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NONLINEAR DEVICES ACTING

AS SNR AMPLIFIERS FOR A

HARMONIC SIGNAL IN NOISE*

François Chapeau-Blondeau1 and David Rousseau1

Abstract. A harmonic signal corrupted by an additive white noise is processed by an arbi-
trary memoryless nonlinear device. The transformation of the signal-to-noise ratio (SNR)
by the nonlinearity is explicitly computed and analyzed for Gaussian and non-Gaussian
noise. Simple nonlinearities, easily implementable as electronic circuits, are shown capable
of producing an amplification of the SNR. Such an amplification is not obtainable with
linear filters, whatever their complexity or high order, but becomes easily accessible with
simple nonlinear devices.
Key words: Nonlinear device, harmonic signal, amplification, signal-to-noise ratio.

1. Introduction

Harmonic signals are very often encountered as a basic component in many situ-
ations of signal processing, information coding, and measurement. The harmonic
component itself can be the (fixed) signal of interest, or it can be a carrier con-
veying useful information through modulation of some of its parameters. It is
therefore a very common and important problem in many areas of experimental
sciences and technologies to have to recover a harmonic signal hidden in additive
noise.

A harmonic signal of frequency νs added to a noise constitute a signal-noise
mixture with a very characteristic signature in the frequency domain: its power
spectrum is formed by a sharp spectral line at the harmonic frequency νs , emerg-
ing out of a broadband background contributed by the noise. To quantify the
relative parts of the harmonic signal and of the noise in the mixture, a signal-
to-noise ratio (SNR) R is conveniently defined from the power spectrum, as
the ratio of the power contained in the spectral line at νs divided by the power
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contained in the noise background in a small reference frequency band �B around
νs . This SNR measures how well the spectral line at νs emerges from the noise
background.

A narrowband filter at νs used to extract the harmonic component will have an
efficacy directly increasing with this SNR R [9]. It may therefore be desirable, as
a preprocessing step, to be able to increase this SNR R. Yet, it is known that no
linear filter is able to improve (increase) such an SNR R. This is because a linear
filter multiplies both the spectral line and the noise background at νs by the same
factor, the squared modulus of its transfer function at νs [9]. As a consequence,
any linear filter, whatever its complexity or its high order, leaves the SNR R
unchanged.

In contrast, here we will consider simple nonlinear devices, especially easily
realizable as electronic circuits. We will demonstrate that these nonlinear devices
can act as SNR amplifiers capable of producing an enhancement of the SNR R.
One such type of nonlinearity has been investigated in [8] for SNR improvement
in Gaussian noise. Here, we will extend the investigation to other types of non-
linearities that we will show to be capable of improving the SNR R. We will also
study both Gaussian and non-Gaussian noise conditions, and exhibit the influence
of the type of the noise on the improvement of the SNR.

Note that some of the nonlinear devices considered here have also been inves-
tigated recently for SNR amplification in the context of stochastic resonance [4].
Stochastic resonance [1], [11] is a nonlinear phenomenon where the presence or
even the addition of noise can be exploited, in specific conditions, as a possible
means for improving some of the signal processing. Stochastic resonance has been
shown exploitable for SNR amplification in the type of memoryless nonlinear
devices we will be considering here, and the significance of our results in this
direction will also be discussed.

2. Nonlinear transformation of the SNR

We consider the signal-noise mixture x(t) = s(t) + ξ(t), with the harmonic
component s(t) = A cos(2πνs t + ϕ), and with ξ(t) a stationary white noise with
cumulative distribution function Fξ (u) and probability density function fξ (u) =
d Fξ (u)/du. This signal x(t) is fed into a memoryless (nonlinear) system [2] with
input-output characteristic g(.) producing the output

y(t) = g[s(t) + ξ(t)] . (1)

In this situation, both x(t) and y(t) are cyclostationary random signals [14]
with period Ts = 1/νs , both showing a power spectrum with a sharp spectral
line at νs emerging out of a broadband noise background. The SNR, as defined
above, for the output signal y(t) of equation (1), can be expressed in the following
way. In the power spectrum of y(t), the power contained in the spectral line at the
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frequency νs = 1/Ts is given [5] by |Y 1|2, where Y 1 is the Fourier coefficient at
the fundamental of the Ts-periodic nonstationary output expectation E[y(t)], i.e.,

Y 1 =
〈
E[y(t)] exp

(
− ı

2π

Ts
t
)〉

, (2)

with the time average defined as

〈...〉 = 1

Ts

∫ Ts

0
... dt . (3)

In the power spectrum of y(t), the magnitude of the continuous noise back-
ground is measured [5] by the stationarized output variance 〈var[y(t)]〉, with the
nonstationary variance given by var[y(t)] = E[y2(t)]− E[y(t)]2 at a fixed time t .

