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“I believe that science is not simply a matter of exploring new horizons. One must also make the new
knowledge readily available, and we have in this work a beautiful example of such a pedagogical effort.”
Claude Cohen-Tannoudji, in foreword to the book “Introduction to Quantum Optics”
by G. Grynberg, A. Aspect, C. Fabre ; Cambridge University Press 2010.
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A definition (at large)

To exploit quantum properties and phenomena
for information processing and computation.

Motivations for the quantic

for information and computation :

1) When using elementary systems (photons, electrons, atoms, ions,
nanodevices, ...).

2) To benefit from purely quantum effects (parallelism, entanglement, ... ).

3) Recent field of research, rich of large potentialities (science & technology).
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Some basic textbooks

Classical and
Quantum Information

Theoiiiemnter Quantum
Information
Theory

Mark M. Wilde

i EMMANUEL DESURVIRE
and Quantum Information

M. Nielsen & 1. Chuang
2000, 676 pages

M. Wilde
2017, 757 pages

E. Desurvire
2009, 691 pages

arXiv:1106.1445v8 [quant-ph] M. Wilde, “From classical to quantum Shannon theory”, 774 pages.
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Quantum system

(1) State

Represented by a state vector |¢)

in a complex Hilbert space H,
with unit norm (Y|y) = ||¢||2 =1.

In dimension 2 : the qubit (photon, electron, atom, ...)
State |¢) = a|0) +8]|1)

in some orthonormal basis {|0), |1)} of H>, p
with complex coordinates @, € C

such that |af® + |B* = (ly) = [IWI* = 1.

_|¢ F_ il — [t @ T 2
) = [ 3}, W' =Wl =[a,.1 = W) =IYll" =lal” +|Bl" scalar.
) (Yl [a} [a", 5] [(m/* @ *] IT, orthogonal projector on |y)
= a, = = .
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Measurement of the qubit

(2) Measurement

When a qubit in state [) = @ |0) + B|1)
is measured in the orthonormal basis {|0), [1)},

— only 2 possible outcomes (Born rule) :
state |0) with probability > = [(O) |* = (WI0XOly) = (Wllohy), or
state |1) with probability |8 = | (1) > = I1){1ly) = @I 1).

Quantum measurement : usually :

e a probabilistic process,

e as a destructive projection of the state [¢/) in an orthonormal basis,

e with statistics evaluable over repeated experiments with same preparation |i/).
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Hadamard basis )

Another orthonormal basis of H>,

_ ! 0)+11)); _ ! 0) -1 v
{=5(0+): =50 -m) |,
/4
10)
= Computational orthonormal basis |—)
1 1
(0= +1): 1= (0 -19) }.
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Experiments Coll. Magnet
— ¥
I Source — | Screen
& — 2 ‘

W

Stern-Gerlach apparatus for particles with two states of spin (electron, atom).
detector 1 0

Two states of polarization of a photon :
(Nicol prism, Glan-Thompson,

polarizing beam splitter, ... )

detector 2%
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Bloch sphere representation of the qubit 2

Qubit in state
) = a|0) + B 1) with |af?> + |8 = 1.

& |¢) = cos(6/2) |0) + € sin(/2) |1)

with 0 € [0, x],
€ [0,2n[.

<Y

Two states L in H, are antipodal on sphere.

1)

As a quantum object,

the qubit has access to infinitely many configurations
via its two continuous degrees of freedom (6, ¢),

yet when it is measured it can only be found in one of two states.
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In dimension N (finite) (extensible to infinite dimension)

N
State |y) = Z a, |n) , in some orthonormal basis {|1> L2y, ... IN)} of Hy,

n=1

N
witha, € €, and ) Jaul’ = Yly) = 1.
n=1

Proba. Pr{|n)} = |a,|*> in a projective measurement of |y} in basis {In)}.

N 51(11
Inner product (k|y) = Z a, {kln) = a; coordinate.
n=1
N
S= Z In)y (n| = Iy identity of Hy (closure or completeness relation),

n=1
a,

N . N
since, VIy) : Sly) = > Im) (i) = )" alny = ) = S =,
n=1

n=1
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Continuous infinite dimensional states

A particle moving in one dimension has a state [i/) = f Y(x)|x)dx in an

orthonormal basis {|x)} of a continuous infinite-dimensional Hilbert space H.

The basis states {|x)} in H satisfy (x|x") = 6(x — x") (orthonormality),
f |x) (x|dx = Id (completeness).

The coordinate C > ¥(x) = (x|¢) is the wave function, satisfying

1=f Ilﬁ(X)Izdx=f lﬁ*(X)lﬁ(X)dx=f Wlx) (xlp) dx = Ylyr)

with [/(x)|? the probability density for finding the particle at position x,
when measuring the position of the particle.
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Multiple qubits
A system (a word) of L qubits has a state in ?{fL,

a tensor-product vector space with dimension 2%,

and orthonormal basis {|x;x; - - - x1.)} .
2e {0, 1}F

Example L =2 :
Generally |) = aqg |00) + ag; [01) + a0 |10) + aqq |11) (2 coord.).

Or, as a special separable state (2L coord.)
#) = (@1 10) + 81 1) ® (@2 0) + B2 1))
= @122 |00) + @152 [01) + 12 [10) + 152 |11) .

A multipartite state which is not separable is entangled.

An entangled state behaves as a nonlocal whole : with no definite state for A
and B separately, and what is done on one part may influence the other part

instantly, no matter how distant they are.
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Entangled states

e Example of a separable state of two qubits AB :

IAB) = |+) ® |+) = %(m +11)) & %(m) +11)) = %(|00> +101) +110) +[11)).
When measured in the basis {|0), |1)}, each qubit A and B can be found in state |0) or |1)
independently with probability 1/2.

Pr{A in |0)} = Pr{|AB) = |00)} + Pr{|AB) = |01)} = 1/4+ 1/4 = 1/2.

e Example of an entangled state of two qubits AB :

|AB) = %(IOO) + |11)). Pr{A in |0)} = Pr{|AB) = |00)} = 1/2.

When measured in the basis {|0),|1)}, each qubit A and B can be found in state |0) or |1)
with probability 1/2 (randomly, no predetermination before measurement).

But if A is found in |0) necessarily B is found in |0),

and if A is found in |1) necessarily B is found in |1),

no matter how distant the two qubits are before measurement.
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Futhermore, |[AB) = %000) + |11)) = %(|++> + |__>).

= Pr{A in |+)} = Pr{|AB) = [++)} = 1/2.

When measured in the basis {|+),|—)}, each qubit A and B can be found in state [+) or |-)

with probability 1/2 (randomly, no predetermination before measurement).

Bell basis

A pair of qubits in ‘H?z is a quantum system with dimension 2° = 4,

with original (computational) orthonormal basis { |00),]01),]10),]11 )}.

