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Information quantique,

calcul quantique :

Une introduction pour le traitement du signal.

François CHAPEAU-BLONDEAU

LARIS, Université d’Angers, France.

“I believe that science is not simply a matter of exploring new horizons. One must also make the new

knowledge readily available, and we have in this work a beautiful example of such a pedagogical effort.”

Claude Cohen-Tannoudji, in foreword to the book “Introduction to Quantum Optics”

by G. Grynberg, A. Aspect, C. Fabre ; Cambridge University Press 2010.
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A definition (at large)

To exploit quantum properties and phenomena

for information processing and computation.

Motivations for the quantic

for information and computation :

1) When using elementary systems (photons, electrons, atoms, ions,

nanodevices, . . . ).

2) To benefit from purely quantum effects (parallelism, entanglement, . . . ).

3) Recent field of research, rich of large potentialities (science & technology).
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Some basic textbooks

M. Nielsen & I. Chuang E. Desurvire M. Wilde

2000, 676 pages 2009, 691 pages 2017, 757 pages

arXiv:1106.1445v8 [quant-ph] M. Wilde, “From classical to quantum Shannon theory”, 774 pages.
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Quantum system

Represented by a state vector |ψ〉 (1) State

in a complex Hilbert spaceH ,

with unit norm 〈ψ|ψ〉 = ‖ψ‖2 = 1.

In dimension 2 : the qubit (photon, electron, atom, . . . )

State |ψ〉 = α |0〉 + β |1〉
in some orthonormal basis {|0〉 , |1〉} ofH2,

with complex coordinates α, β ∈  

such that |α|2 + |β|2 = 〈ψ|ψ〉 = ‖ψ‖2 = 1. |0〉

|1〉

|ψ〉

α

β

|ψ〉 =
[
α

β

]
, |ψ〉† = 〈ψ| = [α∗, β∗] =⇒ 〈ψ|ψ〉 = ‖ψ‖2 = |α|2 + |β|2 scalar.

|ψ〉 〈ψ| =
[
α

β

]
[α∗, β∗] =

[
αα∗ αβ∗

α∗β ββ∗

]
= Πψ orthogonal projector on |ψ〉.
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Measurement of the qubit
(2) Measurement

When a qubit in state |ψ〉 = α |0〉 + β |1〉
is measured in the orthonormal basis {|0〉 , |1〉},

=⇒ only 2 possible outcomes (Born rule) :

state |0〉 with probability |α|2 = | 〈0|ψ〉 |2 = 〈ψ|0〉〈0|ψ〉 = 〈ψ|Π0|ψ〉, or

state |1〉 with probability |β|2 = | 〈1|ψ〉 |2 = 〈ψ|1〉〈1|ψ〉 = 〈ψ|Π1|ψ〉.

Quantum measurement : usually :

• a probabilistic process,

• as a destructive projection of the state |ψ〉 in an orthonormal basis,

• with statistics evaluable over repeated experiments with same preparation |ψ〉.
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Hadamard basis

Another orthonormal basis ofH2
{
|+〉 = 1

√
2

(
|0〉 + |1〉

)
; |−〉 = 1

√
2

(
|0〉 − |1〉

) }
.

⇐⇒ Computational orthonormal basis
{
|0〉 = 1

√
2

(
|+〉 + |−〉

)
; |1〉 = 1

√
2

(
|+〉 − |−〉

) }
.

|0〉

|1〉

|+〉

|−〉

π/4
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Experiments

Stern-Gerlach apparatus for particles with two states of spin (electron, atom).

Two states of polarization of a photon :

(Nicol prism, Glan-Thompson,

polarizing beam splitter, . . . )

8/79

Bloch sphere representation of the qubit

Qubit in state

|ψ〉 = α |0〉 + β |1〉 with |α|2 + |β|2 = 1.

⇐⇒ |ψ〉 = cos(θ/2) |0〉 + eiϕ sin(θ/2) |1〉

with θ ∈ [0, π] ,

ϕ ∈ [0, 2π[ .

Two states ⊥ inH2 are antipodal on sphere.

As a quantum object,

the qubit has access to infinitely many configurations

via its two continuous degrees of freedom (θ, ϕ),

yet when it is measured it can only be found in one of two states.
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In dimension N (finite) (extensible to infinite dimension)

State |ψ〉 =
N∑

n=1

αn |n〉 , in some orthonormal basis
{
|1〉 , |2〉 , . . . |N〉

}
ofHN ,

with αn ∈  , and

N∑

n=1

|αn|2 = 〈ψ|ψ〉 = 1.

Proba. Pr{|n〉} = |αn|2 in a projective measurement of |ψ〉 in basis
{
|n〉

}
.

Inner product 〈k|ψ〉 =
N∑

n=1

αn

δkn︷︸︸︷
〈k|n〉 = αk coordinate.