The SNR for the output signal y(t) then results as

Rout = |Y 1|2
〈var[y(t)]〉 �t �B

, (4)

or equivalently,

Rout =
∣∣〈E[y(t)] exp(−ı2π t/Ts)〉

∣∣2

〈var[y(t)]〉�t�B
. (5)

In equations (4)–(5), �t represents the time resolution of the measurement (i.e.,
the signal sampling period in a discrete time implementation). The white noise
assumption here models a broadband physical noise with a correlation duration
much shorter than the other relevant time scales, i.e., Ts and �t , and a finite
variance σ 2

ξ [5].
Because the noise ξ(t) is distributed according to fξ (u), the random signal

x(t) = s(t) + ξ(t) at time t is distributed according to fξ [u − s(t)]. Therefore,
from equation (1), one obtains the expectations

E[y(t)] =
∫ +∞

−∞
g(u) fξ [u − s(t)] du, (6)

and

E[y2(t)] =
∫ +∞

−∞
g2(u) fξ [u − s(t)] du. (7)

In a similar way, the SNR for the input signal x(t) is

Rin = A2/4

σ 2
ξ �t�B

. (8)

The resulting input-ouput SNR gain follows as

G = Rout

Rin
=

∣∣〈E[y(t)] exp(−ı2π t/Ts)〉
∣∣2

〈var[y(t)]〉
σ 2

ξ

A2/4
. (9)
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Figure 1. Four simple instances for the nonlinearity g(.) in equation (1): (a) hard saturation of
equation (10), (b) soft saturation of (16), (c) three-level symmetric quantizer of (19), (d) symmetric
zeroer of (22).

Equations (3)–(7) provide access to the SNR gain G of equation (9) for an
arbitrary nonlinearity g(.) and an arbitrary noise density fξ (u). We will now
consider four simple nonlinearities g(.), easily implementable with electronic
circuits, as depicted in Figure 1, and study their impact on the SNR gain G of
equation (9). All four nonlinearities in Figure 1 are parameterized by a parameter
λ that can be optimized to maximize their performing efficacy.

3. Hard saturation

We first consider for g(.) the hard saturation, depicted in Figure 1a and defined as

g(u) =




−λ for u ≤ −λ,

u for − λ < u < λ,

λ for u ≥ λ,

(10)

with the “clipping” parameter λ > 0.
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Figure 2. Optimal clipping λopt in the hard saturation equation (10), and maximum input-ouput SNR
gain Gmax at λopt, as a function of the rms amplitude σξ (in units of A = 1) of the zero-mean Gaussian
noise ξ(t).

3.1. Gaussian noise

When fξ (u) is a zero-mean Gaussian density associated to the cumulative distri-
bution function Fξ (u) = {1 + erf[u/(

√
2σξ )]}/2, then equations (6)–(7) give

E[y(t)] = λ + (−λ − s(t))Fξ (−λ − s(t)) − (λ − s(t))Fξ (λ − s(t))

+ σ 2
ξ

[
fξ (−λ − s(t)) − fξ (λ − s(t))

]
, (11)

and

E[y2(t)] = λ2 + (λ2 − s2(t) − σ 2
ξ )

[
Fξ (−λ − s(t)) − Fξ (λ − s(t))

]
+ σ 2

ξ

[
(−λ − s(t)) fξ (λ − s(t)) − (λ − s(t)) fξ (−λ − s(t))

]
. (12)

For the resulting input-ouput SNR gain G of (9), it follows that there is a
broad range of values for the clipping parameter λ, where G is above unity.
Furthermore, at each noise level σξ , it is possible to find the optimal clipping
λopt that maximizes the SNR gain G. These results are presented in Figure 2.

