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Information quantique :
depuis des basiques jusqu’à des problèmes ouverts,

avec de l’algèbre et des probabilités.
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LARIS & Dépt. de Physique, UFR Sciences, Université d’Angers.
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Quantum information

A definition (at large)

To exploit quantum properties and phenomena

for information processing and computation.

Motivations

1) When using elementary physical systems (photons, electrons, atoms, ions,

nanodevices, . . . ).

2) To benefit from purely quantum effects (parallelism, entanglement, . . . ).

3) New field of research, rich of large potentialities.
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Quantum system

Represented by a state vector |ψ〉 in a complex Hilbert space H ,

having unit norm 〈ψ|ψ〉 = ‖ψ‖2
= 1.

In dimension N (finite) (extensible to infinite & to continuous dimension)

State |ψ〉 = ∑N
n=1 αn |n〉 , in some orthonormal basis

{
|1〉 , |2〉 , . . . |N〉

}
of HN ,

with coordinate αn = 〈n|ψ〉 ∈  , and inner product 〈ψ|ψ〉 = ∑N
n=1 |αn|2 = 1.

N = 2 is the qubit (2 states of polarization for a photon, of spin for an electron, etc).

Measurement referred to a projective orthonormal basis
{
|n〉
}
,

has a probabilistic outcome (Born rule) : Pr
{
|n〉
}
= |αn|2 = | 〈n|ψ〉 |2 .

Quantum measurement : usually :
• a probabilistic process,

• as a destructive projection of the state |ψ〉 in an orthonormal basis,

• with statistics evaluable over repeated experiments with same preparation |ψ〉.
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Density operator

Quantum system in (pure) state |ψ j〉 ∈ H , measured in an orthonormal basis
{
|n〉
}

:

=⇒ probability Pr
{
|n〉 |ψ j〉

}
= | 〈n|ψ j〉 |2 = 〈n|ψ j〉 〈ψ j|n〉 .

Several possible states |ψ j〉 with probabilities p j (with
∑

j p j = 1) :

=⇒ Pr
{
|n〉
}
=

∑
j
p j Pr

{
|n〉 |ψ j〉

}
= 〈n|

(∑
j p j |ψ j〉 〈ψ j|

)
|n〉 = 〈n| ρ |n〉 ,

with density operator ρ =
∑

j p j |ψ j〉 〈ψ j| ∈ L(H) Hermitian, positive, of unit trace.

and Pr
{
|n〉
}
= 〈n| ρ |n〉 = tr(ρ |n〉 〈n|) = tr(ρΠn) with (orthogonal) projector Πn = |n〉 〈n| .

The quantum system is in a mixed state, corresponding to the statistical ensemble{
(p j, |ψ j〉)

}
, described by the density operator ρ ∈ L(H).

Lemma : For any operator A with trace tr(A) =
∑

n 〈n|A |n〉, one has

tr(A |ψ〉 〈φ|) =∑n 〈n|A |ψ〉 〈φ|n〉 =
∑

n 〈φ|n〉 〈n|A |ψ〉 = 〈φ|
(∑

n |n〉 〈n|
)
A |ψ〉 = 〈φ|A |ψ〉 .
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Evolution of a quantum system, when isolated :

Through a unitary operator U on HN (an N × N matrix) : (i.e. U
−1
= U

† )

normalized vector |ψ〉 ∈ HN 7−→ U |ψ〉 normalized vector ∈ HN ,

density operator ρ ∈ L(HN) 7−→ UρU
† density operator ∈ L(HN) .

Uin out

The evolution operator U can be derived from Schrödinger equation :

d

dt
|ψ〉 = − i

~
H |ψ〉 =⇒ |ψ(t2)〉 = exp

(
− i

~

∫ t2

t1

Hdt

)

︸                ︷︷                ︸
unitary U(t1, t2)

|ψ(t1)〉 = U(t1, t2) |ψ(t1)〉

Hermitian operator Hamiltonian H, or energy operator.