S =

N∑

n=1

|n〉 〈n| = IN identity ofHN (closure or completeness relation),

since, ∀ |ψ〉 : S |ψ〉 =
N∑

n=1

|n〉
αn︷︸︸︷
〈n|ψ〉 =

N∑

n=1

αn |n〉 = |ψ〉 =⇒ S = IN .
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Continuous infinite dimensional states

A particle moving in one dimension has a state |ψ〉 =
∫ ∞

−∞
ψ(x) |x〉 dx in an

orthonormal basis {|x〉} of a continuous infinite-dimensional Hilbert spaceH .

The basis states {|x〉} inH satisfy 〈x|x′〉 = δ(x − x′) (orthonormality),∫ ∞

−∞
|x〉 〈x| dx = Id (completeness).

The coordinate  ∋ ψ(x) = 〈x|ψ〉 is the wave function, satisfying

1 =

∫ ∞

−∞
|ψ(x)|2dx =

∫ ∞

−∞
ψ∗(x)ψ(x) dx =

∫ ∞

−∞
〈ψ|x〉 〈x|ψ〉 dx = 〈ψ|ψ〉 ,

with |ψ(x)|2 the probability density for finding the particle at position x,

when measuring the position of the particle.

11/79

Multiple qubits

A system (a word) of L qubits has a state inH⊗L
2

,

a tensor-product vector space with dimension 2L,

and orthonormal basis {|x1x2 · · · xL〉}
~x ∈ {0, 1}L

.

Example L = 2 :

Generally |ψ〉 = α00 |00〉 + α01 |01〉 + α10 |10〉 + α11 |11〉 (2L coord.).

Or, as a special separable state (2L coord.)

|φ〉 =
(
α1 |0〉 + β1 |1〉

)
⊗

(
α2 |0〉 + β2 |1〉

)

= α1α2 |00〉 + α1β2 |01〉 + β1α2 |10〉 + β1β2 |11〉 .

A multipartite state which is not separable is entangled.

An entangled state behaves as a nonlocal whole : with no definite state for A

and B separately, and what is done on one part may influence the other part

instantly, no matter how distant they are.
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Entangled states

• Example of a separable state of two qubits AB :

|AB〉 = |+〉 ⊗ |+〉 = 1
√

2

(
|0〉 + |1〉

)
⊗ 1
√

2

(
|0〉 + |1〉

)
=

1

2

(
|00〉 + |01〉 + |10〉 + |11〉

)
.

When measured in the basis {|0〉 , |1〉}, each qubit A and B can be found in state |0〉 or |1〉
independently with probability 1/2.

Pr{A in |0〉} = Pr{|AB〉 = |00〉} + Pr{|AB〉 = |01〉} = 1/4 + 1/4 = 1/2.

• Example of an entangled state of two qubits AB :

|AB〉 = 1
√

2

(
|00〉 + |11〉

)
. Pr{A in |0〉} = Pr{|AB〉 = |00〉} = 1/2.

When measured in the basis {|0〉 , |1〉}, each qubit A and B can be found in state |0〉 or |1〉
with probability 1/2 (randomly, no predetermination before measurement).

But if A is found in |0〉 necessarily B is found in |0〉,
and if A is found in |1〉 necessarily B is found in |1〉,
no matter how distant the two qubits are before measurement.
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Futhermore, |AB〉 = 1
√

2

(
|00〉 + |11〉

)
=

1
√

2

(
|++〉 + |−−〉

)
.

=⇒ Pr{A in |+〉} = Pr{|AB〉 = |++〉} = 1/2.

When measured in the basis {|+〉 , |−〉}, each qubit A and B can be found in state |+〉 or |−〉
with probability 1/2 (randomly, no predetermination before measurement).

But if A is found in |+〉 necessarily B is found in |+〉,
and if A is found in |−〉 necessarily B is found in |−〉,
no matter how distant the two qubits are before measurement.
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Bell basis

A pair of qubits inH⊗2
2

is a quantum system with dimension 22
= 4,

with original (computational) orthonormal basis
{
|00〉 , |01〉 , |10〉 , |11〉

}
.

Another orthonormal basis ofH⊗2
2

is the Bell basis
{
|β00〉 , |β01〉 , |β10〉 , |β11〉

}
:



|β00〉 =
1
√

2

(
|00〉 + |11〉

)

|β01〉 =
1
√

2

(
|01〉 + |10〉

)

|β10〉 =
1
√

2

(
|00〉 − |11〉

)

|β11〉 =
1
√

2

(
|01〉 − |10〉

)

⇐⇒



|00〉 =
1
√

2

(
|β00〉 + |β10〉

)

|01〉 =
1
√

2

(
|β01〉 + |β11〉

)

|10〉 =
1
√

2

(
|β01〉 − |β11〉

)

|11〉 =
1
√

2

(
|β00〉 − |β10〉

)
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Observables
For a quantum system in spaceHN with dimension N,

a projective measurement is defined by an orthonormal basis {|1〉 , . . . |N〉} ofHN ,

and the N orthogonal projectors |n〉 〈n|, for n = 1 to N.

