Information quantique, calcul quantique :

des rudiments à la recherche (en 45 min !).

François Chapeau-Blondeau
LARIS, Université d'Angers, France.
묘

Motivations pour le quantique

pour le traitement de l'information :

1) Quand on utilise des systèmes élémentaires (photons, électrons, atomes, nanodevices, ...).
2) Pour bénéficier d'effets purement quantiques (parallèlisme, intrication, ...).
3) It's fun !

Quantum system

Represented by a state vector $|\psi\rangle$
in a complex Hilbert space \mathcal{H},
with unit norm $\langle\psi \mid \psi\rangle=\|\psi\|^{2}=1$.

In dimension 2 : the qubit (photon, electron, atom, ...)
State $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$
in some orthonormal basis $\{|0\rangle,|1\rangle\}$ of \mathcal{H}_{2},
with $|\alpha|^{2}+|\beta|^{2}=1$.
$|\psi\rangle=\left[\begin{array}{l}\alpha \\ \beta\end{array}\right], \quad|\psi\rangle^{\dagger}=\langle\psi|=\left[\alpha^{*}, \beta^{*}\right] \Longrightarrow\langle\psi \mid \psi\rangle=\|\psi\|^{2}=|\alpha|^{2}+|\beta|^{2}$ scalar.
$|\psi\rangle\langle\psi|=\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]\left[\alpha^{*}, \beta^{*}\right]=\left[\begin{array}{cc}\alpha \alpha^{*} & \alpha \beta^{*} \\ \alpha^{*} \beta & \beta \beta^{*}\end{array}\right]=\Pi_{\psi}$ orthogonal projector on $|\psi\rangle$.

Measurement of the qubit

When a qubit in state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$
is measured in the orthonormal basis $\{|0\rangle,|1\rangle\}$,
\Longrightarrow only 2 possible outcomes (Born rule) :
state $|0\rangle$ with probability $|\alpha|^{2}=|\langle 0 \mid \psi\rangle|^{2}$, or
state $|1\rangle$ with probability $|\beta|^{2}=|\langle 1 \mid \psi\rangle|^{2}$.

Measurement :

- a probabilistic process,
- as a projection of the state $|\psi\rangle$ in an orthonormal basis,
- with statistics evaluable over repeated experiments with same preparation $|\psi\rangle$.

Bloch sphere representation of the qubit

Qubit in state
$|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ with $|\alpha|^{2}+|\beta|^{2}=1$. $\Longleftrightarrow|\psi\rangle=\cos (\theta / 2)|0\rangle+e^{i \varphi} \sin (\theta / 2)|1\rangle$

As a quantum object
the qubit has infinitely many degrees of freedom (θ, φ), yet when it is measured it can only be found in one of two states (just like a classical bit).

Multiple qubits

A system (a word) of N qubits has a state in $\mathcal{H}_{2}^{\otimes N}$, a tensor-product vector space with dimension 2^{N}, and orthonormal basis $\left\{\left|x_{1} x_{2} \cdots x_{N}\right\rangle\right\}_{\vec{x} \in\{0,1\}^{N}}$.

Example $N=2$:
Generally $|\psi\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle$.
Or, as a special separable state

$$
\begin{aligned}
|\phi\rangle & =\left(\alpha_{1}|0\rangle+\beta_{1}|1\rangle\right) \otimes\left(\alpha_{2}|0\rangle+\beta_{2}|1\rangle\right) \\
& =\alpha_{1} \alpha_{2}|00\rangle+\alpha_{1} \beta_{2}|01\rangle+\beta_{1} \alpha_{2}|10\rangle+\beta_{1} \beta_{2}|11\rangle .
\end{aligned}
$$

A multipartite state which is not separable is entangled.