Ex. : A particle of mass m in potential V(~r, t) has Hamiltonian H = − ~
2

2m
∆ · +V(~r, t).
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Evolution of a quantum system, when open :
A quantum system in state ρ ∈ L(HN) interacting with its environment represents an

open quantum system. The state ρ usually undergoes a nonunitary evolution in L(HN).

With ρenv the state of the environment at the onset of the interaction, the joint state

ρ ⊗ ρenv can be considered as that of an isolated system, undergoing a unitary evolution

by U as ρ ⊗ ρenv 7−→ U(ρ ⊗ ρenv)U†.

At the end of the interaction, the state of the quantum system of interest is obtained by

the partial trace over the environment : ρ 7−→ N(ρ) = trenv

[
U(ρ ⊗ ρenv)U†

]
. (1)(

{Πn} measurt for A =⇒ {Πn ⊗ IB} measurt for AB. Then trAB[ρAB(Πn ⊗ IB)] = trA(ρAΠn) with ρA = trB(ρAB).

)

Very often, the environment incorporates a huge number of degrees of freedom, and is

largely uncontrolled ; it can be understood as quantum noise inducing decoherence.

A very nice feature is that, independently of the size of the environment, Eq. (1) can

always be put in the form ρ 7−→ N(ρ) =
∑
ℓ ΛℓρΛ

†
ℓ

operator-sum or Kraus representa-

tion, with the Kraus operators Λℓ ∈ L(HN), which need not be more than N2, satisfying
∑
ℓ Λ

†
ℓ
Λℓ = IN , to ensure tr

(
N(ρ)

)
= 1, ∀ρ . [Hellwig & Kraus, Commun. Math. Phys. 1970]
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Generalized measurement

In a Hilbert space HN with dimension N, the state of a quantum system

is specified by a Hermitian positive unit-trace density operator ρ ∈ L(HN).

• Projective measurement :

Defined by a set of orthogonal projectors Πn ∈ L(HN) , verifying
∑

nΠn = IN ,

and Pr{Πn} = tr(ρΠn) . Moreover
∑

n Pr{Πn} = 1 ,∀ρ⇐⇒ ∑nΠn = IN .

• Generalized measurement (POVM) : (positive operator valued measure)

Equivalent to a projective measurement in a larger Hilbert space (Naimark th.).

Defined by a set of an arbitrary number M of positive operators Mm ∈ L(HN),

verifying
∑

m Mm = IN ,

and Pr{Mm} = tr(ρMm) . Moreover
∑

m Pr{Mm} = 1 ,∀ρ⇐⇒ ∑m Mm = IN .
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A generalized measurement (POVM) for the qubit in H2

POVM

{
Mm =

2

M
|em〉 〈em|

}
, for m = 0, 1, . . . M − 1, and M > 2,

with |em〉 = cos

(
2πm

M

)
|0〉 + sin

(
2πm

M

)
|1〉 ∈ H2 .

|0〉 |0〉 |0〉

M = 3 M = 5 M = 7
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Summary of quantum basics

A quantum system has a state represented by a normalized vector |ψ〉 ∈ HN ,

or more generally by a (positive unit-trace) density operator ρ ∈ L(HN).

Its evolution is described by

ρ 7−→ UρU
† when isolated, with unitary U ∈ L(HN),

or more generally ρ 7−→ N(ρ) =
∑
ℓ ΛℓρΛ

†
ℓ

with
∑
ℓ Λ

†
ℓ
Λℓ = IN in L(HN).

Its measurement can be performed

with a set of an arbitrary number of positive operators Mm of L(HN)

verifying
∑

m Mm = IN ,

yielding the probabilistic outcome Pr{Mm} = tr(ρMm) .
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Entangled states
Two quantum systems A with Hilbert space H(A), and B with H(B), form a composite

quantum system AB with joint state in the tensor-product space H(A) ⊗H(B).

Any state of the tensor-product space H(A) ⊗H(B) which is not factorizable as the

product of a state of H(A) and a state of H(B) is an entangled state .

Ex. : A qubit A in state |A〉 =
(
|0〉 + |1〉

)
/
√

2 = |+〉 ∈ H(A) = H2,

another qubit B in state |B〉 =
(
|0〉 − |1〉

)
/
√

2 = |−〉 ∈ H(B) = H2,

with canonical orthonormal basis
{
|0〉 , |1〉

}
of H2.