Also, any Hermitian (i.e. Ω = Ω†) operator Ω onHN ,

has its eigenstates forming an orthonormal basis {|ω1〉 , . . . |ωN〉} ofHN .

Therefore, any Hermitian operator Ω onHN defines a valid measurement,

and has a spectral decomposition Ω =

N∑

n=1

ωn |ωn〉 〈ωn| , with the real eigenvalues ωn.

Also, any physical quantity measurable on a quantum system is represented in quantum

theory by a Hermitian operator (an observable) Ω.

When system in state |ψ〉, measuring observable Ω is equivalent to performing a projec-

tive measurement in eigenbasis {|ωn〉}, with projectors |ωn〉 〈ωn| = Πn, and yields the

eigenvalue ωn with probability Pr{ωn} = | 〈ωn|ψ〉 |2 = 〈ψ|ωn〉 〈ωn |ψ〉 = 〈ψ|Πn|ψ〉.

The average is 〈Ω〉 = ∑
n ωn Pr{ωn} = 〈ψ|Ω|ψ〉 .
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Heisenberg uncertainty relation (1/2)

For two operators A and B : commutator [A,B] = AB − BA ,

anticommutator {A,B} = AB + BA ,

so that AB =
1

2
[A,B] +

1

2
{A,B} .

When A and B Hermitian : [A,B] is antiHermitian and {A,B} is Hermitian,

and for any |ψ〉 then 〈ψ|[A,B]|ψ〉 ∈ i and 〈ψ|{A,B}|ψ〉 ∈  ; then

〈ψ|AB|ψ〉 = 1

2
〈ψ|[A,B]|ψ〉︸        ︷︷        ︸
imaginary (part)

+
1

2
〈ψ|{A,B}|ψ〉︸        ︷︷        ︸

real (part)

=⇒
∣∣∣〈ψ|AB|ψ〉

∣∣∣2 ≥ 1

4

∣∣∣〈ψ|[A,B]|ψ〉
∣∣∣2 ;

and for two vectors A |ψ〉 and B |ψ〉, the Cauchy-Schwarz inequality is∣∣∣〈ψ|AB|ψ〉
∣∣∣2 ≤ 〈ψ|A2|ψ〉 〈ψ|B2|ψ〉 ,

so that 〈ψ|A2|ψ〉 〈ψ|B2|ψ〉 ≥ 1

4

∣∣∣〈ψ|[A,B]|ψ〉
∣∣∣2 .
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Heisenberg uncertainty relation (2/2)

For two observables A and B measured in state |ψ〉 :

the average (scalar) : 〈A〉 = 〈ψ|A|ψ〉 ,

the centered or dispersion operator : Ã = A − 〈A〉 I ,

=⇒
〈
Ã2

〉
= 〈A2〉 − 〈A〉2 scalar variance,

also [Ã, B̃] = [A,B] .

Whence
〈
Ã2

〉 〈
B̃2

〉
≥ 1

4

∣∣∣〈[A,B]〉
∣∣∣2 Heisenberg uncertainty relation ;

or with the scalar dispersions ∆A =
(
〈Ã2〉

)1/2
and ∆B =

(
〈B̃2〉

)1/2
,

then ∆A∆B ≥ 1

2

∣∣∣〈[A,B]〉
∣∣∣ Heisenberg uncertainty relation.
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Computation on a qubit (3) Evolution

Through a unitary (linear) operator U onH2 (a 2 × 2 matrix) : (i.e. U−1
= U† )

normalized vector |ψ〉 ∈ H2 −→ U |ψ〉 normalized vector ∈ H2 .

≡ quantum gate

(always reversible)

input

|ψ〉 U

output

U|ψ〉

Hadamard gate H =
1
√

2

[
1 1

1 −1

]
. Identity gate I2 =

[
1 0

0 1

]
.

H2
= I2 ⇐⇒ H−1

= H = H† Hermitian unitary.

H |0〉 = |+〉 and H |1〉 = |−〉

=⇒ H |x〉 = 1
√

2

(
|0〉 + (−1)x |1〉

)
=

1
√

2

∑

z∈{0,1}
(−1)xz |z〉 , ∀ x ∈ {0, 1}.
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Pauli gates

X = σx =

[
0 1

1 0

]
, Y = σy =

[
0 −i

i 0

]
, Z = σz =

[
1 0

0 −1

]
.

X2
= Y2

= Z2
= I2 . Hermitian unitary. XY = −YX = iZ, ZX = iY, etc.

{
I2,X,Y,Z

}
a basis for operators onH2.

Hadamard gate H =
1
√

2

(
X + Z

)
.

X = σx the inversion or Not quantum gate. X |0〉 = |1〉, X |1〉 = |0〉.

W =
√

X =
√
σx =

1

2

[
1 + i 1 − i

1 − i 1 + i

]
=

1
√

2

[
eiπ/4 e−iπ/4

e−iπ/4 eiπ/4

]
=⇒ W2

= X ,

square-root of Not, (or W†), typically quantum gate (no classical analogue).
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In general, the gates U and eiφU lead to the same measurement statistics

at the output, and are thus physically equivalent, in this respect.