Another orthonormal basis of 7-{?2 is the Bell basis {|ﬂ00> ,1B01) 5 1B10) » |B11 )} :

1
Bood) = —=(100) +11)) 00y = —(L800> + |B10))
But if A is found in |[+) necessarily B is found in [+), V2 V2
e _— . . _— 1
and if A is found in |-) necessarily B is found in |-), Boi) = 7(|01> + |10>) 01) = T(LBOO + |’3”>)
no matter how distant the two qubits are before measurement. —
1
@‘ Bro) = (100 - 110) 10y = 7(L801>—L8n>)
1
Bi) = 7(|01>—|10>) iy = 7(L800>—L810>)
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Observables Heisenberg uncertainty relation (1/2)
For a quantum system in space H with dimension N,
a projective measurement is defined by an orthonormal basis {|1),...|N)} of Hy, For two operators A and B : commutator [A,B] = AB - BA,
and the N orthogonal projectors |n) (n|, forn = 1 to N. anticommutator {A,B} = AB +BA,
1 1
Also, any Hermitian (i.e. Q = Q) operator Q on Hy, so that AB = E[A’ Bl + E{A, B} .
has its eigenstates forming an orthonormal basis {|w, ), ... |wy)} of Hy.
Therefore, any Hermitian operator € on Hy defines a valid measurement, When A and B Hermitian : [A, B] is antiHermitian and {A, B} is Hermitian,
N
and has a spectral decomposition Q = Z Wy W) {wyl with the real eigenvalues w,,. and for any /) then (Y|[A,B]ly) € iR and (Y|{A,B}ly) € R; then
n=1 1 1 2 1
| | , . WIABIY) = = (WIIA, BIlY) +5 (WIA, Blly) = [(wIABI)|" >
Also, any physical quantity measurable on a quantum system is represented in quantum 2 2
. imaginary (part) real (part)
theory by a Hermitian operator (an observable) €.
When system in state |i/), measuring observable € is equivalent to performing a projec- and for two vectors A i) and B ), the Cauchy—Schwarzzlnequahzty 15 )
tive measurement in eigenbasis {|w, )}, with projectors |w,) (w,| = I1,, and yields the |<¢|AB|W>| < (WIA ) (WIB-ly) ,

eigenvalue w, with probability Pr{w,} = | (w,|y) > = Wlw,) {wpllry = WL, ).
The average is (Q) = >, w, Pr{w,} = W|Q) .
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1
so that (IA%ly) (WIB%W) > —|(WITA, Blw)[
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Heisenberg uncertainty relation (2/2)

For two observables A and B measured in state |¢/) :
the average (scalar) : (A) = (Y|Aly) ,
the centered or dispersion operator : A=A- AT,

= <K2> = (A?) — (A)? scalar variance,
also [A,B] =[A,B] .

2\ /52 1 2 . . .
Whence <A ><B > > Z|<[A, B]>| Heisenberg uncertainty relation ;

—_ 2 ~, 2
or with the scalar dispersions AA = ((Az))l/ and AB = ((Bz))l/ ,

1
then AAAB > §|<[A, B]>| Heisenberg uncertainty relation.

17/79

Computation on a qubit

(3) Evolution
(e Ul=U"

Through a unitary (linear) operator U on H; (a 2 X 2 matrix) :

normalized vector |y) € H>, — U |y) normalized vector € H, .

input output
) —= U —=Ul¥)

= quantum gate

(always reversible)

1 [1 1
Hadamard gate H= — . 0 1

V2|1 -1
H? =1, & H™! = H = H" Hermitian unitary.
HI0) =1+) and H|I)=1-)

o)=Y

\/E \/i z€{0,1}

. 1 0
Identity gate I, = .

= Hln = (=D%lz) , Yxe{0,1}.

18/79

Pauli gates

w_ . |01 T L N P
“9T ool T ol 7% T o -1l

X2 =Y?=272=1,. Hermitian unitary. XY =-YX=iZ, ZX =iV, etc.

{Iz, XY, Z} a basis for operators on H,.

1
Hadamard gate H = —(X + Z).
AR
X =0, theinversion or Not quantum gate. X|0) = [1), X]|I) =]0).

1[1+i 1-i 1 [ ™4 emin/4
W: \/)_(: X:_
Vo 201-i 1+i} [

V2

square-root of Not, (or W'), typically quantum gate (no classical analogue).

]:wzzx,

e—irr/4 eirr/4
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In general, the gates U and U lead to the same measurement statistics
at the output, and are thus physically equivalent, in this respect.

Any single-qubit gate can always be expressed as e’U; with
U = exp(—i gﬁ‘ o_") = cos(g)lg - isin(g)ﬁ- g €SuUQ),

with a formal “vector” of 2 X 2 matrices & = [0, oy, 0],
and 71 = [n,, ny, n,]" a real unit vector of R} = det(Uy) =1,

implementing in the Bloch sphere representation
a rotation of the qubit state of an angle & around the axis 77 in R? € SO(3).
Example : W = /&7 = e™*|cos(r/4) I, — i sin(rr/4) o, (€ =n)2, il = &)
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An optical implementation

1 0
0 €%
optically implemented by a Mach-Zehnder interferometer

out
A) phase shift & 2

|1> A A
ﬁ >
in 0) /

acting on individual photons with two states of polarization |0) and 1)

A one-qubit phase gate U; =

] = /% exp(—iéc,/2)

Y

which are selectively shifted in phase,
to operate as well on any superposition «|0) + 8|1) — a/|0) + Be|1).
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Computation on a pair of qubits
Through a unitary operator U on 7—(5’2 (a4 x4 matrix) :

normalized vector |y) € HE* — U |y) normalized vector € HE> .

input output
= quantum gate — —
(always reversible) |¢> U UW)

Completely defined for instance by the transformation of the four state vectors
of the computational basis {|00), [01)., 10}, [11)}.

But works equally on any linear superposition of quantum states
= quantum parallelism.
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e Example : Controlled-Not gate

Via the XOR binary function: a® b =a whenb =0, or =a whenb =1
invertiblea®x=b&c— x=adb=>bda.

Used to construct a unitary invertible quantum C-Not gate :
(T target, C control)

T - P VCEBT

ICT) — |C,.C®T) CT) Y C,CaT)
00 00 = >
|00) — |00) o o 1 0 00
01) —>[01) u_|0 1T 0o
110y — |11) 100 0 1
111y —> |10) 00 10
(C-Not)? = I; &= (C-Not)~! = C-Not = (C-Not)" Hermitian unitary.
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Computation on a system of L qubits
Through a unitary operator U on H" (a 2% x 2% matrix) :

normalized vector |) € HE" — U |y) normalized vector € HE™

u
= quantum gate : L input qubits ———— L output qubits.

Completely defined for instance by the transformation of the 2% state vectors
of the computational basis ;
but works equally on any linear superposition of them (parallelism).

Universal set of gates :

Any L-qubit quantum gate or circuit U can always be obtained

from two-qubit C-Not gates and single-qubit gates.

And in principle this ensures experimental realizability of any unitary U.

This provides a foundation for quantum computation.
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Continuous-time evolution of a quantum system

By empirical postulation Schrodinger equation (for isolated systems) :

d . . 1)
W) = 21 = W) = exp(- f Hdt) W) = Ulta, 1) (1))

1

unitary U(z,, t1)

Hermitian operator Hamiltonian H, or energy operator.

Conversely, postulating for |) a linear unitary evolution U(t, #;)
between any two times #; and t,, especially [y (t + dt)) = U(t + dt, 1) [y (1)),
recovers the Schrodinger equation.
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Summary (so far) : Foundation on 3 general postulates or principles :

e State : Unit-norm vector |) = ZnNzl a, |n)y € Hy complex Hilbert space.
Realizable with L two-dimensional qubits, with 2L > N.