Entangled states

- Example of a separable state of two qubits $A B$:
$|A B\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)=\frac{1}{2}(|00\rangle+|01\rangle+|10\rangle+|11\rangle)$.
When measured in the basis $\{|0\rangle,|1\rangle\}$, each qubit A and B can be found in state $|0\rangle$ or $|1\rangle$ independently with probability $1 / 2$.
- Example of an entangled state of two qubits $A B$:
$|A B\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$.
When measured in the basis $\{|0\rangle,|1\rangle\}$, each qubit A and B can be found in state $|0\rangle$ or $|1\rangle$ with probability $1 / 2$ (randomly, no predetermination before measure).
But if A is found in $|0\rangle$ necessarily B is found in $|0\rangle$,
and if A is found in $|1\rangle$ necessarily B is found in $|1\rangle$, no matter how distant the two qubits are before measurement.

Computation on a qubit

Through a unitary operator U on \mathcal{H}_{2} (a 2×2 matrix) : normalized vector $|\psi\rangle \in \mathcal{H}_{2} \longrightarrow \mathrm{U}|\psi\rangle$ normalized vector $\in \mathcal{H}_{2}$.
\equiv quantum gate

Hadamard gate $\mathrm{H}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$
Identity gate $\mathbb{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Pauli gates $\mathrm{X}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], \quad \mathrm{Y}=\left[\begin{array}{rr}0 & -i \\ i & 0\end{array}\right], \quad \mathrm{Z}=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$.
$\{\mathbb{1}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}\}$ a basis for operators on \mathcal{H}_{2}.

Computation on a pair of qubits

Through a unitary operator U on $\mathcal{H}_{2}^{\otimes 2}$ (a 4×4 matrix) : normalized vector $|\psi\rangle \in \mathcal{H}_{2}^{\otimes 2} \longrightarrow \mathrm{U}|\psi\rangle$ normalized vector $\in \mathcal{H}_{2}^{\otimes 2}$.
\equiv quantum gate
(always reversible)

Controlled-Not gate :
$|C T\rangle \longrightarrow|C, C \oplus T\rangle$
$|00\rangle \longrightarrow|00\rangle$
$|01\rangle \longrightarrow|01\rangle$
$|10\rangle \longrightarrow|11\rangle$
$|11\rangle \longrightarrow|10\rangle$

$$
\mathrm{U}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Computation on a system of N qubits

Through a unitary operator U on $\mathcal{H}_{2}^{\otimes N}$ (a $2^{N} \times 2^{N}$ matrix) :
normalized vector $|\psi\rangle \in \mathcal{H}_{2}^{\otimes N} \longrightarrow \mathrm{U}|\psi\rangle$ normalized vector $\in \mathcal{H}_{2}^{\otimes N}$.
\equiv quantum gate : N input qubits $\xrightarrow{\mathrm{U}} N$ output qubits.

Any N-qubit quantum gate may be composed
from C-Not gates and single-qubit gates (universatility).

This forms the grounding of quantum computation.

Deutsch-Jozsa algo. (1992) : Parallel evaluation of a function
A classical function

$$
f(\cdot) \left\lvert\, \begin{array}{ccc}
\{0,1\}^{N} & \longrightarrow & \{0,1\} \\
2^{N} \text { values } & \longrightarrow & 2 \text { values }
\end{array}\right.
$$

can be constant or balanced (equal numbers of 0,1 in output).
Classically : Between 2 and $\frac{2^{N}}{2}+1$ evaluations of $f(\cdot)$ to decide.

Quantumly: One evaluation of $f(\cdot)$ is enough.
$|\psi\rangle=\left(\frac{1}{2^{N}}\right)^{1 / 2}(|0\rangle+|1\rangle)^{\otimes N}=\left(\frac{1}{2^{N}}\right)^{1 / 2} \sum_{\vec{x} \in\{0,1\}^{N}}\left|x_{1} x_{2} \cdots x_{N}\right\rangle$

Deutsch-Jozsa algorithm (Desurvire 2009,
Cambridge Univ. Press)

we obsaint

$$
\begin{aligned}
\left|\psi_{2}\right\rangle & \left.=H^{\otimes \infty} H_{1} \mid \psi_{1}\right) \\
& =H^{\circ}\left(\psi_{1}\right)()^{\circ} \otimes H
\end{aligned}
$$

$$
=\frac{1}{\sqrt{2^{n}}}\left[\sum_{x=0}^{x-1}|x\rangle\right] \frac{|0\rangle-(1)}{\sqrt{2}}
$$