The qubit pair AB is in H2 ⊗H2 referred to the canonical orthonormal basis{
|0〉 ⊗ |0〉 = |00〉 , |0〉 ⊗ |1〉 = |01〉 , |1〉 ⊗ |0〉 = |10〉 , |1〉 ⊗ |1〉 = |11〉

}
,

with state |AB〉 = |+〉 ⊗ |−〉 =
(
|00〉 − |01〉 + |10〉 − |11〉

)
/2 which is a separable

(factorizable) state.

Meanwhile, |AB〉 =
(
|01〉+ |10〉

)
/
√

2 is an entangled (non factorizable) state of the pair.

Physically an entangled state behaves as a nonlocal whole : what is done on one part

may influence the other part instantly, no matter how distant they are. (And more.)
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Quantum state detection or discrimination

A quantum system can be in one of two alternative states ρ0 or ρ1 ∈ L(HN)

with prior probabilities P0 and P1 = 1 − P0.

Question : What is the best pair of measurement operators {M0,M1} in L(HN)

to decide with a maximal probability of success Psuc ?

Answer : One has Psuc = P0 tr(ρ0M0) + P1 tr(ρ1M1) = P0 + tr(TM1) ,

with the test operator T = P1ρ1 − P0ρ0.

Then Psuc is maximized by the optimal operator M
opt

1
=

∑

λn>0

|λn〉〈λn| ,

which is the projector on the eigensubspace of T with positive eigenvalues λn.

The optimal measurement
{
M

opt

1
, M

opt

0
= IN − M

opt

1

}

achieves the maximum Pmax
suc =

1

2

(
1 +

N∑

n=1

|λn|
)
=

1

2

(
1 + tr(|T|)

)
.

C. W. Helstrom, “Quantum Detection & Estimation Theory”, Academic Press 1976.
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Discrimination among M > 2 quantum states

A quantum system can be in one of M alternative states ρm ∈ L(HN),

for m = 1 to M, with prior probabilities Pm with
∑M

m=1 Pm = 1.

Problem : What is the best measurement {Mm} with M outcomes to decide

with a maximal probability of success Psuc ?

=⇒ Maximize Psuc =

M∑

m=1

Pm tr(ρmMm) according to the M operators Mm,

subject to 0 ≤ Mm ≤ IN and
∑M

m=1 Mm = IN .

For M > 2 this problem is only partially solved, in some special cases.

S. M. Barnett, S. Croke; “Quantum state discrimination”;

Advances in Optics and Photonics, vol. 1, pp. 238–278, 2009.
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Numerical solution

Y. C. Eldar, A. Megretski, G. C. Verghese; “Designing optimal quantum detectors via semidefinite
programming”; IEEE Transactions on Information Theory, vol. 49, pp. 1007–1012, 2003.

For distinguishing among a collection of density operators,
find the optimal measurement maximizing the probability of success.

For the problem, no closed-form analytical solutions are known in general.

But it is a convex optimization problem
that can be solved numerically by a semidefinite program
converging to the global optimum in polynomial time within any desired accuracy.

On Matlab using the linear matrix inequality (LMI) Toolbox.

Other numerical solutions ? interval calculus ? machine learning ? . . . .
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Discrimination from M = 2 noisy qubits
Quantum noise on qubit states : ρ 7−→ N(ρ) .

Discrimination from the noisy qubit states N(ρ0) and N(ρ1).

• For given noise N(·), what are the best input states (ρ0, ρ1) ?

F. Chapeau-Blondeau, ”Optimization of quantum states for signaling across an arbitrary
qubit noise channel with minimum-error detection”;
IEEE Transactions on Information Theory 61 (2015) 4500–4510.

F. Chapeau-Blondeau, “Détection quantique optimale sur un qubit bruité ”, 25ème Colloque
GRETSI sur le Traitement du Signal et des Images, Lyon, France, 8–11 sept. 2015.

• As the noise level increases, possibility of nonmonotonic evolution of the performance
Psuc (stochastic resonance).