The results of Figure 2 clearly establish that a simple nonlinear device, like the
saturation of equation (10), is capable of yielding an SNR gain larger than unity.
This is true for any input noise level σξ , or equivalently for any input SNR Rin,
although at very large noise the gain is modest and returns to one from above. The
nonlinearity used in Figure 2 thus always delivers an ouput SNR Rout larger than
the input SNR Rin. This is a remarkable outcome, with a simple nonlinear device,
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because a linear device, even very complex (of high order), is incapable of such
an SNR amplification.

A qualitative explanation of the operation of the nonlinearity is that the clipping
device (10) on the signal-noise mixture x(t) = s(t) + ξ(t) is able to reduce the
noise ξ(t) more than it reduces the harmonic signal s(t), this resulting in an input-
output amplification of the SNR, expressed by G > 1.

Figure 2 also indicates that the optimal clipping λopt is not necessarily at the
signal amplitude A; depending on the noise level, λopt can be below or above A.
Also noticeable in Figure 2, is that the optimal clipping λopt grows to infinity at
large noise level σξ , while at the same time the SNR gain returns (from above) to
unity. This is in fact the linear behavior in (10) which is recovered as the optimal
processor in the large noise limit.

The results of Figure 2 refer to the case of a Gaussian noise ξ(t), which is often
met in practice. Yet, in this nonlinear context, it is interesting to examine how the
SNR amplification evolves in the case of a non-Gaussian noise ξ(t).

3.2. Non-Gaussian noise

When fξ (u) is an arbitrary density associated to the cumulative distribution func-
tion Fξ (u), equations (6)–(7) give

E[y(t)] = λ + (−λ − s(t))Fξ (−λ − s(t)) − (λ − s(t))Fξ (λ − s(t))

− Gξ (−λ − s(t)) + Gξ (λ − s(t)), (13)

and

E[y2(t)] = λ2 + [λ2 − s2(t)]
[

Fξ (−λ − s(t)) − Fξ (λ − s(t))
]

− 2s(t)
[
Gξ (−λ − s(t)) − Gξ (λ − s(t))

]
− Hξ (−λ − s(t)) + Hξ (λ − s(t)), (14)

with the functions Gξ (u) = ∫ u
−∞ v fξ (v) dv and Hξ (u) = ∫ u

−∞ v2 fξ (v) dv. Equa-
tions (11) and (12), respectively, are a special case of (13)–(14) when the noise
ξ(t) is Gaussian.

For illustration, we will consider two different non-Gaussian densities. One has
thinner wings compared to the Gaussian; it is for fξ (u) the uniform density over
[−√

3σξ ,
√

3σξ ]. The other one has thicker wings compared to the Gaussian; it is
the zero-mean Laplacian density

fξ (u) = 1

σξ

√
2

exp

(
−√

2
|u|
σξ

)
. (15)

The associated results for the optimal value of λ in equation (10) maximizing the
SNR gain G, along with the corresponding maximum SNR gain, are shown in
Figure 3.
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Figure 3. Same as Figure 2, except for the noise density fξ (u), which is zero-mean uniform (panel
A), zero-mean Laplacian (panel B).

The first important observation in Figure 3 is that at the optimal tuning λopt,
the SNR gain is always above unity. This means that, for any noise level σξ , the
saturating nonlinearity can again act as an SNR amplifier, delivering an ouput
SNR Rout always above the input SNR Rin. This general property of SNR am-
plification is preserved for the non-Gaussian noises in Figure 3 as well as for the
Gaussian noise in Figure 2. It is quite likely, and can be readily verified through
evaluation of equation (9), that other choices for the noise density fξ (u) will
generally preserve the possibility of SNR amplification.

Beyond the general preservation of the SNR amplification, it is interesting to
note that Figure 3 also reveals some specific influences of the type of the noise
ξ(t). With uniform noise, Figure 3(A) shows evolutions much similar to those of
Figure 2 with Gaussian noise. At large noise levels σξ , the SNR gain Gmax > 1
returns to one from above; meanwhile λopt goes to infinity, i.e., the linear behavior
in equation (10) is recovered as the optimal processor. With Laplacian noise,
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Figure 3B reveals a markedly different picture. At large noise levels σξ , the SNR
gain Gmax > 1 grows to saturate around 2, meanwhile λopt saturates around
0.86. This means that at large Laplacian noise, the linear behavior in (10) is
never recovered as the optimal processor; on the contrary, the optimal processor
remains strictly nonlinear, and it affords an SNR gain that never returns to one but
stabilizes around 2.

