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Abstract: A variant of the Perona-Malik anisotropic diffusion equation is introduced for the segmentation of multiple
objects with crossings. The diffusion is automatically applied at the crossings locations along the main ori-
entations of the objects. Application of this process is given for illustration on an original problem of plant
imaging with the monitoring of the elongation of multiple crossing seedlings.

1 INTRODUCTION

Since its introduction some 3 decades ago by Perona
and Malik (Perona and Malik, 1990) partial differen-
tial equations (PDE) as a mathematical framework for
image processing have raised a considerable attention
(Weickert, 1998). This interest is mathematically mo-
tivated by the possibility of a variational interpretation
of the action of the PDE. Also, PDE inspired by phys-
ical modeling constitute a vast field of investigation to
be considered for its own sake or for new approaches
to various image processing applications (restoration,
segmentation, in-painting, to name few areas where
PDE have been competitively applied). In this re-
port, we revisit the recently introduced oriented diffu-
sion equation (Histace et al., 2009) where a diffusion
process is applied to an input image with a selective
function of the angle between the local gradient and a
global orientation of reference. For gradient along the
reference, there is no diffusion, while gradients per-
pendicular to the reference are associated to maximal
diffusion. As such, the oriented diffusion equation of
(Histace et al., 2009) is interesting when a single di-
rection is taken as reference for the whole image. This
is the case in the tagged grid MRI sequence consid-
ered for illustration in (Histace et al., 2009). However,
there are practical situations where a selective diffu-
sion process would be useful if applied with a local
orientation of reference. This is the case when the tar-
geted information task is the individual restoration of

multiple objects crossing with various angles. As an
extension of (Histace et al., 2009) we therefore pro-
pose a locally oriented anisotropic diffusion process
with a local orientation of reference at the scale of an
imagette. We demonstrate the usefulness of this ap-
proach with an original bioimaging application. The
report is organized as follows. We first describe the
orientation diffusion equation of (Histace et al., 2009)
and discuss the limitation of this approach in the case
of our plant imaging application. We then introduce
our new anisotropic diffusion equation and illustrate
its performance on our application.

2 LOCALLY ORIENTED
ANISOTROPIC DIFFUSION

Anisotropic diffusion applied in image processing has
been introduced in (Perona and Malik, 1990). It is a
process inspired from the physics of temperature dif-
fusion in which an input image ψ0 is transformed in
an output image ψ taken as the solution of the partial
differential equation given by

∂ψ
∂t

= div(g(‖∇ψ‖)∇ψ), ψ(x,y, t = 0) = ψ0 .

(1)
The anisotropy of this diffusion process is governed
by g(.) a nonlinear decreasing function of the norm
of the gradient ∇ψ. Function g(.) is a nonlinear de-
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creasing function like

g(u) = exp
(
−u2

k2

)
, (2)

in the original work of (Perona and Malik, 1990)
where parameter k can be seen as a soft threshold con-
trolling the decrease of g(.) and the amplitude of the
gradients to be preserved from the diffusion process.
Many variants of the diffusion process of Eq. (1) have
been proposed (see (Weickert, 1998) for a review).
The benefit of such diffusion processes lies in the abil-
ity to smooth data in a nonlinear way, while preserv-
ing important image features (contours, corners, . . . ).
Recently an oriented variant of the anisotropic diffu-
sion process of Eq. (1) has been proposed in (Histace
et al., 2009) to control the diffusion process with the
direction of the gradient instead of only the norm of
the gradient. The partial differential equation of (His-
tace et al., 2009) reads

∂ψ
∂t

= div(g(A.∇ψ)∇ψ), ψ(x,y, t = 0) = ψ0 ,

(3)
where A is a vector field defining the particular direc-
tion to preserve from the diffusion process. In (His-
tace et al., 2009) application of Eq. (3) was given in a
case where the vector field A was selecting a single di-
rection in a whole single image. In certain situations
the directions to be preserved can spatially change in
the image. This is for instance the case with the sep-
aration of multiple crossing objects in image. Cross-
ing objects appear in various fields of science like for
instance vessel or muscle fibers crossing in biomed-
ical imaging (Frangi et al., 1998; Kirbas and Quek,
2003; Bodvarsson et al., 2008), crossings roads in
remote sensing (Laptev et al., 2000), or assemblies
of crossing nano-objects with microscopes in physics
(Chainais and Lebental, 2011). The restoration of
each object in such images of crossing objects is an
important problem if one is interested in performing
individual measurements on each object. In this work,
we consider this crossing objects problem with the
oriented anisotropic diffusion of Eq. (3). In (Histace
et al., 2009) illustration is given with a unique direc-
tion in the vector field. To deal with multiple cross-
ing objects, we have implemented a locally oriented
anisotropic diffusion process that preserves a local
orientation of reference at the scale of an imagette.
To this purpose, we propose to perform a crossing de-
tection before applying diffusion. We then apply the
diffusion process of Eq. (3) locally only in the vicin-
ity of the crossing objects. The crossing is character-
ized by two directions. The idea is to diffuse in one
of these directions to restore and segment one object
and then to repeat this process in the other direction

to restore the other object. We apply this strategy to a
real world problem from plant science in the next sec-
tion. For illustration in this work we have taken as in
(Histace and Rousseau, 2010) the nonlinear function
g(.) in Eq. (3) as a hard threshold

g(u) =
{

0 for u≥ k
1 for u≤ k .