F. Chapeau-Blondeau; “Quantum state discrimination and enhancement by noise”;
Physics Letters A 378 (2014) 2128–2136.

N. Gillard, E. Belin, F. Chapeau-Blondeau; “Qubit state detection and enhancement
by quantum thermal noise”; Electronics Letters 54 (2018) 38–39.

The case M > 2, or in dimension higher than that of the qubit,

remain largely unsolved / unexplored for noisy quantum systems.

noise
N (·)

ρ N (ρ)
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Communication over a noisy quantum channel (1/4)

(X = x j, p j) −→ ρ j −→ N −→N(ρ j) = ρ
′
j
−→ K-element POVM −→Y = yk

At input, each classical symbol x j is coded by a quantum state |ψ j〉 ∈ HN or

ρ j ∈ L(HN) , for j = 1, 2, . . . J.

Noisy quantum channel ρ j 7−→N(ρ j) = ρ
′
j produced as outputs.

A generalized measurement by the POVM with K elements Mk, for k = 1, 2, . . .K,

generates measurement outcome Y with K possible values yk, for k = 1, 2, . . .K,

of conditional probabilities Pr{Y = yk |X = x j} = tr(ρ′
j
Mk) ,

and total probabilities Pr{Y = yk} =
∑J

j=1 Pr{Y = yk |X = x j}p j = tr(ρ′Mk) ,

with ρ′ =
∑J

j=1 p j ρ
′
j the average output state.

=⇒ Input–output mutual information I(X; Y) = H(Y) − H(Y |X) = H(X) − H(X|Y) ,

with Shannon entropy H(X) = −∑J
j=1 p j log(p j) .

Question : Which POVM to maximize I(X; Y) and at which level Imax(X; Y) ?
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Communication over a noisy quantum channel (2/4)

One has the majorization I(X; Y) ≤ χ(ρ′
j
, p j)

by the Holevo information χ(ρ′
j
, p j) = S (ρ′) −∑J

j=1 p j S (ρ′
j
)

with von Neumann entropy S (ρ′) = − tr
[
ρ′ log(ρ′)

]
.

χ(ρ′j, p j) characterizes the maximum transmission rate of the source {(p j, ρ j)},
without the need to refer to any definite POVM.

∀ {(p j, ρ j)} and N(·), there always exists a POVM to achieve I(X; Y) = χ(ρ′j, p j) ,

(by measuring blocks of length L → ∞ from successive independent input symbols X),

i.e. χ(ρ′
j
, p j) is an achievable maximum rate for error-free communication,

with a given statistical ensemble {(p j, ρ j)} of input signaling states.

B. Schumacher, M. D. Westmoreland; “Sending classical information via noisy quantum channels”;

Physical Review A 56 (1997) 131–138.

A. S. Holevo; “The capacity of the quantum channel with general signal states”;

IEEE Transactions on Information Theory 44 (1998) 269–273.
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Communication over a noisy quantum channel (3/4)

For a given noisy channel N(·) therefore χ
max = max

{p j ,ρ j}
χ
(
N(ρ j), p j

)

is the overall maximum and achievable rate for error-free communication

of classical information over a given noisy quantum channel,

or the classical information capacity of the quantum channel,

for product states or successive independent uses of the channel.

NB : The maximum χ
max can be achieved by no more than N2 pure input states

ρ j = |ψ j〉 〈ψ j| with |ψ j〉 ∈ HN (Not necessarily easy to characterize).

[Shor, J. Math. Phys. 43 (2002) 4334. Shor, Com. Math. Phys. 246 (2004) 453].

Peter W. SHOR 1998.
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Communication over a noisy quantum channel (4/4)

For product states or successive independent uses of the channel (with given dimensiona-

lity), the Holevo information is additive χ
max(N1 ⊗ N2) = χmax(N1) + χmax(N2) .

For non-product states or successive non-independent but entangled uses of the channel,

due to a convexity property, the Holevo information is always superadditive
χ

max(N1 ⊗ N2) ≥ χmax(N1) + χmax(N2) . [Wilde 2016 Eq. (20.126)]

For many quantum channels it is found additive, χmax(N1 ⊗ N2) = χmax(N1) + χmax(N2)

so that entanglement does not improve over the product-state capacity.