Any single-qubit gate can always be expressed as eiφUξ with

Uξ = exp

(
−i
ξ

2
~n · ~σ

)
= cos

(
ξ

2

)
I2 − i sin

(
ξ

2

)
~n · ~σ ∈ SU(2) ,

with a formal “vector” of 2 × 2 matrices ~σ = [σx, σy, σz],

and ~n = [nx, ny, nz]
⊤ a real unit vector of 3

=⇒ det(Uξ) = 1,

implementing in the Bloch sphere representation

a rotation of the qubit state of an angle ξ around the axis ~n in 3 ∈ SO(3).

Example : W =
√
σx = eiπ/4

[
cos(π/4) I2 − i sin(π/4)σx

]
, (ξ = π/2, ~n = ~ex).
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An optical implementation

A one-qubit phase gate Uξ =


1 0

0 eiξ

 = eiξ/2 exp(−iξσz/2)

optically implemented by a Mach-Zehnder interferometer

phase shift ξ

in

out

|0〉

|1〉

acting on individual photons with two states of polarization |0〉 and |1〉
which are selectively shifted in phase,

to operate as well on any superposition α |0〉 + β |1〉 −→ α |0〉 + βeiξ |1〉 .
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Computation on a pair of qubits

Through a unitary operator U onH⊗2
2

(a 4 × 4 matrix) :

normalized vector |ψ〉 ∈ H⊗2
2
−→ U |ψ〉 normalized vector ∈ H⊗2

2
.

≡ quantum gate

(always reversible)

input

|ψ〉 U

output

U|ψ〉

Completely defined for instance by the transformation of the four state vectors

of the computational basis
{
|00〉 , |01〉 , |10〉 , |11〉

}
.

But works equally on any linear superposition of quantum states

=⇒ quantum parallelism.
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• Example : Controlled-Not gate

Via the XOR binary function : a ⊕ b = a when b = 0, or = a when b = 1 ;

invertible a ⊕ x = b⇐⇒ x = a ⊕ b = b ⊕ a.

Used to construct a unitary invertible quantum C-Not gate :

(T target, C control)

|CT 〉

T

C

|C,C ⊕ T 〉

C ⊕ T

C

U =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



|CT 〉 −→ |C,C ⊕ T 〉
|00〉 −→ |00〉
|01〉 −→ |01〉
|10〉 −→ |11〉
|11〉 −→ |10〉

(C-Not)2
= I4 ⇐⇒ (C-Not)−1

= C-Not = (C-Not)† Hermitian unitary.
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Computation on a system of L qubits

Through a unitary operator U onH⊗L
2

(a 2L × 2L matrix) :

normalized vector |ψ〉 ∈ H⊗L
2
−→ U |ψ〉 normalized vector ∈ H⊗L

2
.

≡ quantum gate : L input qubits
U−−−−−−−→ L output qubits.

Completely defined for instance by the transformation of the 2L state vectors

of the computational basis ;

but works equally on any linear superposition of them (parallelism).

Universal set of gates :

Any L-qubit quantum gate or circuit U can always be obtained

from two-qubit C-Not gates and single-qubit gates.

And in principle this ensures experimental realizability of any unitary U.

This provides a foundation for quantum computation.
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Continuous-time evolution of a quantum system

By empirical postulation Schrödinger equation (for isolated systems) :

d

dt
|ψ〉 = − i

~
H |ψ〉 =⇒ |ψ(t2)〉 = exp

(
− i

~

∫ t2

t1

Hdt

)

︸                ︷︷                ︸
unitary U(t2, t1)

|ψ(t1)〉 = U(t2, t1) |ψ(t1)〉

Hermitian operator Hamiltonian H, or energy operator.

Conversely, postulating for |ψ〉 a linear unitary evolution U(t2, t1)

between any two times t1 and t2, especially |ψ(t + dt)〉 = U(t + dt, t) |ψ(t)〉 ,
recovers the Schrödinger equation.
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Summary (so far) : Foundation on 3 general postulates or principles :

• State : Unit-norm vector |ψ〉 = ∑N
n=1 αn |n〉 ∈ HN complex Hilbert space.

Realizable with L two-dimensional qubits, with 2L ≥ N.

Multipartite states in tensor-product space =⇒ quantum entanglement.

•Measurement : Random and destructive, inHN via

a set of M orthogonal projectors Πm = Π
†
mΠm, satisfying

∑M
m=1Πm = IN ,

with M outcomes of probability P(m) =
∥∥∥Πm |ψ〉

∥∥∥2
= 〈ψ|Πm|ψ〉 ,

and post-measurement state |ψpost〉 =
Πm |ψ〉∥∥∥Πm |ψ〉

∥∥∥
.

