomes is performed and a conclusive binary decision results about the
state. The performance is assessed by the overall probability of decision error. Based on the theory ef
quantum detection, the optimal measurement and its performance are exhibited in general conditions.
An application is realized on the qubit, for which generic models of quantum noise can be investigated
for their impact on state discrimination from a noisy qubit. The quantum noise acts through random
Keywords: application of Pauli operators on the qubit prior to its measurement. For discrimination from a noisy
Quantum state discrimination qubit, various situations are exhibired where reinforcement of the action of the quantum noise can
Quantum noise be associated with enhanced performance. Such implications of the quantum noise are analyzed and
Quantum detection interpreted in relation to stochastic resonance and enhancement by noise in information processing.
Signal detection @© 2014 Elsevier BV. All rights reserved.
Enhancement by noise

Stochastic resonance
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Discrimination among M > 2 quantum states

A quantum system can be in one of M states p,,, for m =1 to M,
with prior probabilities P, with >-¥_ P, = 1.

Problem : What is the best measurement {M,,} with M outcomes to decide
with a maximal probability of success Psyc 7

M
= Maximize Piyc = Z Py, tr(pm M, ) according to the M operators M,,,
m=1

subject to 0 < M, <1 and M M, =1.

For M > 2 this problem is only partially solved, in some special cases.
(Barnett et al., Adv. Opt. Photon. 2009).

Try interval analysis, etc 7 ...
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Error-free discrimination between M = 2 states

Two alternative states po or p1 of Hy, with priors Py and P, =1 — P,
are not full-rank in Hy, e.g. supp(po) C Hy <= [supp(po)]* D {0}.

If So = supp(po) N [supp(p1)]*t # {0}, error-free discrimination of po is possible.
If S; = supp(p1) N [supp(po)]t # {0}, error-free discrimination of p; is possible.

Necessity to find a three-outcome measurement {Mo, M1, Munc} :

— Find My such that 0 < My < 1 and {0} C supp(Mo) C So,
and M; such that 0 < M; < 1 and {0} C supp(M;) C Si,
and Mo + My < T <= [Mo + My + Mune = T with 0 < Mune < 1],
maximizing Psue = Po tr(Mopo) + P1 tr(Mip1) (= min Pune = 1 — Paye)
This problem is only partially solved, in some special cases,

even more so for extension at M > 2.
(Kleinmann et al., J. Math. Phys. 2010).

Quantum feedback control
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Quantum feedback by discrete quantum nondemolition measurements:
Towards on-demand generation of photon-number states
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We propose a quantum feedback scheme for the preparation and protection of photon-number states of light
trapped in a high-Q microwave cavity. A quantum nondemolition measurement of the cavity field provides
information on the photon-number distribution. The feedback loop is closed by injecting into the cavity a
coherent pulse adjusted to increase the probability of the target photon number. The efficiency and reliability
of the closed-loop state stabilization is assessed by quantum Monte Carlo simulations. We show that. in
realistic experimental conditions. the Fock states are efficiently produced and protected against decoherence.
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System dynamics : Pour aller plus loin
e Schrédinger equation (for closed systems)
d i i Classical and Mark M. Wilde
w lv) = —gH Yy = [¢(t2)) = eXp(—EH(h - tl)) [(t1)) = Ul(ta, t2) [¢(t1)) Quantum Information
ThepDiigsssaso: Quantum
unitary U(ty,t2) Quantum Computation EUDESURVIRE :
Hermitian operator Hamiltonian H = Hg + H,, (control part Hy,). and Quantum Informati Informatlon
d i Theory
— P =3[ pl = p(t2) = Ulta, t2) p(t) U (11, 22).
e Lindblad equation (for open systems)
d )
ap = —%[H, o] + Z (2Lj pL; - {L;Lj,p}), Lindblad op. L; for interact. with environt.
j
Measurement : Arbitrary operators {E,,} such that >om El E, =1, —
Pr{m} = tr(EmpEl ) = tr(pE! E,,) = tr(pM,,) with M,,, = El E,, positive,
B, pE! M. Nielsen & I. Chuang E. Desurvire M. Wilde
Post-measurement state p,, = ﬁ : 2000, 676 pages 2009, 691 pages 2013, 655 pages
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Merci de votre attention.

Si vous avez compris . ..
c’est que je me suis mal exprimé !

“Nobody really understands quantum mechanics.”
R. P. Feynman
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