Multipartite states in tensor-product space = quantum entanglement.

e Measurement : Random and destructive, in Hy via
a set of M orthogonal projectors I1,,, = I 11, satisfying Z%:l I, = Iy,
with M outcomes of probability P(m) = ||Hm |zp>||2 = WL, |) ,
L )
I ]|

and post-measurement state [pos) =

. . U
e Evolution : Linear unitary : |y) —— U [¢)

Realizable from one-qubit gates and the two-qubit C-Not gate.
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In particular :

N o
e State : i) =Z ayn)y = W) = f Y(x)|x) dx continuously infinite dimension. (p.10)
n=1 -

1 1
Measurement of [AB) = —(|00) + [11)) = —(|0)®[0) + [1) ® 1)) € H> ® H- .12
. |>ﬁ(|>|>) \/E(H')l)l)) Lo H, (p.12)
IT; = 100)<00] = |0)<0] ® |0} 0|
M, = [01)¢01]=10)0|®|1)(1 4
win | T2 = ODOU=@OSLAL Sy o
I3 = [10)(10] = [1) (1| ®0) 0| |
My = [LHAL=[1){de[1)(]
I = [0)(0®I 2
or with ! AV = Zn;n:b@lz:h.
I, = H{dIeh =

U d j
e Evolution : [y) — Uy) = 7 )y = —%H [y = |@(22)) = U(tz, t1) [r(t1)) ,  (p-25)
. i (7 . Ho
with U(r2,11) = exp (—% f Hdt) . Trivial H = Hold = |¢(12)) = exp(—17(t2 - tl)) (1)) .
3
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No cloning theorem (1982)

(, Possibility of a circuit (a unitary U) that would take any state |i/), associated with

an auxiliary register |0), to transform the input [i/) |0) into the cloned output [i) /) ?

V) —» > [V)

u
11310y —— U(ly1)10)) = 1) 1) (would be). U?

|0) —> —>[4)

U
12)10) —— U(¥2) [0)) = [¥2) [¥r2) (would be).

Linear superposition |y) = a; [y1) + a2 [y2)

u
)10 —— Uy 10) = U(a1 [y1)10) + a2 [v2) 0))
=ay ) ) + az 2) [2)

since U linear.

But [y) [p) = [9) ® ) = (a1 1) + @2 o)) (a1 ) + @2 )

= al ) ) + aran 1) [a) + aras o) ) + a3 [a) a)
# U(ly)|0)) in general. = No cloning U possible.
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Quantum parallelism

For a system of L qubits,
a quantum gate or circuit is any unitary operator U from 7—(§’L onto ‘HfL.

The quantum gate U is completely defined
by its action on the 2% basis states of ﬂf’L : {I)?) ,X€e {0, I}L},
just like a classical gate.

Yet, the quantum gate U can be operated
on any linear superposition of the basis states {l)? y, X € {0, I}L}.

This is quantum parallelism, with no classical analogue.

log,(10) = 3.32 = log2(1015) ~ 49.83 & 10 = 2%
Donc 1000 Tbits sont stockables dans un registre de 50 qubits ! ‘
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Parallel evaluation of a function (1/4)

A classical Boolean function f(-) from L bits to 1 bit
e f0,1}f —— f(¥)e{0,1}.

Used to construct a unitary operator Uy as an invertible f-controlled gate :

T T~
Uy
y D f(7)—

_»y

with binary output y @ f(¥) = f(¥) wheny =0, or= f(¥) wheny = 1,
(invertible as [y® f(X)]® f(X) =y® f(X)D f(X) =y 0 =y).
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Parallel evaluation of a function (2/4)

Toffoli gate or Controlled-Controlled-Not gate or CC-Not quantum gate :

la @ be)

|€) —= =)

(CC-Not)? = Iy &= (CC-Not)"! = CC-Not = (CC-Not)" Hermitian unitary.

Any classical Boolean function f(¥) (invertible or non) on L bits
can always be implemented (simulated) by means of 3-qubit Toffoli gates.

1) P [zty) 1) P ) 10) P |z Ay)
|z) |z) |z) ) |2) |z)
ly) ) 1) 1y y)
NAND NOT AND
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Parallel evaluation of a function (3/4)

y @ f(@)—

For every basis state |¥), with ¥ € {0, 1} :

Us
)y = 0) ————— ) 1f(X)

Ryl = 1) ————— |f> e

><

7 =@+ [f@)] = 1))
1) [If(f» -[r@)| =y e

X} +) —————— |¥)
—

1) 1-)

&l

Parallel evaluation of a function (4/4)

[+ 7 .
Uy

ly) —y y© f(7)—

1\
|+)®F = (75 ) Z |¥)  superposition of all basis states,
e{0,1)t

Uy

)% ®10) ——

B
(—) Z XY f(D)) superposition of all values f(%).
V2 Re(0, 1)L

Uf 1 L
4L @ |-y ———— (—) %) =) (=1)/@
%) 2

(, How to extract, to measure, useful informations from superpositions ?
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Deutsch-Jozsa algorithm (1992) : Parallel test of a function (1/5) Deutsch-Jozsa algorithm (2/5)
A classical Boolean function £0) o1  — 0,1 |_|_>®L 7 7 . H®L ,
2L values — 2 values, U
can be constant (all inputs into O or 1) or balanced (equal numbers of 0, 1 in output). f
Classically : Between 2 and > + 1 evaluations of f(-) to decide. ? T ?
Quantumly : One evaluation of f(-) is enough (on a suitable superposition). ‘¢1> |¢2> |77D3>
1\
Lemma1: Hlx) = i(|o>+(—1>*|1>) Z( %), Yxelol) Input state 1) = [+)*|-) = (—) €Y 1=)
\/E €{0,1} \5 Xe(0,1}L
L
®L |2\ _ . X7 2 L 1
= H* X)) =Hlx) ® ®H|XL>—( ) Z( D™Z)y, V¥e{0,1)", Internal state |¢’2>:(—) Z 1) =) (= 1)@
{0,1}L \/5 .
Xe{0,1}
with scalar product ¥Z = x;z; + -+ + xzz;, modulo 2. (quantum Hadamard transfo.)
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Deutsch-Jozsa algorithm (3/5)

Output state |yr3) = (H®L ® Iz) )

1 )L
=\ HEE [2) =) (=)

L
:(%) > EDFERDI YD by Lemma

Xe{0,1}L 70,1}

1 L
or Is) = W)1-) . with |w>:(§) > W@y

Ze{0, 1}

and the scalar weight w(?) = Z (—1)f ez

Xe{0,1}-
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Deutsch-Jozsa algorithm (4/5)
1 e
So ) = ¢ DT w@R)  with w@) = ) (-1

7€{0,1} Xe{0,1}t
For [7) = [0) = |0)®:  then w(Z=0) = Z (—1)f@ |
Xe{0,1}L

e When £(-) constant : w(Z=0) = 2L(=1Y/O® = 421 — in ) the amplitude of [0 ) is
+1, and since ) is with unit norm = ) = + |6), and all other w(Z # 6) =0.
= When |¢) is measured, L states |0) are found.

e When f(-) balanced : w(Z = 0 ) = 0 = |¢) is not or does not contain state I6 ).
=— When |¢) is measured, at least one state |1) is found.