(Like for classical channels where the max of I(· ; ·) always occurs with independent product laws.)

Yet for some quantum channels it has been found strictly superadditive,
χ

max(N1 ⊗ N2) > χmax(N1) + χmax(N2) meaning that entanglement does improve over

the product-state capacity.

M. B. Hastings; “Superadditivity of communication capacity using entangled inputs”;

Nature Physics 5 (2009) 255–257.

Then, which channels ? which entanglements ? which improvement ?

which capacity ? . . . (largely, these are open issues).
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Additive quantum channels

For the Holevo information, additivity χ
max(N1 ⊗ N2) = χmax(N1) + χmax(N2)

has been proved for a number of channels.

Additivity has been proved when one channel is the identity, or a unital qubit

channel, or a c-q or a q-c channel, or an entanglement-breaking channel.

P. W. Shor; “Additivity of the classical capacity of entanglement-breaking

quantum channels”; Journal of Mathematical Physics, vol. 43, pp. 4334–4340, 2002.

Additivity has been proved for unital qubit channels, the depolarizing channel,

the erasure channel, the purely lossy bosonic channel, the whole class of

entanglement-breaking channels.

A. S. Holevo, V. Giovannetti; “Quantum channels and their entropic characteristics”;

Reports on Progress in Physics vol. 75, pp. 046001,1–30, 2012.
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A superadditive quantum channel

A counterexample where the Holevo information is strictly superadditive

χ
max(N1 ⊗ N2) > χmax(N1) + χmax(N2) , has been reported in

M. B. Hastings; “Superadditivity of communication capacity using entangled inputs”;

Nature Physics 5 (2009) 255–257.

with channels of the form N(ρ) =

L∑

ℓ=1

PℓUℓρU
†
ℓ

, with L random unitary

operators Uℓ on HN , random probabilities Pℓ, and 1 ≪ L ≪ N, requiring an

(high) output dimension N ≥ 183 [Belinschi, Com. Math. Phys. 341 (2016) 885].

Based on equivalence of additivity of Holevo information with additivity of minimal
output entropy S min(N1 ⊗ N2) = S min(N1) + S min(N2) , with S min(N) = min

ρ
S
(
N(ρ)

)

this min being achievable over pure input states ρ = |ψ〉 〈ψ| on HN , as proved in

P. W. Shor; “Equivalence of additivity questions in quantum information theory”;

Communications in Mathematical Physics 246 (2004) 453–472.

Any other ? simpler ? more generic ? physically motivated ? . . .
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Stochastic resonance with quantum informational measures
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Parametric estimation from a quantum signal state

A quantum system has its state ρξ ∈ L(HD) dependent on an unknown parameter ξ.

A generalized measurement by the POVM with K elements Mk, for k = 1, 2, . . .K,

generates measurement outcome X with K possible values xk, for k = 1, 2, . . .K,

of probabilities Pr{X = xk ; ξ} = tr(ρξMk) .

From X an estimator ξ̂ = ξ̂(X) is devised for ξ,

and its performance is assessed by the mean-squared error 〈(̂ξ − ξ)2〉.

Question : What is the best (optimal) estimation strategy,

leading to the minimal achievable mean-squared error ?

C. W. Helstrom, “Quantum Detection & Estimation Theory”, Academic Press 1976.

M. G. A. Paris; “Quantum estimation for quantum technology”;

International Journal of Quantum Information 7 (2009) 125–137.
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• Any estimator ξ̂ = ξ̂(X) verifies 〈(̂ξ − ξ)2〉 ≥ Cramér-Rao bound ∼ 1

Fc(ξ)

with classical Fisher information Fc(ξ) =
〈[
∂ξ ln Pr(X ; ξ)

]2〉
.

• The maximum likelihood estimator ξ̂(X) = arg maxξ Pr(X ; ξ) can reach the bound

by achieving 〈(̂ξ − ξ)2〉 = 1

Fc(ξ)
, the minimal error.

