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A B S T R A C T

This paper proposes a flexible probabilistic activation function that enhances the training and operation of
artificial neural networks by intentionally injecting noise to gain additional control over the response of each
neuron. During the learning phase, the level of injected noise is iteratively optimized by gradient-descent,
realizing a form of adaptive stochastic resonance. From simple hard-threshold non-differentiable neuronal
responses, controlled injection of noise gives access to a wide range of useful activation functions, with
sufficient differentiability to enable gradient-descent learning for both the neuron and the injected-noise
levels. Experimental results on function approximation demonstrate injected noise generally converging to non-
vanishing optimal levels associated with improved generalization abilities in the neural networks. A theoretical
explanation of the generalization improvement based on the path norm bound is presented. With injected noise
in the deep neural network, experimental results on classifying images also obtain non-vanishing optimal noise
levels to achieve better testing accuracies. The proposed probabilistic activation functions show the potential
of adaptive stochastic resonance for useful applications in machine learning.
1. Introduction

Injecting noise into activation functions is emerging as an effective
way to facilitate artificial neural network training, yielding competitive
results on different tasks, for example on face verification [1] and
PennTreebank analysis [2]. It is argued [2] that injection of appropriate
noise into the saturated regimes of activation functions facilitates the
flow of gradients, whereas such noiseless activation functions may get
blocked by vanishing gradients. This approach [1,2] is essentially a
natural extension of injecting noise into the input, weights, expected
signals or gradients for improving the generalization ability of artificial
neural networks [3–11]. Specifically, using a rigorous expansion of
infinitesimal injected noise variance, Bishop [12] proved that noise
injection into input is equivalent to a smoothing regularization that
behaves as a generalized Tikhonov regularizer in the loss function.
Similarly, the superiority of injecting noise in activation functions of
the hidden layer was also theoretically demonstrated for minimizing
the convex loss function of the feedforward neural network, which has
a smaller empirical loss than networks with injecting noise into the
input [13,14].

Of particular note is that the activation function [13–15] or the
estimator [16] with noise injection can be theoretically reduced to a
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transformed unit smoothed over the probability density function (PDF)
of injected noise. This transformation allows backpropagation training
of neural networks with a family of nondifferentiable activation func-
tions [13,15], and avoids the time-consuming statistical experiments of
neural network training by injecting a large number of noise samples
into the input or the model parameters [12,17,18]. Moreover, such
transformed units with adjustable characteristics for the injected noise
can improve the neural network performance with only a small increase
in the complexity of the network architecture [13,15,19–24]. Along
with updating weights of networks in the training, the noise hyper-
parameters of the transformed unit also adaptively learn by gradient
descent. Designing activation functions with learnable hyperparameters
that enable fast training of accurate deep neural networks is becoming
an attractive area of interest in machine learning [1,2,13–15,19–27].

However, the assumption of infinitesimal injected noise variance
in the proof of the Tikhonov regularization [12,13] does not always
hold, because the converged (local optimal) noise variance in activation
functions is frequently far larger than unity in trials. Thus, besides
experiments of various activation functions on benchmark data sets, the
mathematical explanation of the performance of neural networks with
general activation functions is essential for insight into the network
960-0779/© 2023 Elsevier Ltd. All rights reserved.
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Fig. 1. Block diagram representations of general probabilistic activation functions of GEUs of Eq. (5) and PGELUs of Eq. (7). Note that other probabilistic activation functions
indicated in Eq. (2) can be derived by injecting noise 𝜂 with various PDFs.
generalization. In this paper, we first propose a general probabilistic
activation function from the perspective of stochastic resonance [28],
which exploits the constructive role of a nonzero amount of injected
noise for improving the performance of certain nonlinear systems [13–
16,29–39]. It is interesting to note that the proposed activation function
not only bridges the gap between the fundamental McCulloch–Pitts
(binary) neuron model [40,41] and some pre-specified nonlinear ac-
tivation functions, e.g. sigmoid and hyperbolic tangent (tanh), but
also naturally elicits some ad hoc activation functions. In addition,
on multiplying the input by the probabilistic output of the proposed
activation function, we can also obtain the unbounded nonlinearities
of the rectified linear unit (ReLU) [1] and the Gaussian error linear
unit (GELU) [24]. Thus, the proposed probabilistic activation function
is far more inclusive.

Furthermore, we will show that the proposed activation functions
outperform the traditional ones across some benchmark classification
tasks, because the injected noise can adaptively modify the input–
output function relationship and allow the gradient to flow more
efficiently in the network training. Correspondingly, the designed net-
work with the proposed activation functions also achieves a smaller
generalization error on real data sets. Using the path-based norm
measure [42,43], it is then found that the hyperparameter of injected
noise in activation functions provides size-independent complexity con-
trol for a shallow feedforward neural network, which establishes a
theoretical explanation of injected noise for improving generalization
of the designed networks. Experimental results with deep neural net-
works on image classification also demonstrate several optimized noise
levels larger than unity. With such optimized noise, the proposed
activation functions can better preserve the features of images, and
then higher testing accuracies are obtained. These theoretical and
experimental results show that the proposed probabilistic activation
functions established upon adaptive stochastic resonance are definitely
worth exploring further for enhancing the capabilities of deep neural
networks.