— Illustrates quantum ressources of parallelism, coherent superposition, interference.

(When f() is neither constant nor balanced, |¢) contains a little bit of |6 ).)
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Deutsch-Jozsa algorithm (5/5)
[1] D. Deutsch; “Quantum theory, the Church-Turing principle and the universal quantum
computer”; Proceedings of the Royal Society of London A 400 (1985) 97-117.

The case L = 2 qubits.

[2] D. Deutsch, R. Jozsa; “Rapid solution of problems by quantum computation”; Proceedings of
the Royal Society of London A 439 (1992) 553-558.

Extension to arbitrary L > 2 qubits.

[3] E. Bernstein, U. Vazirani; “Quantum complexity theory”; SIAM Journal on Computing 26
(1997) 1411-1473.

Extension to f(X) = dx or f(X) = dX® b, to find binary L-word @ — by producing output
) =la).

[4] R. Cleve, A. Ekert, C. Macchiavello, M. Mosca; “Quantum algorithms revisited”; Proceedings
of the Royal Society of London A 454 (1998) 339-354.
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Superdense coding (Bennett 1992) : exploiting entanglement
1
Alice and Bob share a qubit pair in entangled state [AB) = 6000) + |1 1)) = |Boo)-

Alice chooses two classical bits, used to encode by applying to her qubit A
one of {I,, X, 1Y, Z}, delivering the qubit A’ sent to Bob.

. Alice Bob
2 chits iz | qbit 4’ > hite I, ®1,|AB) = |Boo)
— -5 COILS X®L |AB) = |Bo)
Y ecoder |F—FA—=
A ) — Z®1,|AB) = |B1o)

iY®Iz |AB> = |ﬁ11>
|AB) 2 entangled qubits

Bob receives this qubit A’. For decoding, Bob measures |A’ B) in the Bell basis
{Iﬁ()o) ,1Bo1) 5 1B10) 1811 )}, from which he recovers the two classical bits.
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Teleportation (Bennett 1993) : of an arbitrary qubit state (1/3)
Qubit Q in an arbitrary state /o) = @ [0) + a; [1).
1
Alice and Bob share a qubit pair in entangled state [AB) = 7(|OO> + |11>) = |Boo)-
2

o) Alice 9 cpigg Bob
Measurement
in Bell basis y X
A {18:)} ‘ L

|AB)

T

1) )

Alice measures the pair of qubits QA in the Bell basis (so [i/o) is locally destroyed),
and the two resulting cbits x, y are sent to Bob.
Bob on his qubit B applies the gates X¥ and Z* which reconstructs [fy).
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Teleportation (2/3)

Sl -&l-

[¥1) = o) 1Boo) |2010) (100) + 111)) + @y [1) ([00) + [11))]

[ao 1000) + g [011) + a7 [100) + |111>],

factorizable as |y ) = %[ 100y + [11))(ex0 [0) + vy [1)) +
01) + [10))(ex0 [1) + 1 10)) +
00) — [11))

( )
(@0 10y = a1 1)) +
( )

101) = [10))(@o [1) — @1 10) ] ;
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Teleportation (3/3)
1
Y1) = E[wm (0105 + @1 1)) + 1Bor) (e [1) + a1 10)) +
1B10) (@0 10) = a1 1)) + B11) (a0 1) — @y |0>)] :
The first two qubits QA measured in Bell basis {|3,,)} yield the two cbits xy,

used to transform the third qubit B by X” then Z*, which reconstructs [¢).

1 1

When QA is measured in |Byo) then Bisin a(|0) + a;|1) 2,2, o)
X 1

When QA is measured in |By;) then Bisin ag|l) + a;|0) — - 2, o)
1 Z

When QA is measured in |819) then Bisin ag|0) — a;|1) NN o)

X Z
When QA is measured in [811) then Bisin ag|l) — a;]0) — - — [¢p).
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Princeps references on superdense coding ...

[1] C. H. Bennett, S. J. Wiesner; “Communication via one- and two-particle operators on
Einstein-Podolsky-Rosen states™; Physical Review Letters 69 (1992) 2881-2884.

[2] K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger; “Dense coding in experimental
quantum communication”; Physical Review Letters 76 (1996) 4656—4659.

... and teleportation
[3] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters; “Teleporting an
unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels’;

Physical Review Letters 70 (1993) 1895-1899.

[4] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger;
“Experimental quantum teleportation”; Nature 390 (1997) 575-579.
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Grover quantum search algorithm (1/4)  Phys. Rev. Ler. 79 (1997) 325.

e [terative algorithm that finds an item out of N in an unsorted dataset,
with O(VN) queries instead of O(N) classically.

e A dataset contains N items numbered as n € {1,2,--- N}.

One wants to find one (only one here, but extensible) item n = ny
satisfying some criterion or property,

indicated by the test function or oracle f(-) responding as f(n) = dppn, .

With an unsorted dataset, finding ny requires

classically O(N) interrogations of the oracle or evaluations of f(-),
while O(VN) are enough quantumly.

45779

Grover quantum search algorithm (2/4)

e Quantumly, an N-dimensional quantum system in Hy with orthonormal basis {|1),- -, |N)},
where the N basis states |n), for n € {1,2,--- N}, represent the N items of the dataset.

From a quantum implementation of the test function f(-), it is possible to obtain a quantum oracle
as the unitary operator Uy realizing Uy |n) = (=17 |0y for any n € {1,2,--- N}.

Thus, the quantum oracle returns its response by reversing the sign of |n) when 7 is the solution no,
while no change of sign occurs to |z) when 7 is not the solution.

Equivalently Uy = Iy — 2 [ng){no|, although |np) need not be known, but only f(-) evaluable.

The quantum oracle is able to respond to a superposition of input query states |n) in a single
interrogation, for instance to a superposition like |y) = N -1/2 ZZV: ).

Upon measuring i), any specific item |n1) would be obtained as measurement outcome with the
probability [{n;|) |> = 1/N , since {(n|y) = 1/ VN for any nj € {1,2,--- N}.

Instead, as measurement outcome, we would like to obtain the solution |ng) with probability 1.
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Grover quantum search algorithm (3/4) Inp)
1 N
elet n,)= N ,#Z,,:O |n) normalized state L |ng)

= gy = N"V2 3N In) is in plane (lno) , In.)).

e With the oracle Uy = Iy — 2 |ng){ngl = Ug|n.) = |n,) and Ug |ng) = — |ng).
So in plane (|n0> ,|n l)), the operator Uy performs a reflection about |n, ).
e Let |y, ) normalized state L [if) in plane (|n0> s Inl)).

e Define the unitary operator Uy, = 2 ) (Y| — Iy = Uy ) = [y and Uy [, ) = — o).