We call (x) the query n gisiser, similary to the "regiser in the classical von Neumann
$\left.\mid \psi_{3}\right)=U_{f}\left(\psi_{2}\right)$

$$
\left.=\sum_{x}^{x} \frac{\left.(-1)^{(x)}(x) \mid x\right)}{\sqrt{2^{x}}} \right\rvert\,-1 .
$$

And at 9 , after passing the top n-qubie thowe the parallel gate $H^{\omega 0}$, we obtail

$$
\left(\psi_{1}\right)=H^{e n}\left(\omega_{0}\right)
$$

To develep the right-hand side in $\mathrm{Eq}(199)$, we must calculate $H^{\boxed{\circ}}|x\rangle=$

$$
H^{e r(x)}=\sum_{i}(-1)^{2 x}(z)
$$

(19.10)

$$
\begin{aligned}
& \text { where } x=z=x_{1} z_{1}+x_{2} z_{2}+\cdots+x_{n} z_{n} \text { is a sealar product modulo } 2 \text {. Combining } \\
& \text { Essel}
\end{aligned}
$$

(19.11)

Superdense coding (Bennett 1992) : exploiting entanglement

 Alice and Bob share a qubit pair in the entangled state $|\phi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$. Alice chooses two classical bits, pack them into a single qubit.Bob receives this qubit, from which he recovers the two classical bits.

Teleportation (1993) is the opposite : a shared pair of entangled qubits and two classical bits transmitted from Alice to Bob enable the transfer of an arbitrary quantum state $|\psi\rangle$ of a qubit.

Other quantum algorithms

- Grover quantum search algorithm (1996) :

Quantum search in an unsorted database.
Finds one item among N in $O(\sqrt{N})$ steps (instead of $O(N)$ classically).

- Shor factoring algorithm (1997) :

Factors any integer in polynomial complexity (instead of exponential classically).
$15=3 \times 5$, with spin- $1 / 2$ nuclei (Vandersypen et al., Nature 2001).
$21=3 \times 7$, with photons (Martín-López et al., Nature Photonics 2012).

Generalized measurement

In a Hilbert space \mathcal{H}_{N} with dimension N, the state of a quantum system is specified by a Hermitian positive unit-trace density operator ρ.

- Projective measurement :

Defined by a set of N orthogonal projectors $|k\rangle\langle k|=\Pi_{k}$,
verifying $\sum_{k}|k\rangle\langle k|=\sum_{k} \Pi_{k}=\mathbb{1}$,
and $\operatorname{Pr}\{|k\rangle\}=\operatorname{tr}\left(\rho \Pi_{k}\right) . \quad$ Moreover $\sum_{k} \operatorname{Pr}\{|k\rangle\}=1, \forall \rho \Longleftrightarrow \sum_{k} \Pi_{k}=\mathbb{1}$.

- Generalized measurement :

Defined by a set of an arbitrary number of positive operators M_{m},
verifying $\sum_{m} \mathrm{M}_{m}=\mathbb{1}$,
and $\operatorname{Pr}\left\{\mathrm{M}_{m}\right\}=\operatorname{tr}\left(\rho \mathrm{M}_{m}\right) . \quad$ Moreover $\sum_{m} \operatorname{Pr}\left\{\mathrm{M}_{m}\right\}=1, \forall \rho \Longleftrightarrow \sum_{m} \mathrm{M}_{m}=\mathbb{1}$.

Lemma: For any operator A with trace $\operatorname{tr}(\mathrm{A})=\sum_{k}\langle k| \mathrm{A}|k\rangle$, one has
$\operatorname{tr}(\mathrm{A}|\psi\rangle\langle\psi|)=\sum_{k}\langle k| \mathrm{A}|\psi\rangle\langle\psi \mid k\rangle=\sum_{k}\langle\psi \mid k\rangle\langle k| \mathrm{A}|\psi\rangle=\langle\psi|\left(\sum_{k}|k\rangle\langle k|\right) \mathrm{A}|\psi\rangle=\langle\psi| \mathrm{A}|\psi\rangle$

Quantum state discrimination

A quantum system can be in one of two alternative states ρ_{0} or ρ_{1} with prior probabilities P_{0} and $P_{1}=1-P_{0}$.
Question: What is the best measurement $\left\{\mathrm{M}_{0}, \mathrm{M}_{1}\right\}$ to decide with a maximal probability of success $P_{\text {suc }}$?