• In turn, Fc(ξ) is upper-bounded by the quantum Fisher information Fq(ξ),

i.e. Fc(ξ) ≤ Fq(ξ) =
〈[
Dξρξ

]2〉
, with Dξ symmetric logarithmic derivative.

From eigendecomposition of ρξ in its orthonormal eigenbasis ρξ =
∑D

j=1 λ j |λ j〉 〈λ j|,

one has Fq(ξ) = 2
∑

j,k

| 〈λ j|∂ξρξ |λk〉 |2
λ j + λk

, (summing on all eigenvalues λ j + λk , 0).

S. L. Braunstein, C. M. Caves; “Statistical distance and the geometry of quantum states”;
Physical Review Letters 72 (1994) 3439–3443.

=⇒ Which POVM to achieve Fc(ξ) = Fq(ξ) ?

What is the maximum achievable Fq(ξ) ?
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Uξ
noise
N (·)

Input probe ρ0
ρ1

ρξ

ξ-dependent unitary Uξ delivers ρ1(ξ) = Uξ ρ0 U
†
ξ

providing access to the noisy observation ρξ = N
(
ρ1(ξ)

)
.

A photon (qubit) in an interferometer undergoing the unitary transformation

Uξ =


1 0

0 eiξ



= |0〉 〈0| + eiξ |1〉 〈1| .

phase shift ξ

in

out

|0〉

|1〉
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For a separable probe ρ0 ← ρ⊗N
0

over N successive independent experiments,

the problem is solved in

F. Chapeau-Blondeau; “Optimizing qubit phase estimation”; Physical Review A 94 (2016) 022334.

characterizing • the optimal input probe ρ0 maximizing Fq(ξ),

• the optimal POVM reaching the maximum Fc(ξ) = Fq(ξ),

• the optimal estimator ξ̂ achieving the minimum 〈(̂ξ − ξ)2〉 = 1

Fc(ξ)
.

For an N-qubit entangled probe ρ0, the optimal estimation strategy largely remains open.

Which entangled probe ρ0 ? which size N ? which maximal Fq(ξ) achievable ? . . .

The problem is addressed in (among others, and references there in)

F. Chapeau-Blondeau; “Entanglement-assisted quantum parameter estimation from a noisy qubit

pair: A Fisher information analysis”; Physics Letters A 381 (2017) 1369–1378.

showing that N = 2 properly entangled qubits can improve over

N = 2 independent qubits in optimal configuration.
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Already, entangling the active qubit with one inactive qubit

Uξ noise
ρ0 ρξ

provides a net improvement of the estimation performance (although the

inactive qubit never interacts with the ξ-dependent process to be estimated !).

F. Chapeau-Blondeau; “Entanglement-assisted quantum parameter estimation from a noisy qubit

pair: A Fisher information analysis”; Physics Letters A 381 (2017) 1369–1378.

N. Gillard, E. Belin, F. Chapeau-Blondeau ;

“Estimation quantique en présence de bruit améliorée par l’intrication” ;

Actes du 26ème Colloque GRETSI sur le Traitement du Signal et des Images, 5–8 sept. 2017.

F. Chapeau-Blondeau ; “Qubit state estimation and enhancement by quantum thermal noise” ;

Electronics Letters 51 (2015) 1673–1675 .
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Summary and outlook

coherent
Uξ

noise
N (·)ρin ρout

Performance measures with informational significance :

Probability of successful detection Psuc =
∑M

m=1 Pm tr(ρmMm) ,

Holevo information χ(ρ′
j
, p j) = S (ρ′) −∑J

j=1 p j S (ρ′
j
) ,

Quantum Fisher information Fq(ξ) = 2
∑

j,k

| 〈λ j|∂ξρξ |λk〉 |2
λ j + λk

,

for maximization, superadditivity, improvement by noise, . . .

Or else, quantum computation and algorithms, optimization, quantum image

processing, quantum automatic control, physical implementations, . . .

34/34

Merci de votre attention.

Si vous avez compris . . .

c’est que je me suis mal exprimé !

“Nobody really understands quantum mechanics.”

R. P. Feynman