2. Formulation of probabilistic activation functions

2.1. Model

As indicated in Fig. 1, we motivate a general probabilistic activation
function by averaging 𝑇 stochastic threshold classifiers [7,33,34,44,45]
or McCulloch–Pitts neurons [40] denoted by

ℎ(𝑥 + 𝜂𝑡) =

{

1, 𝑥 + 𝜂𝑡 ≥ 0,
0, 𝑥 + 𝜂𝑡 < 0,

(1)

which are activated by the common input 𝑥 =
∑𝑛
𝑖=1𝑤𝑖𝑥𝑖 + 𝑏 plus

mutually independent white noise components 𝜂𝑡 for 𝑡 = 1, 2,… , 𝑇 .
Here, 𝑤𝑖 are weight coefficients and 𝑏 is the bias. Assume that the
injected noise components 𝜂𝑡 have the common PDF 𝑓𝜂(𝜂), then each
neuron in Eq. (1) yields a response of unity with probability 𝑝(𝑥) =
2

∫ ∞
−𝑥 𝑓𝜂(𝜂)𝑑𝜂 = 1 − 𝐹𝜂(−𝑥), where 𝐹𝜂(𝑢) = ∫ 𝑢−∞ 𝑓𝜂(𝜂)𝑑𝜂 denotes the

cumulative density function (CDF) of the injected noise 𝜂. By averaging
outputs of 𝑇 neurons, as shown in Fig. 1, we have the output ℎ̄(𝑥) =
1
𝑇
∑𝑇
𝑡=1 ℎ(𝑥 + 𝜂𝑡) that takes the value 𝑡∕𝑇 according to the binomial

distribution
( 𝑇
𝑡
)

𝑝𝑡(1 − 𝑝)𝑇−𝑡. It is noted this neuronal ensemble is

closely associated with the occurrence of the suprathreshold stochastic
resonance effect [33,34], where the optimal noise level elicits the
maximum mutual information between the neuronal ensemble and the
suprathreshold inputs. Here, we regard this model in Fig. 1 as a flexible
probabilistic activation function to be explored in the artificial neural
network as follows.

For a sufficiently large number 𝑇 of neurons, the neuron ensemble
output tends to the mean 𝑝(𝑥) of the binomial distribution, i.e. 𝑔(𝑥) =
lim𝑇→∞ ℎ̄(𝑥) ≈ 𝑝(𝑥). Therefore, a general activation function boosted by
injected noise is defined as

𝑔(𝑥) = 1 − 𝐹𝜂(−𝑥). (2)

Since the CDF 𝐹𝜂(𝑥) satisfies 0 ≤ 𝐹𝜂(𝑥) ≤ 1, thus 0 ≤ 𝑔(𝑥) ≤ 1 and
𝑔(𝑥) is a saturating activation function with bounds 0 or 1 as 𝑥 → ±∞.
Interestingly, due to the derivative 𝑑𝑔(𝑥)∕𝑑𝑥 = 𝑔′(𝑥) = 𝑓𝜂(−𝑥), the
general activation function 𝑔(𝑥) in Eq. (2) is Lipschitz continuous when
the PDF 𝑓𝜂 exists and is bounded almost everywhere on the domain of
definition 𝑥 ∈ R. For instance, it is noted that the sigmoid activation
function

𝑔(𝑥) = 1
1 + 𝑒−𝑥

(3)

can be deduced from the logistic noise 𝜂 with its PDF 𝑓𝜂(𝑥) = 𝑒−𝑥∕(1 +
𝑒−𝑥)2 = sech2(𝑥∕2)∕4, and the saturating linear activation function

𝑔(𝑥) =

⎧

⎪

⎨

⎪

⎩

1, 𝑥 ≥ 1,
𝑥, 0 < 𝑥 < 1,
0, 𝑥 ≤ 0

(4)

can be derived by the uniform noise distributed in the interval of
[−1, 0]. The tanh activation function tanh(𝑥) can be expressed as a
linear transformation of 2𝑔(𝑥) − 1 = 1 − 2𝐹𝜂(−𝑥), where the logistic
noise PDF 𝑓𝜂(𝑥) = sech2(𝑥)∕2 with the scale parameter 1∕2 yields the
CDF 𝐹𝜂(𝑥) = 𝑒𝑥∕(𝑒𝑥 + 𝑒−𝑥). Therefore, a number of common activation
functions can be generated from the proposed probabilistic activation
function defined in Eq. (2).