Answer: One has $P_{\text {suc }}=P_{0} \operatorname{tr}\left(\rho_{0} \mathrm{M}_{0}\right)+P_{1} \operatorname{tr}\left(\rho_{1} \mathrm{M}_{1}\right)=P_{0}+\operatorname{tr}\left(\mathrm{TM}_{1}\right)$, with the test operator $\mathrm{T}=P_{1} \rho_{1}-P_{0} \rho_{0}$.
Then $P_{\text {suc }}$ is maximized by $\mathrm{M}_{1}^{\text {opt }}=\sum_{\lambda_{n}>0}\left|\lambda_{n}\right\rangle\left\langle\lambda_{n}\right|$,
the projector on the eigensubspace of T with positive eigenvalues λ_{n}.
The optimal measurement $\left\{\mathrm{M}_{1}^{\mathrm{opt}}, \mathrm{M}_{0}^{\mathrm{opt}}=\mathbb{1}-\mathrm{M}_{1}^{\mathrm{opt}}\right\}$
achieves the maximum $P_{\mathrm{suc}}^{\max }=\frac{1}{2}\left(1+\sum_{n=1}^{N}\left|\lambda_{n}\right|\right)$.
(Helstrom 1976)

Physics Letters A 378 (2014) 2128-2136
Contents lists available at ScienceDirect
Physics Letters A
ELSEVIER
www.elsevier.com/locate/pla

Quantum state discrimination and enhancement by noise

François Chapeau-Blondeau
Laborctoire Angevin de Recherche en Ingenierie des Systemes (LARIS), Universite dAngers, 62 verenue Notre Dame du Lac, 49000 Angers, France

Articte info	ABSTRACT
Artide history:	Discrimination berween two quantum states is addressed as a quantum detection process where a measurement with two outcomes is performed and a conclusive binary decision results about the state. The performance is assessed by the overall probability of decision error. Based on the theory of quantum detection, the optimal measurement and its performance are exhibited in general conditions. An application is realized on the qubit, for which generic models of quantum noise can be investigated for their impact on state discrimination from a noisy qubit. The quantum noise acts through random application of Pauli operators on the qubit prior to its measurement. For discrimination from a noisy qubit, various situations are exhibited where reinforcement of the action of the quantum noise can be associated with enhanced performance. Such implications of the quantum noise are analyzed and interpreted in relation to stochastic resonance and enhancement by noise in information processing. - 2014 Elsevier B.V. All rights reserved.
Received 12 February 2014	
Received in revised form 15 May 2014	
Available online 27 May 2014	
Communicated by C.R. Doering	
Keywords:	
Quantum state discrimination	
Quantum noise	
Quantum detection	
Signal detection	

Stochastic resonance

Discrimination from noisy qubits

Quantum noise on a qubit in state ρ can be represented by random applications of (one of) the 4 Pauli operators $\{\mathbb{1}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}\}$ on the qubit, e.g.

Bit-flip noise : $\rho \longrightarrow \mathcal{N}(\rho)=(1-p) \rho+p \mathrm{X} \rho \mathrm{X}^{\dagger}$,
Depolarizing noise : $\rho \longrightarrow \mathcal{N}(\rho)=(1-p) \rho+\frac{p}{3}\left(\mathrm{X} \rho \mathrm{X}^{\dagger}+\mathrm{Y} \rho \mathrm{Y}^{\dagger}+\mathrm{Z} \rho \mathrm{Z}^{\dagger}\right)$.

With a noisy qubit, discrimination from $\mathcal{N}\left(\rho_{0}\right)$ and $\mathcal{N}\left(\rho_{1}\right)$.
\longrightarrow Impact of the probability p of action of the quantum noise, on the performance $P_{\text {suc }}^{\max }$ of the optimal detector,
in relation to stochastic resonance and enhancement by noise.
(Chapeau-Blondeau, Physics Letters A 2014)

Discrimination among $M>2$ quantum states

A quantum system can be in one of M states ρ_{m}, for $m=1$ to M, with prior probabilities P_{m} with $\sum_{m=1}^{M} P_{m}=1$.

