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Abstract—In most designs, residual nonlinearity is considered
an inescapable curse—even when it is known to be present,
it is often assumed to be too unpredictable or unstable to be
dealt with in postprocessing. However, with the aid of output-
only system identification, this is no longer the case. We have
developed a new technique for compensation of static nonlinear
distortion using the internal noise of the device. It improves
upon previous approaches by allowing highly-efficient fixed-point
implementation, and represents the first step towards direct
integration with analog hardware in order to produce an ADC
that is blind to its analog frontend.

I. INTRODUCTION

Measurement systems suffer from a wide variety of faults,

and a range of techniques have been developed to overcome

them. Perhaps the most well-known of these is the Wiener

filter [1], which uses linear filtering to provide an estimate of

the input signal despite the presence of noise. Despite Wiener’s

important work in nonlinear system representation [2], non-

linearity is all too often seen as a lost cause—if it cannot

be mitigated using feedback, then in most circumstances no

attempt is made to correct it in postprocessing owing to a

lack of stability or repeatability. Our goal is the same as that

of Wiener—to reconstruct a contaminated signal given some

knowledge of its basic properties—but extended to nonlinear

distortion.

Filtering is often used [3] to mitigate distortion in RF

systems, but this is only viable for narrowband signals—in a

wideband system, the harmonics and intermodulation products

will overlap with the desired signal. In order to overcome these

difficulties, some sort of calibration system is necessary. Most

techniques for nonlinear system identification [4] require some

form of test signal with known properties [5]–[7]; whether

deterministic or random, it must be known. However, the use

of such an input signal can be difficult and expensive, or for

sensor applications completely impossible. Performing output-

only identification of the nonlinearity presents a substantial

challenge, however opens up a new area of the design space

by allowing the use of highly nonlinear devices with otherwise

desirable properties.

Others have attempted automatic and signal-independent

compensation techniques for analog-to-digital converters

(ADCs) [8], however this attempt was suitable only for gross

single-bin nonlinearities, attempting to expand or contract

certain bins in order to render the signal histogram con-

tinuous. This clearly is not completely signal-independent,

however for non-degenerate signals this may be a reasonable

approach. Another attempt [9] used modifications to the input-

output configuration of a pipelined ADC in order to produce

uniformly distributed noise—however, this comes with the

disadvantage of requiring that the ADC be disconnected from

the circuit. In this present paper, we search for an alternative

method that can be performed from the measurement data

alone, allowing it to be used without taking the measurement

device offline, and enabling us to apply the method to data

that has previously been collected.

Others have shown that, the presence of noise can have

a linearising effect [10] in certain situations. This naturally-

occuring linearisation raises the question of whether a more

general approach can produce an even greater effect.

We have previously described a technique [11] for the

compensation of static nonlinearity using output-only mea-

surements, and succeeded in refining the concept into an algo-

rithm capable of operating in real-time on a microcontroller

platform [12]. These successes have motivated us to search

for other approaches that will allow us to adapt the technique

to smaller devices and to VLSI implementation. We present

a technique here that can be efficiently implemented using

fixed-point arithmetic without the need for either divisions or

square-root operations as required by [12].

A. Principle of operation

Without any a priori information on the distorting function,

we must make some assumption about the input signal in

order to determine its properties. In this case, we make the

assumption that the variance of the input’s high-frequency

content is small and constant with time. This could be some

sort of deterministic signal, but in our experiments [11], [12]

we have used the input noise of a common-emitter amplifier.

By using a high-pass filter to separate this from the large and

slowly-varying low-frequency signal, we effectively see the

effect that the system has had upon the noise at a variety of

operating points.

If the distorting function is smooth, we can consider a

linearisation about each operating point; the effect then will be

for the noise to be compressed when the system is saturated.
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Denoting the input x(t) the output y(t), the input noise n(t),
and the distorting function f(x), we may write

y(t) = f (x(t) + n(t)) (1)

≈ f (x(t)) + n(t)f ′ (x(t)) . (2)

For notational clarity we assume that n(t) is high-pass and that

we can thus separate the second term via filtering, yielding

z(t); this gives us

E
[

z(t)2
]

= E
[

n(t)2
]

f ′ (x(t))2, (3)

and so a means to measure the differential gain f ′(x) of the

distorting function f(x) at a variety of operating points. We

build up a map of differential gain vs. operating point, which

we then integrate to find the distorting function f(x) to within

an offset factor. In practice, we do not necessarily know the

variance of the input noise—just that it is constant—resulting

in an ambiguous scale factor at the input. Thus this technique

allows us to determine the input signal except for an unknown

gain and offset.