2.2. GEU and PGELU activation functions

Furthermore, some novel probabilistic activation functions can be
derived form Eq. (2), because the injected noise PDF can be arbitrarily
assigned. When the injected noise is assumed to have the Gaussian PDF
𝑓𝜂(𝑥) = exp(−𝑥2∕2𝜎2)∕

√

2𝜋𝜎2 with variance 𝜎2, a general activation
function of Eq. (2) can be specifically expressed as

𝑔(𝑥) = 1 − 𝐹 (−𝑥) = 𝐹 (𝑥) = 𝛷 𝑥∕𝜎 , (5)
𝜂 𝜂 ( )
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Fig. 2. (a) GEU 𝛷(𝑥∕𝜎) in Eq. (5) for various injected RMS noise levels. For comparison, the sigmoid activation function (dotted line) is also plotted. (b) PGELU 𝑥𝛷(𝑥∕𝜎) in Eq. (7)
or different injected RMS noise levels. The ReLU (dotted line) is also illustrated for comparison.
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here 𝛷(𝑥) = ∫ 𝑥−∞ exp(−𝑢2∕2)∕
√

2𝜋 𝑑𝑢 = 1
2 + 1

2 erf(𝑥∕
√

2) denotes the
CDF of a standard Gaussian distributed random variable and the Gauss
error function erf(𝑥) = 2 ∫ 𝑥0 𝑒−𝑡2𝑑𝑡∕

√

𝜋. Here, this special activation
function of Eq. (5) is called Gaussian error unit (GEU), which contains
a learnable parameter 𝜎 of root-mean-square (RMS) noise. It is seen
in Fig. 2(a) that, as the RMS noise decreases, the GEU becomes more
similar to the threshold neuron with zero gradients. Nevertheless, for a
large injected noise RMS 𝜎 = 5 (dashed line), the saturating regions
of GEU in Eq. (5) appear at very large values of |𝑥| > 15. For
comparison, the input–output characteristic of the sigmoid activation
function (dotted line) is also plotted in Fig. 2(a). In the network training
procedure, the hyperparameter 𝜎 can adaptively learn by the gradient
of the loss function with respect to itself, and then control the gradient
flow for the variant of input.

We can multiply the probabilistic activation function 𝑔(𝑥) in Eq. (2)
by the neuron input 𝑥 to derive another general model

𝐺(𝑥) = 𝑥𝑔(𝑥) = 𝑥[1 − 𝐹𝜂(−𝑥)], (6)

where 𝑔(𝑥) acts a stochastic regularizer on the input 𝑥, viz. dropping
the input 𝑥 with a probability 𝑔(𝑥), as shown in Fig. 1(b). It is noted
that some common unbounded activation functions can be also derived
from Eq. (6). For instance, when the RMS noise 𝜎 = 0 (i.e. without
the injected noise), the ReLU max(0, 𝑥) = 𝑥ℎ(𝑥) [1] is rediscovered
by deterministically multiplying the input 𝑥 with the McCulloch–Pitts
neuron in Eq. (1). Multiplying the GEU of Eq. (5) by the input 𝑥, as
shown in Fig. 2(b), the parametric Gaussian error linear unit (PGELU)
is given by

𝐺(𝑥) = 𝑥𝑔(𝑥) = 𝑥𝛷 (𝑥∕𝜎) , (7)

which reduces to GELU 𝑥𝛷(𝑥) [24] with the injected RMS noise 𝜎 = 1.
It is seen in Fig. 2(b) that, in comparison with ReLU, PGELU exhibits
curvature at all values of input 𝑥, and manifests a non-monotonic
evaluation upon the increase of RMS noise, e.g. 𝜎 = 5 (dashed line).
While, for a small RMS noise (e.g. 𝜎 = 0.1 illustrated by dashed–dotted
line), PGELU in Eq. (7) almost reduces to ReLU (dotted line). In the
following, we will show that the adaptively learning hyperparameter 𝜎
can improve the generalization by neural networks.

3. Injected RMS noise on the generalization by neural networks

We here focus on the interesting property of the learnable hyper-
parameter of RMS noise 𝜎 for improving generalization or preventing
over-fitting by the designed neural networks with proposed activation
functions in Eqs. (2) and (6).
3

3.1. Generalization by the designed neural network on function approxima-
tion

As a motivating example,1 we first consider a neural network for
fitting a sinusoidal function sin(𝜋𝑥) on observations 𝑦 = sin(𝜋𝑥) + 𝜉
corrupted by Gaussian background noise 𝜉. Here, 𝜉 is with zero-mean
and variance 𝜎2𝜉 = 0.22. The samples of the training set {𝑥𝑖, 𝑦𝑖}𝑛=21𝑖=1 (∙) in
he interval [−1, 1] is shown in Fig. 3(a). A fully connected 𝑁 ×𝐾 ×𝑀
eural network is employed and has an input layer with 𝑁 = 1 linear
euron, one hidden layer containing 10 neurons of Eq. (2) and 𝑀 = 1
inear neuron as the output layer. After 2 × 104 training epochs using
he Adam optimizer [46], it is seen in Fig. 3(a) that the output (solid
ine) of the sigmoid network fits the noisy data well with a small mean
quare error (MSE) of 8.46 × 10−5, but has poor generalization to new
bservation data. For instance, the trained sigmoid network presents
igher MSEs in the order of 5 × 10−2−8 × 10−2 for 5 samples of the
esting set {𝑥𝑗 , 𝑦𝑗}𝑛=21𝑗=1 .