So in plane (Ino) N )), the operator Uy, performs a reflection about [i/).

e In plane (Ino) ,|n l)), the composition of two reflections is a rotation Uy, Uy = G (Grover
2
amplification operator). It verifies G |ng) = Uy Ug lno) = —Uy Ing) = Ino) — W ).
The rotation angle 8 between [ng) and G |ng), via the scalar product of |ng) and G |ng), verifies
02

2
COS(0)2<HQ|G|HO>:1—Nzl—ijezﬁ at N > 1.
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Grover quantum search algorithm (4/4)

2
e In plane (Ino) , InL)), the rotation G = U, Uy is with angle 6 ~ ? .
N

2 4 2
* Gly) = UyUo ) = Uy(Iv) - = Ino)) = (1 - N) ) + = Ino-

So after rotation by 6 the rotated state G i) is closer to |ng).

e G |y) remains in plane (|n0> s |nJ_>), and any state in plane (|n0> , |nl>) by G is rotated by 6.
So G2 |y) rotates |if) by 26 toward |ng), and G* |y) rotates i) by k6 toward |ng).

e The angle ® of |) and |ng) is such that cos(®) = (ngly) = 1/ VN =0-= acos(l/ \/IV)

® N
eSoK = rl ~ g acos(l/ \/IV) iterations of G rotate |y/) onto |ng).

At most O = (when N > 1) = at most K ~ %\/IT/

ST

e So when the state GX |y} ~ |ng) is measured, the probability is almost 1 to obtain |ng) .
= The searched item |ng) is found with O(VN) interrogations instead of O(N) classically.
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Other quantum algorithms

e Shor factoring algorithm (1994) :
Finds the prime factors of an integer with a complexity polynomial in its size,

instead of exponential classically.

15 = 3 x 5, with spin-1/2 nuclei (Vandersypen et al., Nature 2001).

21 = 3 x 7, with photons (Martin-Lépez et al., Nature Photonics 2012).

35 =5x%7, onIBM Q processor (Amico ef al., Phys. Rev. A 2019).

e https://quantumalgorithmzoo.org

“A comprehensive catalog of quantum algorithms ...”

Quantum cryptography
e The problem of cryptography

Message X, a string of bits.
Cryptographic key K, a completely random string of bits with proba. 1/2 and 1/2.

The cryptogram or encrypted message C(X, K) = X @ K (encrypted string of bits).
This is Vernam cipher or one-time pad,
with provably perfect security, since mutual information /(C; X) = H(X) - H(X|C) = 0.

Problem : establishing a secret (private) key
between emitter (Alice) and receiver (Bob).

With quantum signals,
any measurement by an eavesdropper (Eve) disturbs the system,

and hence reveals the eavesdropping, and also certifies perfect security conditions.
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e BB8&4 protocol (Bennett & Brassard 1984) ) e B92 protocol with two nonorthogonal states (Bennett 1992) |+)
¢ Alic.e.has a st.ring of 4.N random bits. She encodes with ¢ To encode the bit a Alice uses a qubit in state [0) if a =0
a qubit in a basis state either from {|0), |1)} or {|+),|—)} . .
randomly chosen for each bit. [+ and in state [+) =( 10) + |1>)/ V2 if a=1. /4 0)

0

4 Then Bob chooses to measure each received qubit either in ¢ Bob, depending on a random bit @’ he generates,
basis {|0), |1)} or {|+),]|—)} so as to decode each transmitted bit. /4 measures each received qubit either in basis {|0), 1)} ifa’ =0

10) orin {|+),|-)} if @’ = 1. From his measurement, Bob obtains the result b = 0 or 1.

¢ When the whole string of 4N bits has been transmitted,

Alice and Bob publicly disclose the sequence of their basis choices
to identify where they coincide. -
¢ Alice and Bob keep only the positions where their basis choices coincide,

and they obtain a shared secret key of length approximately 2N.

+ If Eve intercepts Alice’s qubit, she cannot make a copy (no-cloning theorem).

She has to measure (and destroy) it, and forward to Bob a qubit in her known measured
state. Roughly half of the time Eve forwards an incorrect state.

From this Bob half of the time decodes an incorrect bit value.

4 From their 2N coinciding bits, Alice and Bob classically exchange N bits at random.
In case of eavesdropping, around N/4 of these N test bits will differ.
If all N test bits coincide, then the remaining N bits form the shared secret key.
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¢ Then Bob publishes his series of b, and agrees with Alice to keep only those pairs
{a,a’} for whichb =1,

this providing the final secret key a for Alice and 1 —a’ = a for Bob.

This is granted because a =a’ = b =0 andhence b=1=—=a#d =1-a.

¢ A fraction of this secret key can be publicly exchanged between Alice and Bob
to verify they exactly coincide, since in case of eavesdropping by interception and
resend by Eve, mismatch ensues with probability 1/4.

N. Gisin, et al.; “Quantum cryptography”; Reviews of Modern Physics 74 (2002) 145-195.
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e Protocol by broadcast of an entangled qubit pair

+ With an entangled pair, Alice and Bob do not need a quantum channel between them
two, and can exchange only classical information to establish their private secret key.
Each one of Alice an Bob just needs a quantum channel from a common server
dispatching entangled qubit pairs prepared in one stereotyped quantum state.

4 Alice and Bob share a sequence of entangled qubit pairs all prepared in the same
entangled (Bell) state |AB) = (|00) + |11))/ V2 .

4 Alice and Bob measure their respective qubit of the pair in the basis {|0), |1)}, and they
always obtain the same result, either O or 1 at random with equal probabilities 1/2.

+ To prevent eavesdropping, Alice and Bob can switch independently at random to
measuring in the basis {|+) ,|—)}, where one also has |[AB) = (|++) + |——))/ V2.

So when Alice and Bob measure in the same basis, they always obtain the same results,
either O or 1.

¢ Then Alice and Bob publicly disclose the sequence of their basis choices.
The positions where the choices coincide provide the shared secret key.

+ A fraction of this secret key is extracted to check exact coincidence, since in case of
eavesdropping by interception and resend, mismatch ensues with probability 1/4.
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IDQ

ID Quantique

Redefining the fields of Random Numbers,
Quantum-Safe Crypto & Photon Counting

QUANTUM-SAFE CRYPTO — PHOTON COUNTING — RANDOMNESS
ID Quantique (IDQ) is the world leader in quantum-safe crypto solutions, designed to protect data for the

long-term future. The company provides quantum-safe network encryption, secure quantum key
generation and quantum key distribution solutions and services to the financial industry, enterprises and

Cerberis QKD Server

Cerberis from IDQ is a standalone rack-mountable
QKD server; providing secure quantum keys based
on the BB84 and SARG protocols. Integrated with
IDQ’s Centauris Ethernet and Fiber Channel
encryptors, Cerberis has been deployed by
governments, enterprises and financial institutions
since 2007

