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Séminaire LARIS, 8 juillet 2014.

Information quantique,

calcul quantique :

des rudiments à la recherche (en 45min !).

François Chapeau-Blondeau

LARIS, Université d’Angers, France.
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Motivations pour le quantique

pour le traitement de l’information :

1) Quand on utilise des systèmes élémentaires (photons, électrons,

atomes, nanodevices, . . . ).

2) Pour bénéficier d’effets purement quantiques (parallèlisme,

intrication, . . . ).

3) It’s fun !
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Quantum system
Represented by a state vector |ψ〉
in a complex Hilbert space H,

with unit norm 〈ψ|ψ〉 = ‖ψ‖2 = 1.

In dimension 2 : the qubit (photon, electron, atom, . . . )

State |ψ〉 = α |0〉+ β |1〉
in some orthonormal basis {|0〉 , |1〉} of H2,

with |α|2 + |β|2 = 1.

|ψ〉 =
[

α

β

]

, |ψ〉† = 〈ψ| = [α∗, β∗] =⇒ 〈ψ|ψ〉 = ‖ψ‖2 = |α|2 + |β|2 scalar.

|ψ〉 〈ψ| =
[

α

β

]

[α∗, β∗] =

[

αα∗ αβ∗

α∗β ββ∗

]

= Πψ orthogonal projector on |ψ〉.
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Measurement of the qubit

When a qubit in state |ψ〉 = α |0〉+ β |1〉
is measured in the orthonormal basis {|0〉 , |1〉},
=⇒ only 2 possible outcomes (Born rule) :

state |0〉 with probability |α|2 = | 〈0|ψ〉 |2, or
state |1〉 with probability |β|2 = | 〈1|ψ〉 |2.

Measurement :

• a probabilistic process,

• as a projection of the state |ψ〉 in an orthonormal basis,

• with statistics evaluable over repeated experiments with same

preparation |ψ〉.
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Bloch sphere representation of the qubit

Qubit in state

|ψ〉 = α |0〉+ β |1〉 with |α|2 + |β|2 = 1.

⇐⇒ |ψ〉 = cos(θ/2) |0〉+ eiϕ sin(θ/2) |1〉 .

As a quantum object

the qubit has infinitely many degrees of freedom (θ, ϕ),

yet when it is measured it can only be found in one of two states

(just like a classical bit).
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Multiple qubits

A system (a word) of N qubits has a state in H⊗N2 ,

a tensor-product vector space with dimension 2N ,

and orthonormal basis {|x1x2 · · · xN 〉}
~x ∈ {0, 1}N

.

Example N = 2 :

Generally |ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 .

Or, as a special separable state

|φ〉 =
(

α1 |0〉+ β1 |1〉
)

⊗
(

α2 |0〉+ β2 |1〉
)

= α1α2 |00〉+ α1β2 |01〉+ β1α2 |10〉+ β1β2 |11〉 .

A multipartite state which is not separable is entangled.
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Entangled states

• Example of a separable state of two qubits AB :

|AB〉 = 1√
2

(

|0〉+ |1〉
)

⊗ 1√
2

(

|0〉+ |1〉
)

=
1

2

(

|00〉+ |01〉+ |10〉+ |11〉
)

.

When measured in the basis {|0〉 , |1〉}, each qubit A and B can be found in

state |0〉 or |1〉 independently with probability 1/2.

• Example of an entangled state of two qubits AB :

|AB〉 = 1√
2

(

|00〉+ |11〉
)

.

When measured in the basis {|0〉 , |1〉}, each qubit A and B can be found in

state |0〉 or |1〉 with probability 1/2 (randomly, no predetermination before measure).

But if A is found in |0〉 necessarily B is found in |0〉,
and if A is found in |1〉 necessarily B is found in |1〉,
no matter how distant the two qubits are before measurement.
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Computation on a qubit

Through a unitary operator U on H2 (a 2× 2 matrix) :

normalized vector |ψ〉 ∈ H2 −→ U |ψ〉 normalized vector ∈ H2 .

≡ quantum gate
input

|ψ〉 U

output

U|ψ〉

Hadamard gate H =
1
√
2

[

1 1

1 −1

]

. Identity gate 1 =

[

1 0

0 1

]

.

Pauli gates X =

[

0 1

1 0

]

, Y =

[

0 −i
i 0

]

, Z =

[

1 0

0 −1

]

.

{1,X,Y,Z} a basis for operators on H2.
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Computation on a pair of qubits

Through a unitary operator U on H⊗2
2 (a 4× 4 matrix) :

normalized vector |ψ〉 ∈ H⊗2
2 −→ U |ψ〉 normalized vector ∈ H⊗2

2 .