A qualitative interpretation of these observations again is based on the nonlin-
ear clipping operation realized by equation (10), which affects the noise more than
the signal. The efficient implementation of this clipping, and the effects it yields,
strongly depend upon the type of the noise and, especially, the decay of the wings
of the noise density fξ (u) in relation to the Gaussian. Fast or slow decaying wings
need be clipped differently for efficient operation. Quantitatively, this is conveyed
in the exploitation of equation (9), as shown in Figures 2 and 3.

4. Soft saturation

Another common saturating nonlinearity can be tested for SNR amplification and
follows the soft saturation model

g(u) = λ tanh(u/λ), (16)

depicted in Figure 1(b). Equation (16) is a soft analog of equation (10) and Fig-
ure 1a. Both nonlinearities are linear as g(u) ≈ u at small u, and saturate at ±λ

at large u.
With g(.) of (16) and fξ (u) a Gaussian density (or a Laplacian one), the in-

tegrals of equations (6)–(7) have no simple analytical expressions that would
parallel (11)–(12); yet numerical integrations can easily be performed, so as to
compute the output SNR Rout of equation (5). This reveals again the feasibility of
an SNR gain G above unity, and the possibility of optimizing λ in equation (16)
so as to maximize the gain G. The outcome for the zero-mean Gaussian noise ξ(t)
is shown in Figure 4, and for the zero-mean Laplacian noise in Figure 5B.

For ξ(t) a noise uniform over [−√
3σξ ,

√
3σξ ], analytical expressions are ac-

cessible for equations (6)–(7) as

E[y(t)] = λ2

2
√

3σξ

ln

(
cosh

[(
s(t) + √

3σξ

)
/λ

]
cosh

[(
s(t) − √

3σξ

)
/λ

]
)

, (17)

and

E[y2(t)] = λ2 + λ3

2
√

3σξ

(
tanh

[(
s(t) − √

3σξ

)
/λ

] − tanh
[(

s(t) + √
3σξ

)
/λ

])
,

(18)

yielding the evolutions of Figure 5A.
Figures 4 and 5 reveal that the SNR amplification observed in Figures 2 and 3
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Figure 4. Optimal value λopt for λ in the soft saturation equation (16), and maximum input-ouput
SNR gain Gmax at λopt, as a function of the rms amplitude σξ (in units of A = 1) of the zero-mean
Gaussian noise ξ(t).

with the hard saturation of equation (10) and Figure 1a, is preserved with the soft
saturation of equation (16) and Figure 1b. Moreover, the corresponding evolutions
of Figures 4, 5 and of Figures 2, 3 remain quite similar, differing only in minor
quantitative details. This similarity of behavior can be attributed to the similarity
of the nonlinear devices of Figure 1a and Figure 1b, and expresses some form of
robustness in the mechanism of nonlinear amplification of the SNR. In particular,
the invertible (Figure 1b) or noninvertible (Figure 1a) character of the nonlinearity
g(.) is not a critical issue for the SNR amplification.

5. Three-level symmetric quantizer

Another common nonlinearity, easily implementable with electronic devices, is
the three-level symmetric quantizer

g(u) =




−1 for u ≤ −λ,

0 for − λ < u < λ,

1 for u ≥ λ,

(19)

depicted in Figure 1(c). In this case, equations (6) and (7) yield, respectively,

E[y(t)] = 1 − Fξ [λ − s(t)] − Fξ [−λ − s(t)], (20)

and

E[y2(t)] = 1 − Fξ [λ − s(t)] + Fξ [−λ − s(t)] . (21)

This leads to the results of Figure 6 when ξ(t) is a zero-mean Gaussian noise.
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Figure 5. Same as Figure 4, except for the noise density fξ (u), which is zero-mean uniform (panel
A), zero-mean Laplacian (panel B).

An important observation in Figure 6, is that even at the optimal tuning λopt
in (19), the achievable SNR gain always remains below unity. This demonstrates
that the property of input-output amplification of the SNR is not realizable with
all types of nonlinearities g(.). In this respect, the saturating nonlinearities of
Figures 1a and 1b are capable of an SNR gain G > 1, whereas the threshold
nonlinearity of Figure 1c is not, at least with Gaussian noise.