Conversely, as shown in Fig. 3(b), the 1 × 10 × 1 fully connected
eural network with 𝐾 = 10 GEUs of Eq. (5) achieves a MSE of
.01 × 10−2, and provides a better fit to the true function of sin(𝜋𝑥)
dashed line) than the sigmoid network does (see Fig. 3(a)). For 5
amples of testing set {𝑥𝑗 , 𝑦𝑗}𝑛=21𝑗=1 , the GEU network still attains the
SE in the range of 2 × 10−2−4 × 10−2 as the same order as the MSE

f 3.01×10−2 in training. Therefore, the generalization by the designed
EU network to new observation data is very effective. The reason for

he superiority of the GEU network over the sigmoid network lies in the
earnable hyperparameter 𝜎 that controls the input–output nonlinearity
f the GEU in the hidden layer. It is shown in Fig. 3(c) that, during
etwork training, the injected RMS noise 𝜎 starts from the initial value
6 and converges on a non-zero local optimum value 6.5655 (solid
ine). The trained GEU neuron 𝛷(𝑥∕6.5655) is not so sensitive to the
ariety of noisy data in a wide region of input, as indicated in Fig. 2(a),
nd the designed network yields a smooth output that approaches the
arget sinusoidal function. This is the reason for the generalization
mprovement in the GEU network for function approximation.

From Eqs. (2) and (3), it is natural to ask whether introducing the
njected noise scale parameter 𝜎 of the logistic noise 𝜂 into the sigmoid
ctivation function of Eq. (3) can improve the generalization by the
igmoid network? The answer is positive. Since the logistic noise 𝜂
as its PDF 𝑓𝜂(𝑥) = 𝑒−𝑥∕𝜎∕[𝜎(1 + 𝑒−𝑥∕𝜎 )2] with variance 𝜎2𝜋2∕3, then
variant sigmoid activation function

(𝑥) = 1 − 𝐹𝜂(−𝑥) =
(

1 + 𝑒−
𝑥
𝜎
)−1

(8)

can be deduced from Eq. (2). We also train the 1 × 10 × 1 neural
network with 𝐾 = 10 activation functions of Eq. (8) by noisy obser-
vations. It is illustrated in Fig. 3(a) that the output (dashed–dotted

1 Source code: https://github.com/YuuhoRen/GEUactivation.

https://github.com/YuuhoRen/GEUactivation
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Fig. 3. Outputs of (a) the sigmoid network (solid line), the variant sigmoid network (dashed–dotted line) indicated in Eq. (8) and (b) the GEU network (solid line) indicated in
Eq. (5). For comparison, the target function sin(𝜋𝑥) (dashed line) and the observations (∙) are also plotted. (c) Learning curve of the injected RMS noise 𝜎 of the GEU network in
the training. (d) Stochastic resonance effect of the testing MSE versus the injected RMS noise 𝜎 for the GEU network. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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line) also demonstrates the role of the hyperparameter 𝜎 in enhancing
the generalization of the designed network. The corresponding MSE
becomes 2.99 × 10−2 in the training and the injected RMS noise 𝜎
converges to 4.5190 (dashed line), as shown in Fig. 3(c).

The presence of non-zero converged RMS noise 𝜎 in Fig. 3(c)
provides evidence for the occurrence of adaptive stochastic resonance
effect in the designed neural network for function approximation. To
further elucidate this effect, we plot the testing MSE of the designed
GEU network as a function of the injected RMS noise 𝜎 in Fig. 3(d).
Here, each point of testing MSE is obtained by fixing noise RMS 𝜎 but
training network weights with the backpropagation learning rule. As
depicted in Fig. 3(d), it can be observed that the optimized noise RMS
𝜎 is consistent with the converged value of 6.5655 as shown in Fig. 3(c).
Significantly, the testing MSE of the designed GEU network exhibits an
increasing trend for both high and low values of the noise RMS 𝜎. This
is the typical resonance curve of the testing MSE versus the RMS noise
𝜎, which also demonstrates the practicality of the stochastic resonance
effect in the domain of machine learning.

3.2. Theoretical explanation of the learnable RMS noise on the Rademacher
complexity

It is clearly seen in Fig. 3(c) that the converged RMS noise 𝜎 > 1
is far beyond the theoretical explanation of the injected noise as a
generalized Tikhonov regularizer for training the designed threshold
network [12], which only holds for the assumption of an infinitesimal
injected noise variance. Then, the complexity measure that monotoni-
cally relates to the generalization error needs to be analyzed for these
neural networks with the proposed general activation functions. Here,
we utilize the path-based norm to analyze how the learnable hyperpa-
rameter 𝜎 does control the Rademacher complexity that measures the
degree to which a hypothesis set can fit random noise [42–45,47,48].

Let 𝑆 = {𝒙𝑖, 𝑦𝑖}𝑛𝑖=1 denote the training set sampled from the obser-
vations 𝑦𝑖 = 𝑠(𝒙𝑖) + 𝜉𝑖, where 𝑠 is the target function with its domain in
[0, 1] and the 𝑑-dimensional input vector 𝒙 ∈ R𝑑 [43]. The background
4

white noise 𝜉 is with zero-mean and finite variance 𝜎2𝜉 . Let 𝜓𝑚(𝒙, 𝜃) =
∑𝑚
𝑘=1 𝑎𝑘𝑔(𝒘𝑘𝒙+𝑏𝑘, 𝜎) represent the three-layer network model with the