In [11] we performed the integration directly using Simp-

son’s rule. This is straightforward, but is inefficient for large

numbers of samples and requires that one maintain a large

number of samples in memory. Furthermore, it is unable

to cope with transfer functions that change over time. We

overcame both of these problems in [12] by integrating a

curve-fitted version of (f−1)′(x); a set of triangular radial

basis functions were used to describe f ′(x), resulting in a

piecewise-linear fitted curve, and a piecewise quadratic fit to

the distorting function.

This method of implementation is relatively efficient, how-

ever it suffers from some drawbacks when used on resource-

constrained platforms. Estimation of the derivative of the

inverse distorting function (f−1)′(x) requires the computation

of (σ2)−
1

2 ; this is a relatively expensive operation which must

be carried out for every noise estimate, and limits the rate at

which the differential gain may be measured.

A further problem with this approach is that it is necessary

to explicitly perform the integration—while this can be calcu-

lated analytically in terms of basis function coefficients, it is a

slow process that cannot be carried out all at once. This raises

the question of whether it is possible to perform the transfer

function update operation directly in the integrated domain.

II. FEEDBACK-BASED TRANSFER FUNCTION ESTIMATION

In this paper we introduce a new technique based on

negative feedback in order to appropriately determine the

nonlinear compensating function. Let us suppose that we have

a discrete-time quantized signal y[n], which takes values from

{0, . . . , 2M−1}, and we wish to compensate this to yield a time

series x[n] ∈ {0, . . . , 2N−1}. This latter time-series is found

by compensating y[n] with a nonlinear function fn(x[n]) that

varies with time. We choose fn(·) to be piecewise linear with
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a) Partitioning of input and output spaces.

b) The resulting compensation function.
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Fig. 1. The construction of the compensating function described in Equa-
tion 4. The input and output ranges are partitioned into 2k segments—the input
uniformly, and the output with arbitrary widths, shown in (a). Corresponding
partitions are mapped linearly onto one another, resulting in the piecewise
linear function shown in (b). By using powers of two for the segment widths,
time-consuming division operations are avoided.

segments of size 2k at the input. We may write this function

as

fn(z) =
[wm

2k
(z −m2k)

]

+

m−1
∑

i=0

wi[n], (4)

where

m =
⌊ z

2k

⌋

(5)

is the segment in which z lies, and the segment widths wi[n]
in the output satisfy

2
M−k

−1
∑

i=0

wi[n] = 2N ; (6)

that is to say, they cover the entire output range. The construc-

tion of this function is shown in Figure 1.

Previously we have measured the time-varying noise power

at the input and then attempted to calculate the weights

that would result in a stationary output process. In order to

remove the need to calculate the necessary weights, we instead

measure the noise power at the output, which allows us to use

a simpler adjustment rule.



procedure UpdateSegmentWidths( x[n], ²noise [n] )

        if ²noise [n] < ²avg  then

                          +1
        else if ²noise [n] < ²avg  then

                          1
        else

                            0
        end if

        UpdateNoiseAverage( x[n], ²noise [n] )

        i          FindSegment( x[n] )
        if wi[n] +  {1, …, 2N 1} then

                return

        end if

        j          FindSegment( Random({1, …, 2N 1}) )
        if wj[n] +   {1, …, 2N  1} then

                return

        end if

        wi[n+1]          wi[n] + 
        wj[n+1]          wj[n]  

end procedure

Fig. 2. The width-update algorithm.

If the distorting function is exactly equal to the inverse of

the compensating function g(z), by our initial assumption the

noise at the output will have a constant variance. If the variance

is greater than average, this implies that the differential gain

is also greater than average, and therefore we must reduce the

gain of the compensating function in this region. Conversely,

if the variance is less than average, we increase the gain of

the compensating function.