Problem : What is the best measurement $\left\{\mathrm{M}_{m}\right\}$ with M outcomes to decide with a maximal probability of success $P_{\text {suc }}$?
\Longrightarrow Maximize $P_{\text {suc }}=\sum_{m=1}^{M} P_{m} \operatorname{tr}\left(\rho_{m} \mathrm{M}_{m}\right)$ according to the M operators M_{m},

$$
\text { subject to } 0 \leq \mathrm{M}_{m} \leq \mathbb{1} \quad \text { and } \quad \sum_{m=1}^{M} \mathrm{M}_{m}=\mathbb{1}
$$

For $M>2$ this problem is only partially solved, in some special cases.
(Barnett et al., Adv. Opt. Photon. 2009).

Try interval analysis, etc ? ...

Error-free discrimination between $M=2$ states

Quantum feedback control
Two alternative states ρ_{0} or ρ_{1} of \mathcal{H}_{N}, with priors P_{0} and $P_{1}=1-P_{0}$, are not full-rank in \mathcal{H}_{N}, e.g. $\operatorname{supp}\left(\rho_{0}\right) \subset \mathcal{H}_{N} \Longleftrightarrow\left[\operatorname{supp}\left(\rho_{0}\right)\right]^{\perp} \supset\{\overrightarrow{0}\}$.
If $\mathcal{S}_{0}=\operatorname{supp}\left(\rho_{0}\right) \cap\left[\operatorname{supp}\left(\rho_{1}\right)\right]^{\perp} \neq\{\overrightarrow{0}\}$, error-free discrimination of ρ_{0} is possible. If $\mathcal{S}_{1}=\operatorname{supp}\left(\rho_{1}\right) \cap\left[\operatorname{supp}\left(\rho_{0}\right)\right]^{\perp} \neq\{\overrightarrow{0}\}$, error-free discrimination of ρ_{1} is possible.

Necessity to find a three-outcome measurement $\left\{\mathrm{M}_{0}, \mathrm{M}_{1}, \mathrm{M}_{\mathrm{unc}}\right\}$:
\Longrightarrow Find M_{0} such that $0 \leq \mathrm{M}_{0} \leq \mathbb{1}$ and $\{\overrightarrow{0}\} \subseteq \operatorname{supp}\left(\mathrm{M}_{0}\right) \subseteq \mathcal{S}_{0}$,
and M_{1} such that $0 \leq \mathrm{M}_{1} \leq \mathbb{1}$ and $\{\overrightarrow{0}\} \subseteq \operatorname{supp}\left(\mathrm{M}_{1}\right) \subseteq \mathcal{S}_{1}$,
and $M_{0}+M_{1} \leq \mathbb{1} \Longleftrightarrow\left[M_{0}+M_{1}+M_{\text {unc }}=\mathbb{1}\right.$ with $\left.0 \leq M_{\text {unc }} \leq \mathbb{1}\right]$,
maximizing $P_{\text {suc }}=P_{0} \operatorname{tr}\left(\mathrm{M}_{0} \rho_{0}\right)+P_{1} \operatorname{tr}\left(\mathrm{M}_{1} \rho_{1}\right) \quad\left(\equiv \min P_{\text {unc }}=1-P_{\text {suc }}\right)$
This problem is only partially solved, in some special cases,
even more so for extension at $M>2$.
(Kleinmann et al., J. Math. Phys. 2010).

