expected. For L = 12.7mm, the resonance occurs at f, = 4.74GHz
with a bandwidth (|S;| < —10dB) of 9.2%. It is found that the res-
onant frequency is lower than that of the previous perpendicular-
feed configuration (f, = 5.33GHz) [6]. As compared with the previ-
ous version, the present configuration offers one more degree of
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Fig. 2 Measured return losses for different slot lengths

Inset : Measured return losses for different stub lengths
L =11.5mm (inset: L, = 3.2mm)
----------- L =12.7mm (inset: L, = 5.1mm)
———— L = 13.5mm (inset: L, = 5.7mm)

freedom for impedance matching by providing a tuning stub. The
inset of Fig. 2 shows the return losses for three different stub
lengths Z, = 3.2, 5.1, 5.7mm with L = 13.5mm. With reference to
the inset Figure, the impedance matching is improved continu-
ously as the stub length is increased from 3.2 to 5.7mm. By chang-
ing the stub length an excellent match can also be obtained for L
= 11.5mm. The results are summarised in Table 1. With reference

Table 1: Summary of impedance matching for different slot and
stub lengths

Slot L Stub 7, f BW min, |5y
nm mm GHz Y% dB
11.5 14.2 4.6 10.0 -47.4
12.7 32 4.74 8.4 -39.3
13.5 5.7 4.48 5.3 —40.8

to the Table, the bandwidth is increased with decreasing slot
length, as discussed in [6]. The effects of the offsets x, and y, on
the return loss were also studied. It was found that the offsets are
two other degrees of freedom for changing the input impedance.
The results are very similar to those in [6] and are omitted here to
conserve space.
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Fig. 3 Measured radiation field patterns
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Fig. 3 shows the measured E- and H-plane radiation patterns
for L = 13.5mm, I, = 5.7mm and f = 448 GHz. With reference to
the Figure, the broadside patterns are obtained which are very

similar to those of the previous configuration [6]. As is desirable,
the front-to-back ratios are very high, ~18 and 16dB for the E-
and H- plane patterns, respectively. Conversely, the crosspolarised
fields are very weak, ~30dB less than the copolarised fields in the
broadside direction (8 = 0).

The antenna gain of the present configuration for L = 13.5mm
and L, = 5.7mm was also measured. Again, the result was similar
to that of the previous configuration and is omitted in this Letter
for brevity.

Conclusion: We have investigated the slot-coupled cylindrical
DRA with a proximity feed on a perpendicular substrate. The
characteristics of the new configuration are very similar to those
of the previous configuration [6]. As compared with the previous
configuration, this present version has two advantages. First there
is no need for direct connection between the feedline and the cou-
pling slot and secondly it provides a tuning stub. The choices of
the feedline distance d, and the removed ground plane size p X ¢
are in an ad hoc manner and should not be critical in practical
designs.
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Noise-assisted signal transmission via stochastic
resonance in a diode nonlinearity

X. Godivier, J. Rojas-Varela and F. Chapeau-Blondeau

Indexing terms: Nonlinear systems, Circuit theory

The nonlinear effect of noise-assisted signal transmission via
stochastic resonance is demonstrated in a diode circuit. This study
establishes one of the simplest conceivable settings for stochastic
resonance, accompanied by a complete theoretical description,
and it may serve as a useful model for further investigation of the
effect.

Stochastic resonance is a nonlinear effect consisting of an enhance-
ment of the transmission of a signal by certain nonlinear systems
resulting from noise addition to the system. This paradoxical effect
was introduced some fifteen years ago in the context of climate
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dynamics [1]. Tt has gradually been reported in a variety of sys-
tems, including lasers, neurons, superconducting devices, electronic
circuits {1], and its connections with other useful noise techniques
have been discussed [2]. Among electronic circuits shown to
exhibit stochastic resonance are a Schmitt trigger with both a
threshold and hysteretic nonlinearity [3], and a chaotic Chua’s cir-
cuit [4]. These nonlinear circuits are complicated enough to hinder
an exact theoretical treatment of the effect, which was essentially
exhibited through experiments or numerical simulations. Only
recently has a theory been proposed that models stochastic reso-
nance in a general class of nonlinear systems [5]. Based on both
this theory and an experimental realisation, we prove here that a
nonlinear system as simple as a diode nonlinearity contains the
essential ingredients necessary for exhibiting a form of stochastic
resonance, and, as a result, stands as a model for one of the sim-
plest conceivable stochastic resonators.

| > _
in out
>~2 L
@
3
g | J
>
5
attl 4
; I
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input voltage,V

Fig. 1 Diode circuit and its input-output static characteristics

experimental results
- — — — simple theoretical model

Consider the circuit of Fig. 1, where the input voltage consists
of the sum s(7) + M(7), with s(r) a T;-periodic signal and n(7) a sta-
tionary white noise with the probability density function f;(x). The
output voltage y(#) results as a nonstationary (cyclostationary)
random signal, bearing a correlation to the periodic input s(s). As
we shall show, conditions exist in which this correlation can be
reinforced when the input noise level is raised.