(4)

With this choice the diffusion process simply corre-
sponds to a threshold on the gradients oriented in the
direction of the vector field A. Gradients oriented in
the correct direction are preserved while other direc-
tion are erased. This is obtained in one iteration in the
diffusion equation.

3 APPLICATION TO SEEDLING
ELONGATION

Seedling elongation is an early stage of the devel-
opment of plants. During this stage, the seed is in the
soil. Following a geotropism, the upper part of the
seedling grows to reach the light and activates photo-
synthesis while the lower part of the seedling is go-
ing deeper to anchor in the soil and access to water
and nutrients. In field conditions this seedling elon-
gation is not accessible to plant analysts. However,
non invasive monitoring of seedling growth is accessi-
ble in vitro with computer vision machines (Nagy and
Schafer, 2002; Kimura and Yamasaki, 2003; Wang
et al., 2009; Yazdanbakhsh and Fisahn, 2010; Naeem
et al., 2011; Belin et al., 2011). A set of seedlings
can for instance be positioned on an horizontal row
in a gelose box. A backlight system associated with
a camera then produces sequences of images like in
Fig. 1. From such image sequences, the temporal
evolution of the length of the radicle of the seedling
is measurable with classical binary image skeleton-
isation (Nagy and Schafer, 2002; Kimura and Ya-
masaki, 2003; Wang et al., 2009; Yazdanbakhsh and
Fisahn, 2010; Naeem et al., 2011; Belin et al., 2011).
However, other traits like the respective size of the
organs of the seedling are not accessible from the
skeleton and require more elaborated image process-
ing approaches. A difficulty visible in the images of
Fig. 1 is that the radicle of the seedlings can cross.
To overcome this difficulty we propose the following
pipeline including the diffusion process of Eq. (3) im-
plemented in the algorithm of Fig. 2. In the images
of Fig. 1 the seedlings are well-contrasted from the
background. The segmentation of the seedlings can
thus be done after a simple thresholding. The result-
ing binary image is skeletonized. Crossings are de-
tected in this skeleton around points of the skeleton



having connectivity higher than two. Regions of inter-
est including a single crossing are then defined. Such
a region of interest serves as input to the algorithm
detailed in Fig. 2.

Figure 1: Sequence of acquired images with green backlight
during seedling elongation with a 2 hour time step between
each snapshot A, B, C and D. The typical duration of the
elongation process can be several days.

As illustrated in Fig. 3, seedlings crossing in the
sequence are correctly separated. We have tested suc-
cessfully the algorithm of Fig. 2 on various species in-
cluding species with several seminal roots like wheat.
In these cases crossings are very common and sepa-
rating the different roots is crucial. Finally, the good
performance of our algorithm in this study is impor-
tant for two reasons. First it enables to perform the
elongation monitoring at more advanced stages of de-
velopment. Second this enables to concentrate higher
number of seeds of different types of species in the
field of view of the camera and therefore contributes
to increase the throughput of the monitoring.

4 CONCLUSION

In this work we have presented an extension of the
partial differential equation of (Histace et al., 2009).
In our case, a detection of the part which requires to
be diffused is first performed and the partial differ-
ential equation is then applied locally only in these
parts. This presents the interest to speed up the dif-
fusion process by comparison to a global approach.
This also avoids diffusion artefacts in areas where no
diffusion was needed. Application of our PDE was
given here for illustration in the domain of plant sci-

Figure 2: Four steps seedling crossing segmentation algo-
rithm. In a first step the algorithm load (A) an input bi-
nary image corresponding to a crossing in the input image.
(B) Histograms of the orientation of the gradients are cal-
culated. Two main directions of the crossing are present in
this histogram. The diffusion equation of Eq. (3) is consec-
utively applied in each one of these two main directions to
produce two images preserving the respective other direc-
tion (C). The threshold k in Eq. (4) is consecutively chosen
equal to the main directions of each modes in the histogram
in (B). In the second step, the holes in the binary images
are filled (D). A seedling crossing map is created in (E-F)
in a third step and the seedlings are labeled (G) in the fourth
step.

ence with crossing seedlings during their elongation
stage. In our case the segmentation of the crossing
seedlings was obtainable from a simple threshold and
the partial differential equation was only applied in
the crossings area to separate the seedlings. However,
for some species with very thin roots, the contrast be-
tween background and seedlings may not be so fa-
vorable and it could be interesting to apply the ori-
ented anisotropic diffusion locally in the whole image
to separate seedling around crossings and also to re-
store the edges along the curvated roots in non cross-
ing areas. Plants are highly anisotropic structures or-
ganized along branching structures. Plants growth
or plant pathogens spreading along these structures
therefore constitute a natural field of applications for
anisotropic diffusion with PDE to analyze or mod-
elize these spatio-temporal phenomenon.



Figure 3: Results of our crossing seedlings segmentation on
two crossing seedlings of the image sequence of Fig. 1. In
the left column a binarized version of a crop form Fig. 1
at instant A, B C and D. The two other columns represent
the output of the algorithm of Fig. 2 with the two labeled
seedlings.
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