learnable parameter set 𝜽 = {{𝑎𝑘,𝒘𝑘, 𝑏𝑘}𝑚𝑘=1, 𝜎} and 𝑚 neurons in the
hidden layer. Here, 𝒘𝑘 denotes the weight vector in the input layer,
𝑏𝑘 is the bias parameter for the 𝑘th neuron in the hidden layer, and
the weight 𝑎𝑘 connects the 𝑘th neuron and the single linear neuron
in the output layer. Consider the truncated square loss 𝓁(𝒙, 𝑦,𝜽) =
[ (𝜓) − 𝑦]2∕2 with the truncation operator  (𝑧) = min{max{𝑧(𝒙), 0}, 1}
or any function 𝑧 ∶ R𝑑 ↦ R [42,43]. Here, the expected loss (𝜽) and

the empirical loss ̂𝑛(𝜽) of the network model are given by

(𝜽) = E𝒙,𝑦[𝓁(𝒙, 𝑦,𝜽)], ̂𝑛(𝜽) =
1
𝑛

𝑛
∑

𝑖=1
𝓁(𝒙𝑖, 𝑦𝑖,𝜽). (9)

Then, the generalization error between (𝜽) and ̂𝑛(𝜽) is related to the
ademacher complexity [44,45]

̂ 𝑆 ( ) = E𝜻

[

sup
𝜓∈𝛹

1
𝑛

𝑛
∑

𝑖=1
𝜁𝑖𝜓(𝒙𝑖)

]

(10)

ith respect to the data set 𝑆 and for a family of functions 𝜓 ∈ 𝛹 .
ere, 𝜻 = {𝜁𝑖}𝑛𝑖=1 are the independent Rademacher random variables
niformly taking values in {−1, 1} [44,45]. For any 0 < 𝛿 < 1, with
robability at least 1 − 𝛿 over the draw of a sample 𝑆 of size 𝑛, it is
ound [44,45] that

�̂�(𝜽) ≤ (𝜽) + 2E𝑆 [̂𝑆 (𝛹 )] + 𝐵
√

2 ln(2∕𝛿)
𝑛

(11)

holds for all 𝜓 ∈ 𝛹 and |𝜓(𝑥)| < 𝐵 for the upper limit 𝐵 > 0 [44,45].
Furthermore, it is proved in [43] that, for an arbitrary continu-

ous and two-order differentiable activation function 𝑔 ∶ R ↦ R,
there exists a three-layer ReLU neural network 𝜓𝑜(𝒙; 𝜃) with an fi-
nite width 𝑚 (i.e. the neuron number of hidden layer), such that
sup𝑥∈R |𝑔(𝑥) − 𝜓𝑜(𝒙; 𝜃)| ≤ 𝜀, ‖𝜃‖𝑝 ≤ 𝛾(𝑔) + 𝜀 for an arbitrary constant
0 < 𝜀 ≪ 1. Here, the path norm ‖𝜃‖𝑝 (𝑝 ≥ 1) of 𝜓𝑜(𝒙; 𝜃) is defined
as [42] ‖𝜃‖𝑝 =

∑𝑚
𝑖=1 |𝑎𝑖|(‖𝒘𝑖‖1 + |𝑏𝑖|) with its upper bound [43]

𝛾(𝑔) = |𝑔′′(𝑥)|(|𝑥| + 1)𝑑𝑥 + inf |𝑔(𝑥)| + (|𝑥| + 2)|𝑔′(𝑥)|. (12)
∫R 𝑥∈R
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Fig. 4. Block diagram representations of the convolutional neural network architecture in Table 1 for MNIST classification.
For such three-layer network 𝜓(𝒙, 𝜃) and ‖𝜃‖𝑝 +
∑𝑚
𝑘=1 |𝑎𝑘| ≤ 𝑄 with a

certain 𝑄 > 0, the Rademacher complexity satisfies [43]

̂𝑆 (𝛹 ) ≤ 2𝛾(𝑔)𝑄
√

2 ln(2𝑑)
𝑛

. (13)

From Eqs. (11)–(13), we see that the generalization error of the
network model with the general activation functions 𝑔(𝑥) is closely
related to the upper bound 𝛾(𝑔) in Eq. (12). In particular, the norm
bound 𝛾(𝑔) = 1 for the ReLU, 𝛾(𝑔) = 1 + 𝛼 for leaky ReLU 𝑔(𝑥) =
max{𝛼𝑥, 𝑥} as 𝛼 ∈ [0, 1), and 𝛾(𝑔) = 1.5 for the sigmoid activation
function [43].

In Appendix, we prove that, if the second-order derivative 𝑔′′(𝑥) > 0
(𝑥 < 0) and 𝑔′′(𝑥) < 0 (𝑥 > 0), then the upper bound 𝛾(𝑔) in Eq. (12) of
the proposed activation function 𝑔(𝑥) in Eq. (2) can be computed as

𝛾(𝑔) = 1 + 2𝑓𝜂(0). (14)

For the GEU activation function in Eq. (5), 𝑔′′(𝑥) = −𝑥𝑒−
𝑥2

2𝜎2 ∕(
√

2𝜋𝜎3)
and the upper bound 𝛾(𝑔) = 1+

√

2∕(
√

𝜋𝜎). It is also interesting to note
that, at the converged RMS noise 𝜎 = 6.5655≫ 1 shown in Fig. 3(c), the
corresponding norm bound 𝛾𝜎 (𝑔) = 1.076 of GEU is less than 𝛾(𝑔) = 1.5
of the sigmoid activation function in Eq. (3). Similarly, for the variant
sigmoid activation function in Eq. (8), 𝑔′′(𝑥) = (𝑒