We use a simple rule to determine the weight updates—if

the noise is greater than average, the corresponding segment

width wi[n] will be reduced by one, and if it is greater then

wi[n] will be increased by one. However, after doing so the

output-range constraint no longer satisfies Eqn. 6; if wi[n]
has been reduced, its output bin must be allocated somewhere

else, and if it has been increased, its output bin must be

taken from somewhere. Our key innovation is, rather than

performing a time-consuming global rescaling, to simply give

or take a random output bin—a random number is selected

from {0, . . . , 2N}, and the width of the corresponding segment

is increased or decreased by one. This is shown in greater

detail in Figure 2. A proof of convergence for this algorithm

will be the subject of a later work.

It is also worth noting that the noise need not be explicitly

measured at the output of the compensator; if measured at the

input, it may be converted to an output-equivalent noise by

scaling its power by w2

i
, where the signal falls within bin

i. Doing so allows the use of hardware filters to separate

the noise from the low-frequency signal, thereby substantially

reducing the computational burden on the processor.

We compute the average noise power y[n] using a simple

infinite-impulse-response (IIR) filter of the form

y[n] = (1− 2−10)y[n− 1] + 2−10x[n],

chosen for ease of implementation. It remains to be seen

whether more sophisticated techniques, yielding a more rep-

resentative noise average, will provide a substantial advance

in performance. One approach would be to take the median

output noise variance, which would cause the random-bin-

reallocation process to give and take bins 50% of the time,

however it is not yet known whether the removal of this source

of bias is important.

III. RESULTS

We test our system based on Equation 4 and UPDATE-

SEGMENTWIDTHS. The method used to generate the test

signals and measure the total harmonic distortion (THD) [5]

of the output is shown in Figure 3. Ten million samples—

ten seconds worth—were generated and processed, with the

system being allowed five seconds to settle, after which the

THD was computed from the remaining data points, up to the

tenth harmonic. The inputs to the algorithm were quantised to

fourteen bits, and the outputs quantised to twelve. We used 27

segments, thus yielding the parameters M = 14, N = 12, and

k = 7 in the exposition above. Noise power was measured at

the input and scaled by the square of the weights, yielding the

output noise.

The total harmonic distortion (THD) of the output of the

technique is shown in Figure 4. We see a substantial reduction

in THD over a wide range of input distortion levels, however

the achievable lower limit is determined by the block size;

it is anticipated that refinements to the method will allow

a reduction in the required block size whilst maintaining a

low THD. The use of large block sizes appears to result in

some ‘peaking’ at high levels of distortion, however at this

level of distortion, the algorithm ceases to function, resulting

in a net increase in distortion, and so would not be used,

rendering the point moot. The results therefore indicate the

use of larger block sizes. As this test is performed with a

highly oversampled signal—by a factor of 5000—this is not

a problem here. However, with lower oversampling ratios this

design parameter may limit the achievable performance.

IV. CONCLUSION

We have described a new algorithm for online nonlinear sys-

tem identification in electronic systems. The proposed system

avoids expensive division and square-root operations, and we

have produced a fixed-point proof-of-concept implementation.

It has been shown in simulation to improve total harmonic

distortion by between ten and twenty decibels for a tanh-

style distorting function, reaching a floor of almost 0.1% THD.

The success of the new technique at low levels of distortion

is significant, as it means that this noise-based approach is
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Fig. 3. Test setup for the anti-distortion system; the sampling rate is 1MHz.
The Gaussian noise was generated as a repeating sequence of 216 random
variates, formed by the sum of five scaled calls to the POSIX rand function.
The unusual high-pass filtering approach is inherited from the arrangements
in [12], where we required both high-pass and low-pass outputs. In addition
to what is shown in (a), we split the input into blocks of variable size—
ranging from 2 to 32 in our tests—and compute mean-square value of the
noise using the unbiased divide-by-(N − 1) formula. The harmonic powers
are calculated by repeated complex downconversion; after k downconversions,
the DC component will be that originally at fk, and can be found by coherent
averaging. We measured up to the sixth harmonic.
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Fig. 4. Input vs. output THD for the proposed method. A 100Hz sinusoid
had noise added and was distorted by the function g(x) = tanh(1.13x),
with the level of distortion varied by changing the amplitude of the input
signal, rescaling the output to match the output range to that corresponding
to an input signal of amplitude one. The ultimate floor of the output THD is
dependent upon the number of samples used—the block size—for the noise
estimate. Each line represents a different block size.

no longer limited to merely gross distortion, but that it can

be applied to existing data of already-reasonable quality. This

provides substantial expansion of the design space, distortion

no longer being the hard limit that it otherwise is.
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