Open QKD platform for R&D, based on BB84 and
SARG protocols with auto-compensating
interferometric set-up. Widely deployed in the
academic community for quantum cryptography
research , quantum hacking and certification, and
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ﬂ i GdR CNRS IASIS, Groupe de travail |QuantInG) Cours 3 du 10 octobre 2024.
IDQ : :
Information quantique,
AND STATE
OF GENEVA L]
REDEFINING SECURITY l l q t q .
& calcul quantique :
G Government - - - -
eneva Lovernment ... Une introduction pour le traitement du signal.
Secure Data Transfer for Elections
Gigabit Ethernet Encryption with Quantum Key Distribution Frangois CHAPEAU-BLONDEAU
. L s 1
LARIS, Université d’ Angers, France.
“W§ have to p_rovide The Challenge
°p“ma_' security Switzerland epitomises the concept of direct democracy. Citizens of Geneva are
cond!!lons for the called on to vote multiple times every year, on anything from elections for the . A
counting of ballots.... national and cantonal parliaments fo local referendums. The challenge for the universite
Quantum Geneva government is to ensure maximum security to protect the data aLlT\'\E‘-ﬂ[IC\Iy ‘ a n g e r S
cry.Ptc’graph?' has the and integrity, while at the same time managing the process efficiently. They also
ab””y to Verify that have to guarantee the axiom of One Citizen One Vote.
the data has not been The Soluti
corrupted in transit €woolution « . - o o c . . ale .
between antry & ik T iy G esearesl Edesronfid e s e 1 believe that sgence .15 not simply a matt.er ot‘ exploring new.l?oruons. One‘must also make .the neyv )
storage” IDQ's hybrid encryption solution, using state of the art Layer 2 encryption knowledge readily available, and we have in this work a beautiful example of such a pedagogical effort.
combined with Quanium Key Distribution (QKD)! The Cerberis solution secures a Claude Cohen-Tannoudji, in foreword to the book “Introduction to Quantum Optics”

%Ut‘e"f‘_’_'f@nsh?f ex- point-to-point Gigabit Ethernet link used to send ballot information for the federal by G. Grynberg A. Aspect C. Fabre : Cambridge University Press 2010.
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Summary of “Cours 2”
e No cloning possible of an arbitrary unknown quantum state [y) into |¢) [i).
e Parallel computation : Any (classical) Boolean function from N, bits into Ny, bits

can always be implemented by a quantum circuit (from the Toffoli gate),
and executed in parallel on superposed quantum states.

e Deutsch-Jozsa algorithm (1992) :
classifies Boolean functions from a single parallel evaluation.

e Superdense coding (1992) & teleportation (1993) :
exploit a shared stereotyped entanglement for enhanced communication.

e Grover quantum search algorithm (1997) : searches an unsorted database of N items
with O(VN) queries instead of O(N) classically.

e Shor factoring algorithm (1994) : Finds the prime factors of an integer with a
complexity polynomial in its size, instead of exponential classically.

e Quantum cryptography : No-cloning theorem and destructive quantum measurement

to guarantee secret key distribution (BB84 protocol, or distributed entanglement).
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Quantum correlations by entanglement

KUNGL.

NOBELPRISET | FYSIK 2022 VETENSKAPS-
AKADEMIEN

W2’ THE NOBEL PRIZE IN PHYSICS 2022

EDISH ACADEMY OF SCIENCES

(9.
» e
Anton Zeilinger

s University of Vienna,
Ecole Polytechnique, France USA Austria

John F. Clauser
J.F. Clauser & Assoc.,

Alain Aspect
Université Paris-Saclay &

“for experiment med sammanfiétade fotoner som pavisat brott mot Bell-olikheter och
banat vég for kvantinformationsvetenskap”

“for experiments with entangled photons, establishing the violation of Bell inequalities and
#nobelprize pioneering quantum information science”
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Quantum correlations by entanglement (1/5)

For any four random binary variables A, A,, B, B, with values +1,
I'=(A1 —A2)B) — (A1 + A2)By = A1B) — A2B) — A1By — Ay By = £2,
because since A;, A, = +1, either (A — Ay)B; =0or (A; + Ay)B, =0,
and in each case the remaining term is +2.

So for any probability distribution on (A, A, By, B,), the average

(T) = (A1B) — A,B) — A\ B, - AyBy) = (A B1) = (A2By) — (A1 Bo) — (A, B))
necessarily verifies =2 <(I') < 2. Bell inequalities (1964).
The binary variables at +1 will be obtained (by Alice and Bob)
from the results when measuring an entangled qubit pair.

[1] A. Einstein, B. Podolsky, N. Rosen ; “Can quantum-mechanical description of physical reality
be considered complete ?”’; Physical Review 47, 777-780 (1935).

[2]J. S. Bell ; “On the Einstein—Podolsky—Rosen paradox”; Physics 1, 195-200 (1964).

[3] J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt; “Proposed experiment to test local
hidden-variable theories”; Physical Review Letters 23, 880-884 (1969).
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Quantum correlations by entanglement (2/5)

Alice or Bob gets results 1 by measuring qubit observable Q(6) = sin(6)X + cos(6)Z,
having eigenvalues +1, equivalent to a qubit measurement in the eigenbasis
{10.(0)) = [cos(6/2). sin(@/]" . 11-(0)) = [~sin(6/2). cos(0/]" | .

Alice measures at 8 = @ to obtain A = +1, and Bob measures at 8 = 3 to obtain B = +1,
with the joint probabilities P(A = 1, B = £1) = |[(1.(@) ® 1.(8) | 1//A3>|2 .

1

\/E
‘\P1 A - 5 P2/+1
/ @ e B \

-1 -1

Alice and Bob share a qubit pair AB in the entangled state | 45) = (lOl) - IIO)) .

+1

I 3
Y
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Quantum correlations by entanglement (3/5)

= Joint probabilities

PA=+1,B=+1)=P(A=-1,B=-1) = %[1 — cos( - )] »

PA=+1,B=-1)=PA=-1,B=+1) = %[1 + cos(e - )] »

and by summation the marginal probabilities

1
PA=+1)=PA=-1)=PB=+1)=PB=-1)= 5
and the correlation (AB) = —cos(a —f3) ,

or alternatively (from p. 15): (AB) = (Yap | (@) ® Q(B) | Yap) = —cos(a — ).

Quantum correlations by entanglement (4/5)

To obtain four binary variables 1,
Alice randomly switches between measuring A; when 6 = @ or A, when 6 = a5,
Bob randomly switches between measuring B; when 8 = 8, or B, when 6 = (3,.

For (I') = (A1By) — (A,By) — (A1 B,) — (A, B,) one obtains
([) = —cos(a; —B1) + cos(az — B1) + cos(a; — Ba) + cos(az — Ba).

The choice a; =0, o, =n/2 and By =3n/4, B, = n/4 leads to
(I'y = —cos(3n/4) + cos(n/4) + cos(n/4) + cos(m/4) =2 V2>2.

Bell inequalities are violated by quantum correlations !!