System dynamics :

- Schrödinger equation (for closed systems)
$\frac{d}{d t}|\psi\rangle=-\frac{i}{\hbar} \mathrm{H}|\psi\rangle \Longrightarrow\left|\psi\left(t_{2}\right)\right\rangle=\underbrace{\exp \left(-\frac{i}{\hbar} \mathrm{H}\left(t_{2}-t_{1}\right)\right)}\left|\psi\left(t_{1}\right)\right\rangle=\mathrm{U}\left(t_{1}, t_{2}\right)\left|\psi\left(t_{1}\right)\right\rangle$
Hermitian operator Hamiltonian $\mathrm{H}=\mathrm{H}_{0}+\mathrm{H}_{u}$ (control part H_{u}).
$\frac{d}{d t} \rho=-\frac{i}{\hbar}[\mathrm{H}, \rho] \Longrightarrow \rho\left(t_{2}\right)=\mathrm{U}\left(t_{1}, t_{2}\right) \rho\left(t_{1}\right) \mathrm{U}^{\dagger}\left(t_{1}, t_{2}\right)$.
- Lindblad equation (for open systems)
$\frac{d}{d t} \rho=-\frac{i}{\hbar}[\mathrm{H}, \rho]+\sum_{j}\left(2 \mathrm{~L}_{j} \rho \mathrm{~L}_{j}^{\dagger}-\left\{\mathrm{L}_{j}^{\dagger} \mathrm{L}_{j}, \rho\right\}\right), \quad$ Lindblad op. L_{j} for interact. with environt.
Measurement : Arbitrary operators $\left\{\mathrm{E}_{m}\right\}$ such that $\sum_{m} \mathrm{E}_{m}^{\dagger} \mathrm{E}_{m}=\mathbb{1}$, $\operatorname{Pr}\{m\}=\operatorname{tr}\left(\mathrm{E}_{m} \rho \mathrm{E}_{m}^{\dagger}\right)=\operatorname{tr}\left(\rho \mathrm{E}_{m}^{\dagger} \mathrm{E}_{m}\right)=\operatorname{tr}\left(\rho \mathrm{M}_{m}\right)$ with $\mathrm{M}_{m}=\mathrm{E}_{m}^{\dagger} \mathrm{E}_{m}$ positive, Post-measurement state $\rho_{m}=\frac{\mathrm{E}_{m} \rho \mathrm{E}_{m}^{\dagger}}{\operatorname{tr}\left(\mathrm{E}_{m} \rho \mathrm{E}_{m}^{\dagger}\right)}$

Pour aller plus loin

M. Nielsen \& I. Chuang 2000, 676 pages

E. Desurvire 2009, 691 pages

Mark M. Wilde
 Quantum Information Theory

M. Wilde 2013, 655 pages

Quantum feedback by discrete quantum nondemolition measurements: Towards on-demand generation of photon-number states
I. Dotsenko, ${ }^{1,2, *}$ M. Mirrahimi. ${ }^{3}$ M. Brune, ${ }^{1}$ S. Haroche. ${ }^{1,2}$ J.-M. Raimond. ${ }^{1}$ and P. Rouchon ${ }^{4}$ ${ }^{1}$ Laboratoire Kastler Brossel Ecole Normale Supérieure, CNRS, Université P. et M. Curie, 24 rue Lhomond, F-55231 Paris Cedex 5, France
College de France, 11 Place Marcelin Berthelot, F-75231 Paris Cedex 5, France ${ }^{4}$ CIA Rocquencourt, Domaine de Vouceau, BP 105, 78153 Le Chesnay Cedex, France ${ }^{4}$ Centre Automatique et Systèmes, Mathématiques et Systèmes, Mines ParisTech, 60 Boulevard Saint-Michel, 75272 Paris Cedex 6, France (Received I May 2009; published 9 July 2009)
We propose a quantum feedback scheme for the preparation and protection of photon-number states of light trapped in a high- Q microwave cavity. A quantum nondemolition measurement of the cavity field provides information on the photon-number distribution. The feedback loop is closed by injecting into the cavity a coherent pulse adjusted to increase the probability of the target photon number. The efficiency and reliability
of the closed-loop state stabilization is assessed by quantum Monte Carlo simulations. We show that, in realistic experimental conditions, the Fock states are efficiently produced and protected against decoherence.
DOI: 10.1103/PhysRevA.80.013805
PACS number(s): 42.50.Dv, 02.30.Yy, 42.50.Pq

Merci de votre attention.

Si vous avez compris...
c'est que je me suis mal exprimé!
"Nobody really understands quantum mechanics."
R. P. Feynman