𝑥
𝜎 − 𝑒

2𝑥
𝜎 )∕[𝜎2(1 + 𝑒

𝑥
𝜎 )3]

and the upper bound 𝛾(𝑔) = 1 + 1∕(2𝜎). It is seen in Fig. 3(c) that
the converged RMS noise 𝜎 = 4.5190 and the corresponding norm
bound 𝛾𝜎 (𝑔) = 1.1106 is also less than 𝛾(𝑔) = 1.5 of the sigmoid
activation function. Thus, the Rademacher complexity of the designed
GNE network can be controlled at a lower level, and the generalization
by the designed neural network, as shown in Fig. 3(b), can be improved
as the learnable RMS noise 𝜎 > 1.

3.3. Learnable RMS noise on image classification

Unfortunately, the Rademacher complexity of a neural network with
general activation functions based on the path norm [42,43] is not
easily extended to deep neural networks, because the depth-dependent
capacity control of the deep neural network is still unresolved [42–45,
48]. Therefore, here, we mainly experimentally evaluate and compare
deep neural networks with the proposed and with the traditional acti-
vation functions on MNIST classification (gray images with 10 classes,
6×104 training and 104 testing examples) [49], CIFAR-10 classification
(color images with 10 classes, 5 × 104 training and 104 testing exam-
ples) [50] and CIFAR-100 classification (color images with 100 classes,
500 training images and 100 testing images per class) [50].

A deep convolutional neural network is designed with the architec-
ture shown in Fig. 4, wherein the activation function 𝑔(𝑥) in three layers
can be selected from Sigmoid, ReLU, PReLU or GEU, respectively. For
the activation function 𝑔(𝑥) of GEU in Eq. (5) or PGELU in Eq. (7), the
convolutional layer includes two RMS noises 𝜎1 and 𝜎2, and the fully
connected layer has one 𝜎3 to be learned in the training. The training
epochs is 20, the batch size takes 128 and the Adam optimizer [46]
is used to optimize both weights and the RMS noise levels [13]. The
learning rate keeps 0.002 for the total training examples. The Xavier
initialization [51] is adapted to initialize weights of the convolutional
5

neural network such that the variance of the activations are the same
across each layer. In order to validate the generalization by the neural
network, the 6 × 104 training examples are normalized by subtracting
the mean (0.1307) and dividing by the standard deviation (0.3081) [49,
52].

After normalization, the training images are corrupted by Gaussian
noise with different variances. Here, the averaged testing accuracies are
obtained for 5 trails, and the same is for the following testing results.
It is listed in Table 1 that the PGELU and GEU neural networks achieve
higher testing accuracies in comparison with networks consisting of
other activation functions. Here, PReLU indicates the leaky ReLU with
adaptively learning parameter of the rectifiers [53]. For instance, with-
out the corrupting noise, Fig. 5(a) and (b) illustrate the train and the
test accuracies, respectively. In fact, for the corrupting noise variances
0, 1 and 2, the PGELU neural networks perform better slightly. But, the
ReLU convolutional neural network is invalidated with a low testing
accuracy 79.63% at the large corrupting noise variance 5, as given in
Table 1. In similar situations, the GEU neural network still have a high
accuracy of 93.97%, which performs better by 1.60% compared with
the PGELU network.

Moreover, for the GEU convolutional neural network in Fig. 4, the
injected RMS noise levels are initialized to the constant 2.1 and all
converges to values larger than unity, for instance, 𝜎1 = 3.3860, 𝜎2 =
3.9697 and 𝜎3 = 3.7796 for training images with the corrupting noise
variances 5. Thus, for classifying gray images in MNIST data set, the
saturating activation function of GEU, assisted by the learnable injected
RMS noise 𝜎, is demonstrated to be more robust to the noisy input.
Although the capabilities are difficult to be theoretically analyzed for
the deep convolutional neural network, the experimental results also
demonstrate the conclusion indicated in Eq. (13) that a large RMS noise
can reduce the saturating regions of the activation function and then
extend the generalization by the designed neural network.

We further demonstrate the positive role of the injected RMS noise
for classifying color images. The general activation functions of GEU in
Eq. (2) and PGELU in Eq. (5) are evaluated by CIFAR-10 data set on
the ResNet network with the deep residual learning framework [53],
wherein one RMS noise is initialized to the constant 5 outside the
residual blocks and 12 RMS noise levels are set to the constant 3 in
the residual blocks. The detailed architecture of the ResNet network2

is shown in Fig. 6, and all the parameters only occupy about 0.2-Mb of
computer RAM (for comparison, the ResNet-18 network occupies about
11.4-Mb of memory). The batch size is 100 and the Adam optimizer is
used to optimize both weights and RMS noise levels in 80 epochs. The
initial learning rate takes 0.001, and decreases to a third of the last
one after 20 epochs. Since CIFAR-10 is an established computer-vision
data set used for object recognition [50] in real world, then these color
images themselves contain background noise. So, no corrupted noise is
added to the data set in trails.