• Evolution : Linear unitary : |ψ〉 U−−−−−→ U |ψ〉
Realizable from one-qubit gates and the two-qubit C-Not gate.
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In particular :

• State : |ψ〉 =
N∑

n=1

αn |n〉 =⇒ |ψ〉 =
∫ ∞

−∞
ψ(x) |x〉 dx continuously infinite dimension. (p. 10)

•Measurement of |AB〉 = 1
√

2

(
|00〉 + |11〉

)
=

1
√

2

(
|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉

)
∈ H2 ⊗H2 (p. 12)

with



Π1 = |00〉 〈00| = |0〉 〈0| ⊗ |0〉 〈0|
Π2 = |01〉 〈01| = |0〉 〈0| ⊗ |1〉 〈1|
Π3 = |10〉 〈10| = |1〉 〈1| ⊗ |0〉 〈0|
Π4 = |11〉 〈11| = |1〉 〈1| ⊗ |1〉 〈1|

=⇒
4∑

m=1

Πm = I4 = I2 ⊗ I2 ,

or with


Π
′
1
= |0〉 〈0| ⊗ I2

Π
′
2
= |1〉 〈1| ⊗ I2

=⇒
2∑

m=1

Π
′
m = I2 ⊗ I2 = I4 .

• Evolution : |ψ〉 U−−−−→ U |ψ〉 ⇐⇒ d

dt
|ψ〉 = − i

~
H |ψ〉 =⇒ |ψ(t2)〉 = U(t2, t1) |ψ(t1)〉 , (p. 25)

with U(t2, t1) = exp

(
− i

~

∫ t2

t1

Hdt

)
. Trivial H = H0Id =⇒ |ψ(t2)〉 = exp

(
−i

H0

~

(
t2 − t1

))
|ψ(t1)〉 .
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No cloning theorem (1982)

|ψ〉

|∅〉
U ?

|ψ〉

|ψ〉

¿ Possibility of a circuit (a unitary U) that would take any state |ψ〉, associated with

an auxiliary register |∅〉, to transform the input |ψ〉 |∅〉 into the cloned output |ψ〉 |ψ〉 ?

|ψ1〉 |∅〉
U−−−−−→ U(|ψ1〉 |∅〉) = |ψ1〉 |ψ1〉 (would be).

|ψ2〉 |∅〉
U−−−−−→ U(|ψ2〉 |∅〉) = |ψ2〉 |ψ2〉 (would be).

Linear superposition |ψ〉 = α1 |ψ1〉 + α2 |ψ2〉

|ψ〉 |∅〉 U−−−−−→ U(|ψ〉 |∅〉) = U
(
α1 |ψ1〉 |∅〉 + α2 |ψ2〉 |∅〉

)

= α1 |ψ1〉 |ψ1〉 + α2 |ψ2〉 |ψ2〉 since U linear.

But |ψ〉 |ψ〉 = |ψ〉 ⊗ |ψ〉 =
(
α1 |ψ1〉 + α2 |ψ2〉

)(
α1 |ψ1〉 + α2 |ψ2〉

)

= α2
1
|ψ1〉 |ψ1〉 + α1α2 |ψ1〉 |ψ2〉 + α1α2 |ψ2〉 |ψ1〉 + α2

2
|ψ2〉 |ψ2〉

, U(|ψ〉 |∅〉) in general. =⇒ No cloning U possible.
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Quantum parallelism

For a system of L qubits,

a quantum gate or circuit is any unitary operator U fromH⊗L
2

ontoH⊗L
2

.

The quantum gate U is completely defined

by its action on the 2L basis states ofH⊗L
2

:
{
|~x 〉 , ~x ∈ {0, 1}L

}
,

just like a classical gate.

Yet, the quantum gate U can be operated

on any linear superposition of the basis states
{
|~x 〉 , ~x ∈ {0, 1}L

}
.

This is quantum parallelism, with no classical analogue.

log2(10) ≈ 3.32 =⇒ log2

(
1015

)
≈ 49.83⇐⇒ 1015 ≈ 250

Donc 1000 Tbits sont stockables dans un registre de 50 qubits !
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Parallel evaluation of a function (1/4)

A classical Boolean function f (·) from L bits to 1 bit

~x ∈ {0, 1}L −−−−−→ f (~x ) ∈ {0, 1}.

Used to construct a unitary operator U f as an invertible f -controlled gate :

Uf

~x ~x

y y ⊕ f (~x)

with binary output y ⊕ f (~x ) = f (~x ) when y = 0, or = f (~x ) when y = 1,

(invertible as [y ⊕ f (~x )] ⊕ f (~x ) = y ⊕ f (~x ) ⊕ f (~x ) = y ⊕ 0 = y ).
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Parallel evaluation of a function (2/4)

Toffoli gate or Controlled-Controlled-Not gate or CC-Not quantum gate :

|a〉

|b〉

|c〉

|a⊕ bc〉

|b〉

|c〉

(CC-Not)2
= I8 ⇐⇒ (CC-Not)−1

= CC-Not = (CC-Not)† Hermitian unitary.