Figure 7 addresses the situations where ξ(t) is a uniform or Laplacian noise.
The results of Figure 7 indicate that the possibility of an SNR gain above unity

is recovered with non-Gaussian noises, at least for sufficiently large noise levels
σξ . Also, Figure 7 again illustrates the specific influences that the type of the
noise ξ(t) may have on the details of the quantitative evolutions. For instance,
with uniform noise, Figure 7A shows an SNR gain Gmax growing linearly with the
noise level σξ . Because the input SNR Rin decays as ∼ σ−2

ξ , an SNR gain linearly
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Figure 6. Optimal threshold λopt for λ in the three-level quantizer equation (19), and maximum input-
ouput SNR gain Gmax at λopt, as a function of the rms amplitude σξ (in units of A = 1) of the
zero-mean Gaussian noise ξ(t).

growing as ∼ σξ is equivalent to an output SNR Rout decaying as ∼ σ−1
ξ when

σξ grows. This indicates that this time at large uniform noise, the threshold non-
linearity of Figure 1c can outperform the saturating nonlinearities of Figures 1a
and 1b in terms of the SNR Rout delivered at the output. On a broader level,
this also shows the intricate behavior that may result from equation (9) for the
SNR gain, depending on the types of the noise ξ(t) and of the nonlinearity g(.),
meanwhile ensuring the SNR amplification.

6. Symmetric zeroer

To conclude the survey of common nonlinearities with easy practical implemen-
tation, we consider the case where the nonlinearity g(.) is

g(u) =




0 for u ≤ −λ,

−1 for − λ < u < 0,

1 for 0 < u < λ,

0 for u ≥ λ,

(22)

as depicted in Figure 1d. In this case, equations (6) and (7) yield, respectively,

E[y(t)] = Fξ [λ − s(t)] + Fξ [−λ − s(t)] − 2Fξ [−s(t)], (23)

and

E[y2(t)] = Fξ [λ − s(t)] − Fξ [−λ − s(t)] . (24)

This leads to the results of Figure 8 for Gaussian noise, and of Figure 9 for
uniform or Laplacian noise.
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Figure 7. Same as Figure 6, except for the noise density fξ (u), which is zero-mean uniform (panel
A), zero-mean Laplacian (panel B).

The results of Figures 8 and 9 indicate that, in terms of SNR gain, the ze-
roer nonlinearity of Figure 1d never outperforms the saturating nonlinearities of
Figure 1a or 1b. In Figures 8 and 9, in most conditions the SNR gain is below
one, except with Laplacian noise at sufficiently large noise levels σξ . Again, the
Figures illustrate that not all types of nonlinearities g(.) are appropriate to obtain
the input-output amplification of the SNR, especially with Gaussian noise.

7. Conclusion

In this paper we have shown that simple nonlinear devices, easily implementable
as electronic circuits, can realize an amplification of the SNR of a harmonic signal
in noise. This is a valuable property which is inaccessible to linear devices, what-
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Figure 8. Optimal value λopt for λ in the symmetric zeroer equation (22), and maximum input-ouput
SNR gain Gmax at λopt, as a function of the rms amplitude σξ (in units of A = 1) of the zero-mean
Gaussian noise ξ(t). It is λopt/10 that is plotted so as to fit inside the figure.

ever their complexity, and it is remarkable that it becomes feasible with simple
nonlinear devices. Such simple nonlinear operators acting as SNR amplifiers offer
a useful complement to linear techniques for signal processing and sensors.

Note that we are dealing with static nonlinear devices, which do not impose,
by themselves, frequency limitations. As a consequence, SNR amplification is
obtained in the same way, in principle, whatever the frequency νs of the harmonic
component. In particular, the SNR gain is insensitive to the frequency νs of the
harmonic component being amplified. This is a marked difference afforded by
static devices, compared to dynamic devices or filters which introduce inherent
frequency limitations through their specific time constants. This frequency invari-
ance with static devices is true as long as the white noise assumption remains
valid, i.e., as long as the correlation duration of the physical noise remains small
in relation to the period Ts = 1/νs and other relevant time scales in the process.
If the white noise assumption fails, SNR amplification may still be expected, but
with a theoretical description that falls outside the scope of equation (9) and that
is a priori more complicated to work out. Other natural frequency limitations
may arise from the physical realizations, in practice, of the static nonlinearities,
for instance, through the use of operational amplifiers with their own cut-off
frequencies.