Experimentally verified (Aspect et al., Phys. Rev. Let. 1981, 1982.) Nobel 2022

[4] A. Aspect, P. Grangier, G. Roger ; “Experimental test of realistic theories via Bell’s theorem”;
Physical Review Letters 47, 460-463 (1981).
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3 Physica A 414 (2014) 204-215
Quantum correlations by entanglement (5/5)
Contents lists available at ScienceDirect
e Einstein-Podolsky-Rosen : Quantum mechanics might be incomplete (1935). Physica A
[1] A. Einstein, B. Podolsky, N. Rosen ; “Can quantum-mechanical description of physical reality Jouriial i page WiwCelsvisr coniosate/glyes
be considered complete ?”’; Physical Review 47, 777-780 (1935).
If hidd iabl ist Bell i liti tisfied (1964 Tsallis entropy for assessing quantum correlation with @Cmmm
° idden variables exist = Bell inequalities are satisfied ( ). Bell e fnequalitiasin ERR afperiient
. . L. . B Frangois Chapeau-Blondeau*
e A. Aspect experiments : Bell inequalities are violated by Reality (1982). Labortuine ngevindeRechrche eningenieie des Sysmes (LA, Universe Angrs, 62 venue ot Dme du o,
49000 Angers, France
= No possibility of hidden-variables theories underneath quantum mechanics.
HIGHLIGHTS
o, . . . » A new Bell-type inequality for nonlocal correlation in quantum systems is derived.
e Quantities that cannot be simultaneously measured (incompatible) « T Tals entropy i sed s agenerlze meticof statisical dependence.
» It is applied to classical outcomes of quantum measurements, as in the EPR setting.
. . . . = Superiority and cor ity of the ized Bell inequality is demonstrared.
haVe 1’10 Slmu]taneOuS physlcal exlstence Or reallty, e It ilz able t?]’detm nonlocal quantum correlation from a Iarggr satrgfubsewables.
. . . . . ARTICLE INFO ABSTRACT
e Correlations between variables obtained from measurements of incompatible e e e T e R
.. 1 d l . 1 . gg:x:g :;;E:’Siéﬁur‘:‘:m —— depar;gence ?etween [h.E ?Ia:sicaé;;tmmgs of T;;S‘umme'nu par]ljun?md uF a ‘[]i‘:jaﬁ‘i[[:
quantum quantltles On entang e SyStemS’ may escape C aSSlca ConStralntS : Avalube nrinEAL ity 2012 ?[andard cgfrelat.inn-[:'ajsed Bell inequaiizes, and with other kn:vlwn I?;]I—type inequalities
. . . r— based on the Shapnon entropy fm"which ?( cpnsti[utes a generalization. For an optimal
—> a resource for lnformatlon processlng_ Tsalliseniropy range of the Tsallis order, the new inequality is able to detect non!uca] quantum correla-
Quantum correlation tion with measurements from a larger set of quantum obs?wables. In this respect {t is more
Bell inequalities p_nwarfuI and also complementary compared to the previously known Bell-type inequali-
EPR experiment ties.
Quantum information @ 2014 Elsevier BV. All rights reserved.
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GHZ states (1/5)
3-qubit entangled states.

(1989, Greenberger, Horne, Zeilinger) Nobel 2022

Three players, each receiving a binary input x; = 0/1, for j = 1,2, 3,
with four possible input configurations x;x,x3 € {000,011, 101,110}. 21 —*D——) Y1

e
e

Game is won if the players collectively respond according to the input—output matches :

Each player j responds by a binary output y;(x;) = 0/1,

function only of its own input x;, for j = 1,2, 3.

X1%x3 = 000 ————— > y;y,y; suchthat yy®y, ®@y; =0 (conserve parity),

x1xx3 € {011,101, 110} — y;y,y3 suchthat yy @y, ®y; =1 (reverse parity).

To select their responses y;(x;), the players can agree on a collective strategy before,

but not after, they have received their inputs x;.

GHZ states (2/5)

A strategy winning on all four input configurations
would consist in three binary functions y;(x;) meeting the four constraints :

¥1(0) ® y2(0) ® y3(0) = 0 . L,
110 @ 35D @ ya(]) = 1 > H

D) @y:0) @ ys(1) = 1 v Heu
yi(D) @y (1)@ y3(0) = 1 s __)D__)yg

0 © 0@ 0 =1, bysummation of the four constraints,
= 0 =1, so the four constraints are incompatible.
So no (classical) strategy exists that would win on all four input configurations.
Any (classical) strategy is bound to fail on some input configuration(s).

We show a strategy using quantum resources winning on all four input configurations,
(by escaping local realism, y;(0) = 0/1 and y;(1) = 0/1 not existing simultaneously).

65/79 66/79
GHZ states (3/5) GHZ states (4/5)
Before the game starts, each player receives one qubit from a qubit triplet prepared in the 2) When x;x,x3 = 011, only player 1 measures in {|0), [1)}.
entangled state (GHZ state) 1 1 1
W) = |¢123> _ 5(|000> _ 011y = |101) — |110>). ) = 5(|000>—|011>—|101>— 110)) = 5 10)(100) = [11)) = 11 (101) +[10))|.
. 1 1
And the players agree on the common (prior) strategy : Since |0) = @("") + |‘>)’ 1) = @("") - |‘>) =
if x; = 0, player j obtains y; as the outcome of measuring its qubit in basis {|0), [1)}, |
if x; = 1, player j obtains y; as the outcome of measuring its qubit in basis {|+),|-)}. 100) = 11) = 5 (|+> + |_>)(|+> + H) - (|+> - |_>)(|+> - H)]
1
= 5[(|++> =) =)+ =) = () = ) = -0 + |——>)]
We prove this is a winning strategy on all four input configurations : = [+=) + |—+) ;
1
1) When x;x,x; = 000, the three players measure in {|0), |1)} 01) + 110y = 2 (|+> * |_>)(|+> a |_>) * (|+> a |_>)(|+> * |_>)] =k ==
=0i tched.
= 719528 7s = D1s maiche = ) = %(|0+—>+|0—+>—|1++>+|1——>) — y, @y, ®y; = | matched.
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GHZ states (5/5)

3) When x;x,x3 = 101, only player 2 measures in {|0), |1)}.

) = %(|000> ~[011) = 101) = |110)) %[|-0~>(|0~0>— - D) =1y (j0- 1)+ 11 '0>)}

%[|-0-> (1+ =)+ 1= ) = 1Y (1 +) = |- —>)]

= %(H‘O—) + |—0+> - |+1+> + |—1—>) =y @yz @)’3 =1 matched.

4) When x;x,x3 = 110, only player 3 measures in {|0), |1)}.

vy = %(|000> = [011) = 101) - [110)) = %[(|00>— 111))10) - (jo1) + |10>)|1>]

= %[(I+—> + |—+>) |0y — (|++> - |——>) |1>]

- %(|+_0>+|_+0>_|++1>+|“1>) =y ®y, ®y; = | matched.
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So far,

well defined state vectors (pure state),

unitarily evolved,

to represent closed or isolated quantum systems.

APRFRLRS RPRIRIRS

Next to come,

-

)

open quantum systems,

interacting with an uncontrolled environment,

inducing uncertainty to the quantum state (mixed state),
and evolving non-unitarily,

under decoherence.
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Density operator (1/3)

Quantum system in (pure) state [i;) € Hy, measured in an orthonormal basis {In)}nN:] :

= probability Pr{ In>\lw M=)y P = l ) Wiln) (nonlinear in the state [i;))
J

J possible states |y;) with probabilities p; , ( with Z pi=1):
j=1

= (nl Z i) Wil) In) = (lplny

= Pr{|n)} =

Z p; Priin)| |¢,

with density operdtor o= Z pilv;) (wjl e L(Hy).

j=1

and Pr{|n)} = (n|p|n) = tr(p |n) (n|) = tr(p11,) . (linear in the state p)

The quantum system is in a mixed state, corresponding to the statistical ensemble

{(p N j))}, described by the density operator p.