Any classical Boolean function f (~x) (invertible or non) on L bits

can always be implemented (simulated) by means of 3-qubit Toffoli gates.

|1〉

|x〉

|y〉

|x↑y〉

|x〉

|y〉

NAND

|1〉

|x〉

|1〉

|x〉

|x〉

|1〉

NOT

|0〉

|x〉

|y〉

|x∧y〉

|x〉

|y〉

AND
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Parallel evaluation of a function (3/4)

Uf

~x ~x

y y ⊕ f (~x)

For every basis state |~x 〉, with ~x ∈ {0, 1}L :

|~x 〉 |y = 0〉
U f

−−−−−−−−−−−−→ |~x 〉 | f (~x)〉

|~x 〉 |y = 1〉 −−−−−−−−−−−−→ |~x 〉
∣∣∣∣ f (~x)

〉

|~x 〉 |+〉 −−−−−−−−−−−−→ |~x 〉 1
√

2

[
| f (~x)〉 +

∣∣∣∣ f (~x)
〉]
= |~x 〉 |+〉

|~x 〉 |−〉 −−−−−−−−−−−−→ |~x 〉 1
√

2

[
| f (~x)〉 −

∣∣∣∣ f (~x)
〉]
= |~x 〉 |−〉 (−1) f (~x)
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Parallel evaluation of a function (4/4)

|+〉⊗L

|y〉

Uf

~x ~x

y y ⊕ f (~x)

|+〉⊗L
=

(
1
√

2

)L ∑

~x∈{0,1}L
|~x 〉 superposition of all basis states,

|+〉⊗L ⊗ |0〉
U f

−−−−−−−→
(

1
√

2

)L ∑

~x∈{0,1}L
|~x 〉 | f (~x)〉 superposition of all values f (~x).

|+〉⊗L ⊗ |−〉
U f

−−−−−−−→
(

1
√

2

)L ∑

~x∈{0,1}L
|~x 〉 |−〉 (−1) f (~x)

¿ How to extract, to measure, useful informations from superpositions ?
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Deutsch-Jozsa algorithm (1992) : Parallel test of a function (1/5)

A classical Boolean function f (·)
∣∣∣∣∣
{0, 1}L −→ {0, 1}

2L values −→ 2 values,

can be constant (all inputs into 0 or 1) or balanced (equal numbers of 0, 1 in output).

Classically : Between 2 and
2L

2
+ 1 evaluations of f (·) to decide.

Quantumly : One evaluation of f (·) is enough (on a suitable superposition).

Lemma 1 : H |x〉 = 1
√

2

(
|0〉 + (−1)x |1〉

)
=

1
√

2

∑

z∈{0,1}
(−1)xz |z〉 , ∀ x ∈ {0, 1}

=⇒ H⊗L |~x 〉 = H |x1〉 ⊗ · · · ⊗ H |xL〉 =


1
√

2


L ∑

~z∈{0,1}L
(−1)~x~z |~z 〉 , ∀ ~x ∈ {0, 1}L,

with scalar product ~x~z = x1z1 + · · · + xLzL modulo 2. (quantum Hadamard transfo.)
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Deutsch-Jozsa algorithm (2/5)

|+〉⊗L

|−〉

H⊗L

Uf

~x ~x

y y ⊕ f (~x)

|ψ1〉 |ψ2〉 |ψ3〉

Input state |ψ1〉 = |+〉⊗L |−〉 =
(

1
√

2

)L ∑

~x∈{0,1}L
|~x 〉 |−〉

Internal state |ψ2〉 =
(

1
√

2

)L ∑

~x∈{0,1}L
|~x 〉 |−〉 (−1) f (~x)
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Deutsch-Jozsa algorithm (3/5)

Output state |ψ3〉 =
(
H⊗L ⊗ I2

)
|ψ2〉

=

(
1
√

2

)L ∑

~x∈{0,1}L
H⊗L |~x 〉 |−〉 (−1) f (~x)

=

(
1

2

)L ∑

~x∈{0,1}L

∑

~z∈{0,1}L
(−1)~x~z |~z 〉 |−〉 (−1) f (~x) by Lemma 1,

or |ψ3〉 = |ψ〉 |−〉 , with |ψ〉 =
(

1

2

)L ∑

~z∈{0,1}L
w(~z ) |~z 〉

and the scalar weight w(~z ) =
∑

~x∈{0,1}L
(−1) f (~x)⊕ ~x~z
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Deutsch-Jozsa algorithm (4/5)

So |ψ〉 = 1

2L

∑

~z∈{0,1}L
w(~z ) |~z 〉 with w(~z ) =

∑

~x∈{0,1}L
(−1) f (~x)⊕ ~x~z .

For |~z 〉 = |~0 〉 = |0〉⊗L then w(~z = ~0 ) =
∑

~x∈{0,1}L
(−1) f (~x) .

•When f (·) constant : w(~z = ~0 ) = 2L(−1) f (~0)
= ±2L

=⇒ in |ψ〉 the amplitude of |~0 〉 is

±1, and since |ψ〉 is with unit norm =⇒ |ψ〉 = ± |~0 〉, and all other w(~z , ~0 )=0.