This correlation is quantified here by means of the output auto-
correlation function

N—1
1 . .
Ryy(RAY) = = > Ely(iAtyy(jAt + kAL (1)
7=0
where, to compare theory and experiment, we use a discrete-time
formulation in which the signals are sampled at a step At << T, =
NAt.

The output power spectral density follows, from a discrete Fou-
tier transform of R, over an integer number 2 of period T,, as

MN-1 ke
Py(tAvy= > Ryy(kAt)exp(—i27r2M N) (2)

k=—MN

with the frequency resolution Av = 1/(2ZMNA?).

The noise input 1(7) is responsible for a broadband continuous
background in P,, out of which spectral lines emerge at integer
multiples of 1/7, as a consequence of the influence of the periodic
input s(f). The emergence of these lines out of the noise back-
ground can be made more pronounced by an increase in the input
noise level, the signature of stochastic resonance. This effect can
be quantified by a signal-to-noise ratio (SNR) at the output,
defined as the power contained in the spectral line alone at fre-
quency n/T, divided by the power contained in the noise back-
ground in a small frequency band AB around »/T,.

The theory of [5] predicts that the output power spectral density
is
with 8(0) = 2MN and §(j) = 0 for an integer j # 0, leading to an

+o0
Py (tAv) =var(y) + Y |Vu[*8(£—2Mn)  (3)

output SNR at frequency »/T;;:

7 |2
R(ﬁ) _ |Yn) (4)
Ts var(y)AtAB
In eqns. 3 and 4:
-~ 1 = n
Vo= ; Ely(jAt)] exp (‘127rﬁ> (5)

is the order n Fourier coefficient of the T,-periodic output expecta-
tion E[p(jA7)] computable as

+o0
Ely(®) = [ gyl = s(tldu (6)
Also, in eqns. 3 and 4:
N-1
var(y) = % Z var[y(j At)] (7)

with the T-periodic output variance vat[p(t)] = E[y(1)] — E2[(1)]
computable with

+00
Bl0)= [ sl @)

In eqns. 6 and 8, the function g(u) represents the input-output
static characteristics of the nonlinear circuit realising y = g(s + ).
Fig. 1 displays the experimental characteristics that have been
measured for the circuit shown. We chose the diode (a red LED
TLHR 5400 from TEMIC) so as to have almost linear characteris-
tics above the conduction threshold, being well approximated by
the simple model g(u) = u — V,, for u > V,, and g(u) = 0 other-
wise, with V;, = 1.5V.

SNR

output

2 3
noise rms amplitude,V

Fig. 2 Experimental and theoretical output SNR at fundamental 1/T,
against G

Sinusoidal input signal s(z) = 4 cos(2mt/T,) with 4 = 1V and zero-
mean Gaussian noise 1(¢) with rms amplitude ©

O  Experimental
Theoretical

In the case where 1(?) is a zero-mean Gaussian noise with rms
amplitude 6, eqn. 6 then leads to

Ely(t)] = % { % exp[—z*(t)] - Z(t)erfC[Z(t)}} ¥

and eqn. 8§ to
_2

0.2
ER2()] = —2—{[1 220l ()=

el
(10)
with z(£) = [V — s()]/(0V2).

From eqns. 9 and 10, the output SNR of eqn. 4 has been com-
puted; also, this quantity has been experimentally evaluated on the
circuit of Fig. 1. Both results are shown in Fig. 2 (when AB = 1/
T), which reveals very close agreement between theory and
experiment, taking into account the simple linear model adopted
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for the static characteristics. The nonmonotonic evolution of the
output SNR with the input noise level, which peaks at a maximum
value for an optimal non-zero noise level, demonstrates the sto-
chastic resonance effect.

The stochastic resonance here relies on a simple threshold sys-
tem, with a subliminal signal whose transmission is only possible
in the presence of the noise, with the maximum efficacy for an
optimum noise level being explicitly predictable by theory, for
instance as a function of the noise distribution. Other situations
exist where a subliminal signal or a threshold are not necessary for
stochastic resonance [5, 6], or where the signal can be either a
high-frequency carrier modulated by a low-frequency message, or
a broadband aperiodic signal [7 — 9].
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Algorithm for mapping between information bits
and channel symbols in MTCM codes

1.S. Jin, K.C. Whang, K. Cho, 1.Y. Ahn and H.S. Oh

Indexing term: Trellis coded modulation

An algorithm for mapping between information bits and channel
symbols in multiple trellis-coded modulation (MTCM) codes with
M-PSK signal sets is proposed. The core of the algorithm assigns
information bits with a Hamming distance in proportion to the
sum of the Euclidean distance to each M-PSK symbol. The
analytical results show that the additional gains from applying the
algorithm can be achieved with little or no loss.