≡ quantum gate

(always reversible)

input

|ψ〉 U

output

U|ψ〉

Controlled-Not gate :

|CT 〉
T

C

|C,C ⊕ T 〉
C ⊕ T

C

U =









1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0









|CT 〉 −→ |C,C ⊕ T 〉
|00〉 −→ |00〉
|01〉 −→ |01〉
|10〉 −→ |11〉
|11〉 −→ |10〉
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Computation on a system of N qubits

Through a unitary operator U on H⊗N2 (a 2N × 2N matrix) :

normalized vector |ψ〉 ∈ H⊗N2 −→ U |ψ〉 normalized vector ∈ H⊗N2 .

≡ quantum gate : N input qubits
U−−−−−→ N output qubits.

Any N -qubit quantum gate may be composed

from C-Not gates and single-qubit gates (universatility).

This forms the grounding of quantum computation.
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Deutsch-Jozsa algo. (1992) : Parallel evaluation of a function

A classical function f(·)
∣

∣

∣

∣

{0, 1}N −→ {0, 1}
2N values −→ 2 values,

can be constant or balanced (equal numbers of 0, 1 in output).

Classically : Between 2 and
2N

2
+ 1 evaluations of f(·) to decide.

Quantumly : One evaluation of f(·) is enough.

|ψ〉 =
(

1

2N

)1/2
(

|0〉+ |1〉
)⊗N

=

(

1

2N

)1/2
∑

~x∈{0,1}N

|x1x2 · · ·xN 〉

|ψ〉
N qubits

Quantum
circuit

f(·)
Decoder

1 cbit

1 qubit

N qubits
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Deutsch-Jozsa algorithm

(Desurvire 2009,

Cambridge Univ. Press)
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Superdense coding (Bennett 1992) : exploiting entanglement

Alice and Bob share a qubit pair in the entangled state |φ〉 =
1
√
2

(

|00〉+ |11〉
)

.

Alice chooses two classical bits, pack them into a single qubit.

Bob receives this qubit, from which he recovers the two classical bits.

Alice Bob
2 cbits 1

X

Y

Z

Decoder
2 cbits1 qbit

2 entangled qubits|φ〉

Teleportation (1993) is the opposite : a shared pair of entangled qubits

and two classical bits transmitted from Alice to Bob

enable the transfer of an arbitrary quantum state |ψ〉 of a qubit.
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Other quantum algorithms

• Grover quantum search algorithm (1996) :

Quantum search in an unsorted database.

Finds one item among N in O(
√
N) steps (instead of O(N) classically).

• Shor factoring algorithm (1997) :

Factors any integer in polynomial complexity

(instead of exponential classically).

15 = 3× 5, with spin-1/2 nuclei (Vandersypen et al., Nature 2001).

21 = 3× 7, with photons (Mart́ın-López et al., Nature Photonics 2012).
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Density operator

Quantum system in (pure) state |ψj〉, measured in an orthonormal basis {|k〉} :

=⇒ probability Pr{|k〉 |ψj〉} = | 〈k|ψj〉 |2 = 〈k|ψj〉 〈ψj |k〉 .

Several possible states |ψj〉 with probabilities pj (with
∑

j pj = 1) :

=⇒ Pr{|k〉} = ∑

j pj Pr{|k〉 |ψj〉} = 〈k|
(

∑

j pj |ψj〉 〈ψj |
)

|k〉 = 〈k| ρ |k〉 ,

with density operator ρ =
∑

j pj |ψj〉 〈ψj | .

and Pr{|k〉} = 〈k| ρ |k〉 = tr(ρ |k〉 〈k|) = tr(ρΠk) .

The quantum system is in a mixed state, corresponding to the statistical

ensemble {pj , |ψj〉}, described by the density operator ρ.

Lemma : For any operator A with trace tr(A) =
∑

k 〈k|A |k〉, one has

tr(A |ψ〉 〈ψ|) =
∑

k
〈k|A |ψ〉 〈ψ|k〉 =

∑

k
〈ψ|k〉 〈k|A |ψ〉 = 〈ψ|

(∑

k
|k〉 〈k|

)

A |ψ〉 = 〈ψ|A |ψ〉
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Generalized measurement

In a Hilbert space HN with dimension N , the state of a quantum system

is specified by a Hermitian positive unit-trace density operator ρ.

• Projective measurement :

Defined by a set of N orthogonal projectors |k〉 〈k| = Πk ,

verifying
∑

k |k〉 〈k| =
∑

k Πk = 1,

and Pr{|k〉} = tr(ρΠk) . Moreover
∑

k Pr{|k〉} = 1 , ∀ρ⇐⇒∑

k Πk = 1.

• Generalized measurement :

Defined by a set of an arbitrary number of positive operators Mm,

verifying
∑

mMm = 1,

and Pr{Mm} = tr(ρMm) . Moreover
∑

m Pr{Mm} = 1 , ∀ρ⇐⇒∑

mMm = 1.
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Quantum state discrimination

A quantum system can be in one of two alternative states ρ0 or ρ1

with prior probabilities P0 and P1 = 1− P0.