=⇒When |ψ〉 is measured, L states |0〉 are found.

•When f (·) balanced : w(~z = ~0 ) = 0 =⇒ |ψ〉 is not or does not contain state |~0 〉.
=⇒When |ψ〉 is measured, at least one state |1〉 is found.

−→ Illustrates quantum ressources of parallelism, coherent superposition, interference.

(When f (·) is neither constant nor balanced, |ψ〉 contains a little bit of |~0 〉.)
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Deutsch-Jozsa algorithm (5/5)

[1] D. Deutsch; “Quantum theory, the Church-Turing principle and the universal quantum

computer”; Proceedings of the Royal Society of London A 400 (1985) 97–117.

The case L = 2 qubits.

[2] D. Deutsch, R. Jozsa; “Rapid solution of problems by quantum computation”; Proceedings of

the Royal Society of London A 439 (1992) 553–558.

Extension to arbitrary L ≥ 2 qubits.

[3] E. Bernstein, U. Vazirani; “Quantum complexity theory”; SIAM Journal on Computing 26

(1997) 1411–1473.

Extension to f (~x) = ~a~x or f (~x) = ~a~x ⊕ b, to find binary L-word ~a −→ by producing output

|ψ〉 = |~a 〉.

[4] R. Cleve, A. Ekert, C. Macchiavello, M. Mosca; “Quantum algorithms revisited”; Proceedings

of the Royal Society of London A 454 (1998) 339–354.
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Superdense coding (Bennett 1992) : exploiting entanglement

Alice and Bob share a qubit pair in entangled state |AB〉 = 1
√

2

(
|00〉 + |11〉

)
= |β00〉.

Alice chooses two classical bits, used to encode by applying to her qubit A

one of {I2,X, iY,Z}, delivering the qubit A′ sent to Bob.

Alice Bob
2 cbits I2

X

iY

Z

Decoder
2 cbits1 qbit A′

2 entangled qubits|AB〉

A
B

I2 ⊗ I2 |AB〉 = |β00〉
X ⊗ I2 |AB〉 = |β01〉
Z ⊗ I2 |AB〉 = |β10〉
iY ⊗ I2 |AB〉 = |β11〉

Bob receives this qubit A′. For decoding, Bob measures |A′B〉 in the Bell basis{
|β00〉 , |β01〉 , |β10〉 , |β11〉

}
, from which he recovers the two classical bits.
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Teleportation (Bennett 1993) : of an arbitrary qubit state (1/3)

Qubit Q in an arbitrary state |ψQ〉 = α0 |0〉 + α1 |1〉.
Alice and Bob share a qubit pair in entangled state |AB〉 = 1

√
2

(
|00〉 + |11〉

)
= |β00〉.

Alice Bob|ψQ〉
Measurement
in Bell basis
{|βxy〉}

2 cbits

y x

Xy Zx

|ψQ〉
2 entangled qubits|AB〉

A

B

|ψ1〉 |ψ2〉

Alice measures the pair of qubits QA in the Bell basis (so |ψQ〉 is locally destroyed),

and the two resulting cbits x, y are sent to Bob.

Bob on his qubit B applies the gates Xy and Zx which reconstructs |ψQ〉.
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Teleportation (2/3)

|ψ1〉 = |ψQ〉 |β00〉 =
1
√

2

[
α0 |0〉

(
|00〉 + |11〉

)
+ α1 |1〉

(
|00〉 + |11〉

)]

=
1
√

2

[
α0 |000〉 + α0 |011〉 + α1 |100〉 + α1 |111〉

]
,

factorizable as |ψ1〉 =
1

2

[
1
√

2

(
|00〉 + |11〉

)(
α0 |0〉 + α1 |1〉

)
+

1
√

2

(
|01〉 + |10〉

)(
α0 |1〉 + α1 |0〉

)
+

1
√

2

(
|00〉 − |11〉

)(
α0 |0〉 − α1 |1〉

)
+

1
√

2

(
|01〉 − |10〉

)(
α0 |1〉 − α1 |0〉

)]
,
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Teleportation (3/3)

|ψ1〉 =
1

2

[
|β00〉

(
α0 |0〉 + α1 |1〉

)
+ |β01〉

(
α0 |1〉 + α1 |0〉

)
+

|β10〉
(
α0 |0〉 − α1 |1〉

)
+ |β11〉

(
α0 |1〉 − α1 |0〉

)]
.

The first two qubits QA measured in Bell basis {|βxy〉} yield the two cbits xy,

used to transform the third qubit B by Xy then Zx, which reconstructs |ψQ〉.

When QA is measured in |β00〉 then B is in α0 |0〉 + α1 |1〉
I2−−−→ · I2−−−→ |ψQ〉

When QA is measured in |β01〉 then B is in α0 |1〉 + α1 |0〉
X−−−→ · I2−−−→ |ψQ〉

When QA is measured in |β10〉 then B is in α0 |0〉 − α1 |1〉
I2−−−→ · Z−−−→ |ψQ〉

When QA is measured in |β11〉 then B is in α0 |1〉 − α1 |0〉
X−−−→ · Z−−−→ |ψQ〉.
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Princeps references on superdense coding . . .