Introduction: Trellis-coded modulation (TCM) has received much
attention for bandwidth and power efficient transmission of data.
Ungerboeck [1] improved the error-event probability (EEP) by
using a signal mapping technique called ‘set partitioning’, while
most earlier works on TCM concentrated on minimising the EEP.
For bitwise communication systems, such as image data transmis-
sion systems, decreasing the post-decoding information bit error
rate (IBER) is more important than only minimising the EEP. Du
and Kasahara succeeded in improving the IBER by using Gray

code mapping [2]. In [3], Umeda er al. expanded this idea by using
minimum Hamming distance (MHD) mapping.

However, MHD mapping cannot be applied to multiple treilis-
coded modulation (MTCM) schemes directly because more than
one channel symbol is assigned to each trellis branch in MTCM.
We found that the performance is even worse than that of conven-
tional MTCM schemes if the MHD mapping is directly applied to
MTCM schemes. Therefore, we need another algorithm to apply
the MHD mapping concept in MTCM schemes. In this Letter, we
outline a simple algorithm for mapping between information bits
and channel symbols in MTCM schemes and to improve the per-
formance of MTCM schemes by reducing the BER with little or
no loss.

Basic rules: Proper bit-to-symbol mapping can reduce the number
of erroneous bits. When the BER is the performance measure, the
bit assignment for k& M-PSK symbols in an MTCM scheme is
important. The parameter £" is referred to as the multiplicity of
the code and represents the number of M-PSK symbols allocated
to each branch in the trellis diagram. Information bits are mapped
on groups of £° M-PSK symbols. The core of the algorithm
assigns information bits with a Hamming distance in proportion
to the sum of the Euclidean distance to each & M-PSK symbol.
Following these rules, we have constructed a simple algorithm for
mapping between information bits and channel symbols. We have
not attempted to modify the channel signal set obtained by
Divsalar [4] or Periyalwar [5] because it is beyond the scope of this
Letter.

Algorithm: Let us define the number of states s, the number of
parallel transitions &, and the number of input bits 4. The proce-
dure is divided into two parts. The first part is for the case that N,
is < 4, the second is for the case that N, is > 4. The steps for the
bit assignment for £* M-PSK symbols in an MTCM scheme are as
follows:

(i) If N, is < 4, then sort a pair of binary input bits in order of
their large binary Hamming distance. For example, if 5 = 3, then
we have, for example, {000, 111}, {001, 010}, {011, 101} and
{100, 1103.

(i) Assign, sequentially, a pair of input bits with a large binary
Hamming distance to k" M-PSK symbols with a large sum of
Euclidean distances in the branch emanating from the same state.
(iii) Repeat steps (1)-(ii) for the other branch in the other state.
(iv) Stop.

If N, is > 4, the procedure s divided into two parts again. One is
the lower log,N, bits assignments of b bits, the other is the higher
b-logN, bits assignments of & bits.

(v) Carry out steps (vi)-(viil) for the lower log,N, bits assignments
of b bits.

(vi) Transform the decimal number from 0 to N, into a binary
number, and then sort a pair of binary bits in order of their large
binary Hamming distance.

(vi) Select a pair of parallel transitions within each inter-signal
sets and compute the sum of the Euclidean distance.

(vii) Assign log,, information bits with a large Hamming dis-
tance in proportion to the large sum of Euclidean distance to each
k* M-PSK symbols. Go to step (xiv).

(ix) Carry out steps (x)-(xiii) for the higher s-log, N, bit assign-
ments of b bits.

(x) Transform the decimal number from 0 to 2°82%» into a binary
number, and then sott a pair of binary bits in order of their large
binary Hamming distance.

(x1) Select the firat branch in each paralle! trancition and then
compute the sum of the Euclidean distance between a pair of tran-
sitions, selected one by one from each group.

(xii) Assign b-log, N, information bits with a Hamming distance in
proportion to the sum of Euclidean distance to each &* M-PSK
symbol.

(xiil) Repeat steps (xi)-(xii) for all possible combinations.

(xiv) Stop.

Below, we show, as an example, the difference between natural
mapping and the proposed mapping for the 4-state rate 4/6 (k" =
2) 8-PSK MTCM signal set obtained by Divsalar [4]. The trellis
diagram for the example is given in [4].

Natural mapping: (information bits/8-PSK symbols)
Proposed mapping:
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