2 https://github.com/pytorch/vision/blob/main/torchvision/models/
regnet.py;

https://github.com/YuuhoRen/GEUactivation

https://github.com/pytorch/vision/blob/main/torchvision/models/regnet.py
https://github.com/pytorch/vision/blob/main/torchvision/models/regnet.py
https://github.com/YuuhoRen/GEUactivation
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Table 1
Testing accuracy (%) versus corrupting noise variance in convolution networks.

Activation function
Corrupting noise variance 0 1 2 3 5

Sigmoid 98.95 98.88 98.62 96.24 91.70
ReLU 99.15 99.13 98.08 94.70 79.63
GELU 99.22 99.04 98.66 95.76 91.17
PReLU 99.18 99.17 98.56 96.42 90.26
PGELU 𝟗𝟗.𝟐𝟕 𝟗𝟗.𝟏𝟗 𝟗𝟖.𝟔𝟕 96.21 91.75
GEU 99.06 99.01 98.59 𝟗𝟕.𝟒𝟐 𝟗𝟑.𝟑𝟓
Fig. 5. (a) Train and (b) test accuracies for convolutional neural networks with different activation functions on MNIST classification.
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Fig. 6. Diagram representation of the architecture of the ResNet.

able 2
rain and test accuracies (%) for various activation functions on the ResNet network.
Activation function Sigmoid GEU ReLU PReLU GELU PGELU

Train accuracy 70.48 70.87 89.81 95.43 95.07 𝟗𝟔.𝟗𝟎
Test accuracy 68.63 69.21 84.41 87.69 87.50 𝟖𝟖.𝟓𝟖

In Fig. 7(a) and (b), the train and the test accuracies are shown
t each epoch for ResNets constructed by various activation functions,
espectively. After 80 epoches of training, the test accuracies of the
rained ResNets are listed in Table 2 for these considered ResNets.
t is obviously seen in Table 2 that, for recognizing color images,
he networks composed of unbounded nonlinearities of ReLU, PReLU,
ELU and PGELU have higher testing accuracies in comparison with

hat of networks with the saturating activation functions of sigmoid
nd GEU. This indicates that, for the unbounded nonlinearities in the
ositive region of the input 𝑥 ∈ R, the non-vanishing gradient plays an
mportant role during training. However, whatever the injected RMS
6

oise increases, GEU still has the vanishing gradient in its saturating t
egions for a very large input 𝑥. This is an essential difference between
he two types of activation functions. It is also indicated in Table 2
hat, among four unbounded activation functions, the PGELU network
chieves the best testing accuracy of 88.58%. It is also interestingly
oted in Fig. 8 that all converged values of injected RMS noise levels
f the trained PGELU network are larger than unity. As illustrated in
ig. 2(b), the larger the injected RMS noise is, the negative feedback
or different values of the input will be more obvious. Thus, with these
onverged RMS noise levels larger than unity, the features of color
mages represented in the negative region are better preserved by the
esigned PGELU network, resulting in a high testing accuracy of image
lassification.

We applied a light-weighted ResNet to the CIFAR-100 dataset by
runing a residual block of the ResNet network, as illustrated in Fig. 6.
nitially, we set 11 RMS noise levels to a constant value of 2.5. After 30
pochs of training, the PGELU ResNet achieved the highest test accu-
acy of 75.85%. This result outperformed ResNets with other activation
unctions, such as ReLU ResNet and PRELU ResNet, which achieved test
ccuracies of 74.25% and 74.00%, respectively. The curves of the test
ccuracies at each epoch are illustrated in Fig. 9(a) for ReLU, PReLU,
ELU and PGELU ResNets, respectively. Moreover, it can be observed

n Fig. 9(b) that, after training the PGELU ResNet, four converged
MS noise levels exceeded unity, while the remaining seven were
nly slightly smaller than unity. This observation highlights the ben-
ficial impact of learnable RMS noises on enhancing the generalization
erformance of the designed neural network.

. Conclusion

In this paper, we propose a flexible probabilistic activation func-
ion based on the mechanism of adaptive stochastic resonance that
ntelligently exploits the constructive role of injected noise. Under the
uidance of this view, many traditional activation functions, such as
igmoid, tanh and ReLU, can be deduced form this general probabilistic
odel indicated in Fig. 1. In addition, the saturating (e.g. GEU) and the
nbounded type (e.g. PGELU) of activation functions are specifically
erived with the learnable Gaussian RMS noise level updated in the
etwork training. For illustration, in the present work, the proposed
lexible activation functions demonstrate how to associate the binary
cCulloch–Pitts neuron model [40,41] with common activation func-
ions in deep learning. Experimental results on the generalization by
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Fig. 7. (a) Train and (b) test accuracies for ResNet neural networks with different activation functions on CIFAR-10 classification.
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Fig. 8. Injected RMS noise levels of the trained PGELU ResNet network on CIFAR-10
dataset.

the designed neural network show that the GEU and PGELU neural
networks outperform the neural networks with traditional activation
functions in the testing accuracies of benchmark data sets, as the
injected RMS noise levels of GEU (or PGELU) usually converge to
local optimum values larger than unity. This performance does not
resort to the explanation of the small injected noise variance acting
as the Tikhonov regularizer [12,13]. Based on the path-norm upper
bound, it is demonstrated that the large RMS noise trained by the
designed GEU neural network can reduce the Rademacher complexity
that measures the fitting capacity of the network. Thus, it provides a
way to avoid overfitting, through improving the generalization of the
designed neural network by the introduction of injected noise.