Lemma : For any operator A with trace tr(A) = Y, (n| A|n), one has

tr(A ) () = 2, (nl Alp) (Bln) = X, (ln) (nl Alyr) = <¢I(Zn ) <n|)A ) = (plAI) .
T1/79

Density operator (2/3)
The statistical ensemble of states {(p i W j))} has density operator p = Z il il

= p = p' Hermitian ;
VI Wloly) = X pjl W) 2 0 = p = O positive s
trace tr(p) = X p tr( ) () = X pj = 1.

N
On Hy, eigen decomposition p = Z A, 14,0 {4, , with
n=1

eigenvalues {4, } a probability distribution,
eigenstates {|4,)} an orthonormal basis of Hy.

N
Purity tr(p?) = Z A2 = 1 for a pure state, and tr(p?) < 1 for a mixed state.

n=1

A valid density operator on Hy = any positive operator p with unit trace,

provides a general representation for the state of a quantum system in Hy.

State evolution |y;) — Uy ;) = ¥,| = ;|U" = p — UpU" . 79179




Density operator (3/3 another motivation)
A bipartite system AB in a pure (entangled) state |AB) € H* @ H?E.

Only A is accessible for measurement, with the set of projectors {Hm ®18 }

Probability of outcome m :

P(m) = (AB|11,, ® I? | AB) = trAB(Hm ® 1 |AB) (AB|) =try trB(Hm ®18|AB) (ABl).
Mathematically try(TT,, ® I? |AB) (AB]) = T, trs(|AB) (ABI) = 1.,

with p, = trB(|A B) (A BI) a density operator (positive unit-trace) on H*,

which alone determines the measurement probabilities P(m) = try (HmpA).

= A density operator p, arises to describe a system A
entangled to an unobserved (unaccessed) environment B.

System A entangled to its environment B has no definite pure state of its own,
but an uncertain or mixed state describable by py4.

73179

Noisy preparation 1)
Noise-free preparation of a qubit |) = |0).

Noisy preparation [|¢) = cos(€)|0) + sin(€) |1) )
with probability density pg(€) (assumed even). S 0)

o

N

Density operator p = j; pe(&) ) (wl dé

w

N

= p = (cos”(©)10) 0] + (sin*(©)) [1) (1.

probability density pé(E_,)

o

-04-03-02-01 0 01 02 03 04
angle &

Measurement : Pr{lO) |p} = (0[pl0) = <cosz(§)> ,

Pr{I1) o} = (1lplD) = (sin(©)) .
Similar to the statistical ensemble {((cos?(£)),10)), ((sin’(£)). 1))} .
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Average of an observable

A quantum system in Hy has observable Q € L(H ) vector space of operators on Hy.

e In pure state [i;) : from p.15:
average (Q); = (W;|Qly;) = tr(Qy;) (w;l)  nonlinear in [y;), but linear in |y/;) (] .

e In statistical ensemble {(pj, Izﬁj))} of density operator p = Z Pl il :
J

average (@) = ). py(@); = . pyte(Q) W) = u(Q Y il i) = @),
J J J
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Density operator for the qubit
{0'0 =Dh,oy 0, O'Z} a basis of L(H;) (with Pauli operators from p. 19),
orthogonal for the Hilbert-Schmidt inner product tr(A"B).
1 1
Any p = E(IZ + 170y + 1oy + rzo'z) = E(IZ +7- o_").
= tr(p) = 1.

— — ¥k — gk
p=p = r.=r, ry=r

Ve T = I, = Iy, Iy, 1; real.

1
Eigenvalues A, = 5(1 = [I7]l) > 0 = |7l < 1.

I7]| = 1 for pure states,
||I7]] <1 for mixed states.

7 = [ry, 1y, r;]7 Bloch vector for p,
in Bloch ball of R3.
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Observables of the qubit

Any operator on H, has general form A = ayl, +d - &,
with determinant det(A) = aj — @*, two eigenvalues ag + Va2,

and two projectors on the two eigenstates |+d ) (+d| = E(Iz +d- &/ Vﬁ’z).

For A = Q an observable, Q Hermitian requires ap € R and @ = [a,, ay,a.]" € R®.

1 =2
Probabilities Pr{|l=d)} = (xd|p|+a) = tr(|=d) (| p) = 5(1 + ?ﬁ)
a

1
when measuring a qubit in state p = E(Ig +7- 5'). (= ap has no effect on Pr{|+d )} ).

An important observable measurable on the qubitis Q = d- & with ||d@]| = 1,
known as a spin measurement in the direction @ of IR?,

1
yielding as possible outcomes the two eigenvalues +||@ || = 1, with Pr{+1} = —(1 + 7 3).

Lemma : For any 7 and @ in R>, one has : (7-@)(@-&) = (Fa)L +i(Fxa)- .
A consequence : A’ = qjlp + @ - & = AA’ = (apaj + dd ) + (apd + apd +id x d’)- & .
77179

Generalized measurement of a state ) € Hy

e Standard von Neumann projective measurement : Defined by

a set of N orthogonal projectors I1,, = |n) (n| € L(H ), satisfying Zle HZH,, =1y,

with N outcomes of probability P(n) = ||I1, |¢//>||2 = W, l) = tr(ly) (I T, )
M) _ Tu) _

| P

Moreover YN, P(n) = 1,V |y) &= YN I}, = Iy.

n=1

and post-measurement state |¢} ") =

. o TLpIl,
For a mixed state p € £(Hy) : probability P(n) = tr(pIT}T,) and ph™" = % = |n) (nl .
n
e Generalized measurement : Defined by
a set of M measurement operators M,, € L(H ) satisfying Z,IZI:] Mj,,Mm =1y,

with M outcomes of probability P(m) = ||M,, |¢p)||2 = WIMLM,, Iy = tr(h/’) Wl Mjan)a
M. ) _ Malg)
M )| PGm)

Moreover Y™ . P(m) = 1,Y|y) = Y™ MM, = Iy.

m=1 m=1

and post-measurement state |¢h"') =

; « MuoM)
For a mixed state p € L(H ) : probability P(m) = tr(pM,I” Mm) and PP = P
o 78/79

Justification for the generalized measurement
State |yv) € Hy coupled to an auxiliary M-dimensional space H, by

U M
1) ® leg) ———— Ul) @ leg) = > My g} ®Im) ,
m=1

M

o, an orthonormal basis of H),.

with arbitrary state |eg) € Hy and {|m)}

Operator U from HyQH), onto Hy®H), is a valid unitary, as it conserves inner product :

M M M
(Ul @ leo),Ulpa)y ®1eo) = D > WMy My lra) Gmlm'y = il " MMy ) = Wrilua) -
m=1

m=1m'=1

Nothing is done in Hy, while in H,, a standard VN projective measurement
by M projectors Iy ® |m) (m| on the pre-measurement state U [/) ® ey) ,

yields M,, [) ® |m) of squared norm ||M,, |¢) ® |m>”2 = WM, M, ) = P(m) ,
|

P(m)

and post-measurement state ® |m) separable between Hy and H)y,.

The standard VN projective measurement in Hy, with M outcomes, realizes the
generalized measurement in )y (thanks to the entanglement by U).
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