Question : What is the best measurement {M0,M1} to decide

with a maximal probability of success Psuc ?

Answer : One has Psuc = P0 tr(ρ0M0) + P1 tr(ρ1M1) = P0 + tr(TM1) ,

with the test operator T = P1ρ1 − P0ρ0.

Then Psuc is maximized by Mopt

1 =
∑

λn>0

|λn〉 〈λn| ,

the projector on the eigensubspace of T with positive eigenvalues λn.

The optimal measurement {Mopt

1 ,Mopt

0 = 1−Mopt

1 }

achieves the maximum Pmax
suc =

1

2

(

1 +
N
∑

n=1

|λn|
)

. (Helstrom 1976)
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Discrimination from noisy qubits

Quantum noise on a qubit in state ρ can be represented by random

applications of (one of) the 4 Pauli operators {1,X,Y,Z} on the qubit, e.g.

Bit-flip noise : ρ −→ N (ρ) = (1− p)ρ+ pXρX† ,

Depolarizing noise : ρ −→ N (ρ) = (1− p)ρ+ p

3

(

XρX† +YρY† + ZρZ†
)

.

With a noisy qubit, discrimination from N (ρ0) and N (ρ1).

−→ Impact of the probability p of action of the quantum noise,

on the performance Pmax
suc of the optimal detector,

in relation to stochastic resonance and enhancement by noise.

(Chapeau-Blondeau, Physics Letters A 2014)
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Discrimination among M > 2 quantum states

A quantum system can be in one of M states ρm, for m = 1 to M ,

with prior probabilities Pm with
∑M
m=1

Pm = 1.

Problem : What is the best measurement {Mm} with M outcomes to decide

with a maximal probability of success Psuc ?

=⇒ Maximize Psuc =
M
∑

m=1

Pm tr(ρmMm) according to the M operators Mm,

subject to 0 ≤ Mm ≤ 1 and
∑M
m=1

Mm = 1.

For M > 2 this problem is only partially solved, in some special cases.

(Barnett et al., Adv. Opt. Photon. 2009).

Try interval analysis, etc ? . . .
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Error-free discrimination between M = 2 states

Two alternative states ρ0 or ρ1 of HN , with priors P0 and P1 = 1− P0,

are not full-rank in HN , e.g. supp(ρ0) ⊂ HN ⇐⇒ [supp(ρ0)]
⊥ ⊃ {~0}.

If S0 = supp(ρ0)∩ [supp(ρ1)]
⊥ 6= {~0}, error-free discrimination of ρ0 is possible.

If S1 = supp(ρ1)∩ [supp(ρ0)]
⊥ 6= {~0}, error-free discrimination of ρ1 is possible.

Necessity to find a three-outcome measurement {M0,M1,Munc} :

=⇒ Find M0 such that 0 ≤ M0 ≤ 1 and {~0} ⊆ supp(M0) ⊆ S0,

and M1 such that 0 ≤ M1 ≤ 1 and {~0} ⊆ supp(M1) ⊆ S1,

and M0 +M1 ≤ 1⇐⇒
[

M0 +M1 +Munc = 1 with 0 ≤ Munc ≤ 1

]

,

maximizing Psuc = P0 tr(M0ρ0) + P1 tr(M1ρ1) (≡ min Punc = 1− Psuc)

This problem is only partially solved, in some special cases,

even more so for extension at M > 2.

(Kleinmann et al., J. Math. Phys. 2010).
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Quantum feedback control
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System dynamics :

• Schrödinger equation (for closed systems)

d

dt
|ψ〉 = −

i

~
H |ψ〉 =⇒ |ψ(t2)〉 = exp

(

−
i

~
H(t2 − t1)

)

︸ ︷︷ ︸

unitary U(t1,t2)

|ψ(t1)〉 = U(t1, t2) |ψ(t1)〉

Hermitian operator Hamiltonian H = H0 + Hu (control part Hu).

d

dt
ρ = −

i

~
[H, ρ] =⇒ ρ(t2) = U(t1, t2) ρ(t1)U

†(t1, t2).

• Lindblad equation (for open systems)

d

dt
ρ = −

i

~
[H, ρ] +

∑

j

(

2LjρL
†
j − {L

†
jLj , ρ}

)

, Lindblad op. Lj for interact. with environt.

Measurement : Arbitrary operators {Em} such that
∑

m
E†

mEm = 1,

Pr{m} = tr(EmρE
†
m) = tr(ρE†

mEm) = tr(ρMm) with Mm = E†
mEm positive,

Post-measurement state ρm =
EmρE

†
m

tr(EmρE
†
m)

.

24/25

Pour aller plus loin

M. Nielsen & I. Chuang E. Desurvire M. Wilde

2000, 676 pages 2009, 691 pages 2013, 655 pages



25/25

Merci de votre attention.

Si vous avez compris . . .

c’est que je me suis mal exprimé !

“Nobody really understands quantum mechanics.”

R. P. Feynman