Some open questions still remain. The weights of the networks are
usually initialized by Kaiming [19] or Xavier initialization [51]. The
optimal initialization of the injected RMS noise levels in the GEU and
PGELU neural networks is still an open problem. In practical trials, the
initial value of the RMS noise is empirically chosen to be larger than
unity, and the generalization capability of the trained neural network
is found to be much improved for the noisy input. However, how
large the injected RMS noise initially should be cannot be determined,
especially for the case of a number of injected RMS noise levels in
the deep neural network. Moreover, from viewpoints of sufficiently
fast and easy implementation, the designed neural networks with the
proposed GEU and PGELU activation functions, in comparison with
the ReLU network, require more time for computing and the integral
operation of GEU in Eq. (2) is unfavorable for hardwired implementa-
tion. It is noted in the probabilistic model of Fig. 1 that the proposed
activation function can be asymptotically implemented by injecting a
large number of mutually independent noise components into binary
McCulloch–Pitts neurons. This paper mainly focuses on the complexity
capacity of the designed network. It is noted that, in the practical
testing experiments, the probabilistic activation function indicated in
Fig. 1 can be mimicked by a finite number of threshold elements
7

o

operated in the same noisy environment. The noise-smoothed threshold
convolutional neural networks has been implemented by decoupling
into a finite set of threshold functions driven by mutually independent
noise components, which endows a hardware-friendly feature of the
designed neural network [54]. Thus, the practical realizations of GEU
and PGELU can be constructed by easily implemented binary units plus
noise, and this motivates exploration of the generalization capability
of deep neural networks for future study. Another natural question is
whether the proposed PGELU neural network can potentially perform
well to classify the 1.2 million high-resolution images in the Ima-
geNet [55]. For this question, designing deeper neural networks with
more learnable noise parameters is a challenging task.

Furthermore, when fitting observations of the sinusoidal function
depicted in Fig. 3(a) using a one-hidden layer network, the optimized
RMS noise 𝜎 facilitates the temporal scale of the network output to align
with the frequency of the sinusoidal input. As the number of layers
increases, can the designed neural network with a number of noise RMS
values of 𝜎, effectively match multi-scale high dimensional input data?

his is worth to be deeply investigated in the future. In the context of
mage classification using a designed deep neural network, the role of
njected noise can be analyzed from the perspective of the information
ransfer, which is closely related to the mechanism of supratheshold
tochastic resonance [33] and the information botttleneck theory in
eep learning [56]. After network training, it is of interest to further
emonstrate that the optimized RMS 𝜎 can maximize the mutual in-
ormation between the layer output and the desired prediction, while
imultaneously compressing the high-dimensional input as much as
ossible.
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Fig. 9. (a) Test accuracies for ResNet neural networks with different activation functions, and (b) the injected RMS noise levels of the trained PGELU ResNet network on CIFAR-100
classification.
Appendix. Upper bound of path norm

From Eq. (2), we find 𝑔′(𝑥) = 𝑓𝜂(−𝑥) ≥ 0 as 𝑥 ∈ R. If 𝑔′′(𝑥) > 0
𝑥 < 0) and 𝑔′′(𝑥) < 0 (𝑥 > 0), then the first term of Eq. (12) can be
alculated as

∫R
|𝑔′′(𝑥)|(|𝑥| + 1)𝑑𝑥 = −∫

∞

0
𝑔′′(𝑥)(𝑥 + 1)𝑑𝑥 + ∫

0

−∞
𝑔′′(𝑥)(−𝑥 + 1)𝑑𝑥

= lim
𝑥→∞

[𝑔(𝑥) − 𝑔′(∞)𝑥] − lim
𝑥→−∞

[𝑔(𝑥) − 𝑔′(−∞)𝑥]

−[𝑔′(∞) + 𝑔′(−∞)] + 2𝑔′(0)

= 1 + 2𝑓𝜂(0).

Here, noting the regularity conditions of CDF 𝐹𝜂 and PDF 𝑓𝜂 , i.e. 𝐹𝜂(−∞)
= 0, 𝐹𝜂(+∞) = 1, 𝑓𝜂(𝑥) ≥ 0 and lim𝑥→±∞ 𝑓𝜂(𝑥) = 0, we can find
𝑔′(±∞) = 0, 𝑔(−∞) = 1 − 𝐹𝜂(∞) = 0, 𝑔(∞) = 1 and 𝑔′(0) = 𝑓𝜂(0).
Furthermore, the second term of Eq. (12) becomes

inf
𝑥∈R

|𝑔(𝑥)| + (|𝑥| + 2)|𝑔′(𝑥)| = inf
𝑥∈R

1 − 𝐹𝜂(−𝑥) + (|𝑥| + 2)𝑓𝜂(−𝑥)

= lim
𝑥→−∞

1 − 𝐹𝜂(−𝑥) + (|𝑥| + 2)𝑓𝜂(−𝑥) = 0.
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