Our study has also shown that the conditions of the SNR amplification are
strongly influenced by the type of the noise ξ(t) in addition to the type of the
nonlinearity g(.). Not all the conditions of the SNR amplification have been
worked out exhaustively here; only important illustrative examples have been
described. Nevertheless, in principle, all conditions can be explored through the
evaluation of equation (9). In this respect, we emphasize that in equation (9) both
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Figure 9. Same as Figure 8, except for the noise density fξ (u), which is zero-mean uniform (panel
A), zero-mean Laplacian (panel B).

the noise probability density fξ (u) and the nonlinearity g(.) are arbitrary, and
other types of nonlinearity g(.) could directly be tested with the present theory
for SNR amplification.

The SNR amplification of a sinusoid in noise here is based on the selection and
optimization of specific static nonlinearities. Another approach has been studied
recently for SNR amplification in nonlinear devices, based on the phenomenon
of stochastic resonance. So far in this context, it is the static nonlinearities that
have been shown to be the most effective (as opposed to dynamic nonlinearities)
for SNR amplification of a sinusoid in Gaussian white noise [10], [3], [6]. The
two approaches can be contrasted as follows. At a given level of noise σξ , the
best thing to do for the SNR, each time it is possible, is to tune the nonlinearity
at the optimum λopt. This will ensure the largest input-ouput SNR gain G, and
consequently the maximally amplified output SNR Rout > Rin for a given input
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SNR Rin. If the nonlinearity cannot be tuned at λopt, then the output SNR Rout
will remain below its maximum. Only in this case of a suboptimal configuration
of the nonlinearity can a stochastic resonance effect be envisaged to improve
Rout. It will consist of a purposeful addition of noise at the input. Then, in some
conditions, especially depending on the type of the noise density fξ (u) and on
the type of the nonlinearity g(.), this may lead to an increase in the output SNR
Rout. This output SNR could at best reach the maximum SNR authorized by the
nonlinearity optimally tuned at the newly increased noise level σξ . But this output
SNR would always remain below the SNR that would have been achieved by an
optimal tuning of the nonlinearity at the initial noise level σξ , because as can be
verified with the present theory, GmaxRin always decreases when σξ increases. So
each time it is possible, it is the optimal tuning of the nonlinearity, at a fixed given
σξ fixing Rin, which will provide the highest Rout > Rin. Only when optimal
tuning is not feasible, can purposeful addition of noise be tried, for a possible
(but not certain, it depends on the conditions) improvement of the output SNR,
knowing that the so-produced Rout is always less than the Rout that would have
resulted from the optimal tuning of the nonlinearity at the initial noise level. This
is the picture that emerges based on the current results on stochastic resonance for
SNR amplification of a sinusoid in additive Gaussian noise by an isolated static
nonlinearity of the type studied here: Addition of noise may possibly lead to an
improvement of the output SNR, but only in suboptimal devices, and cannot do
better than the optimal device with no added noise. Stochastic resonance by addi-
tion of noise can in fact be viewed as a possible (but less efficient) alternative for
SNR improvement when the optimization of the nonlinear device is not realizable.

However, the picture concerning the possible benefit of stochastic resonance
may evolve, if one considers the possibility of replicating the nonlinear devices
g(.) into parallel arrays, instead of using a single one in isolation. For nonlin-
earities associated in parallel arrays, an interesting form of stochastic resonance
consists in purposely injecting additional noises, on each device of the array,
to induce more variability and richness in the responses of the devices [17]. A
global response collected over the array of noisy devices can sometimes bring
improvement over the performance of a single device with no extra added noise.
Various forms of enhanced processing through stochastic resonance in arrays
have recently been demonstrated, essentially with two-state quantizers [17], [13],
[15] corresponding to the nonlinearity of Figure 1c tuned at λ = 0. Saturating
nonlinearities like those of Figures 1a and 1b, in terms of SNR gain with Gaussian
noise, have been shown here to be superior to threshold nonlinearities like those of
Figures 1c and 1d. They are also superior to power-law nonlinearities as tested in
[6], and are much more easily implementable with electronic devices. The inves-
tigation of such saturating nonlinearities for stochastic resonance in arrays could
reveal further useful potentialities for SNR amplification and also for other signal
processing tasks [7], [16]. In the same direction, as other interesting nonlinearities
to be tested, one could think of basic nonlinearities encountered in semiconductor
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devices or in molecular operators in molecular electronics or nanotechnologies
[12]. This together could lead to new generations of smart nonlinear arrays with
novel capabilities for information processing.
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