[1] C. H. Bennett, S. J. Wiesner; “Communication via one- and two-particle operators on

Einstein-Podolsky-Rosen states”; Physical Review Letters 69 (1992) 2881–2884.

[2] K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger; “Dense coding in experimental

quantum communication”; Physical Review Letters 76 (1996) 4656–4659.

. . . and teleportation

[3] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters; “Teleporting an

unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels”;

Physical Review Letters 70 (1993) 1895–1899.

[4] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger;

“Experimental quantum teleportation”; Nature 390 (1997) 575–579.
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Grover quantum search algorithm (1/4) Phys. Rev. Let. 79 (1997) 325.

• Iterative algorithm that finds an item out of N in an unsorted dataset,

with O(
√

N) queries instead of O(N) classically.

• A dataset contains N items numbered as n ∈ {1, 2, · · ·N}.
One wants to find one (only one here, but extensible) item n = n0

satisfying some criterion or property,

indicated by the test function or oracle f (·) responding as f (n) = δnn0 .

With an unsorted dataset, finding n0 requires

classically O(N) interrogations of the oracle or evaluations of f (·),
while O(

√
N) are enough quantumly.
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Grover quantum search algorithm (2/4)

• Quantumly, an N-dimensional quantum system inHN with orthonormal basis {|1〉 , · · · , |N〉},
where the N basis states |n〉, for n ∈ {1, 2, · · ·N}, represent the N items of the dataset.

From a quantum implementation of the test function f (·), it is possible to obtain a quantum oracle

as the unitary operator U0 realizing U0 |n〉 = (−1) f (n) |n〉 for any n ∈ {1, 2, · · ·N}.
Thus, the quantum oracle returns its response by reversing the sign of |n〉 when n is the solution n0,

while no change of sign occurs to |n〉 when n is not the solution.

Equivalently U0 = IN − 2 |n0〉〈n0 | , although |n0〉 need not be known, but only f (·) evaluable.

The quantum oracle is able to respond to a superposition of input query states |n〉 in a single

interrogation, for instance to a superposition like |ψ〉 = N−1/2 ∑N
n=1
|n〉 .

Upon measuring |ψ〉, any specific item |n1〉 would be obtained as measurement outcome with the

probability |〈n1 |ψ〉 |2 = 1/N , since 〈n1 |ψ〉 = 1/
√

N for any n1 ∈ {1, 2, · · ·N}.

Instead, as measurement outcome, we would like to obtain the solution |n0〉 with probability 1.
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Grover quantum search algorithm (3/4)

• Let |n⊥〉 =
1

√
N − 1

N∑

n,n0

|n〉 normalized state ⊥ |n0〉

=⇒ |ψ〉 = N−1/2 ∑N
n=1 |n〉 is in plane

(
|n0〉 , |n⊥〉

)
.

•With the oracle U0 = IN − 2 |n0〉〈n0 | =⇒ U0 |n⊥〉 = |n⊥〉 and U0 |n0〉 = − |n0〉.
So in plane

(
|n0〉 , |n⊥〉

)
, the operator U0 performs a reflection about |n⊥〉.

• Let |ψ⊥〉 normalized state ⊥ |ψ〉 in plane
(
|n0〉 , |n⊥〉

)
.

• Define the unitary operator Uψ = 2 |ψ〉 〈ψ| − IN =⇒ Uψ |ψ〉 = |ψ〉 and Uψ |ψ⊥〉 = − |ψ⊥〉.
So in plane

(
|n0〉 , |n⊥〉

)
, the operator Uψ performs a reflection about |ψ〉.

• In plane
(
|n0〉 , |n⊥〉

)
, the composition of two reflections is a rotation UψU0 = G (Grover

amplification operator). It verifies G |n0〉 = UψU0 |n0〉 = −Uψ |n0〉 = |n0〉 −
2
√

N
|ψ〉.

The rotation angle θ between |n0〉 and G |n0〉, via the scalar product of |n0〉 and G |n0〉, verifies

cos(θ) = 〈n0 |G|n0〉 = 1 − 2

N
≈ 1 − θ

2

2
=⇒ θ ≈ 2

√
N

at N ≫ 1.

G|ψ〉

|ψ〉

|n⊥〉

|n0〉

U0 |ψ〉

θ

θ/2

θ/2
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Grover quantum search algorithm (4/4)

• In plane
(
|n0〉 , |n⊥〉

)
, the rotation G = UψU0 is with angle θ ≈ 2

√
N

.

• G |ψ〉 = UψU0 |ψ〉 = Uψ

(
|ψ〉 − 2

√
N
|n0〉

)
=

(
1 − 4

N

)
|ψ〉 + 2

√
N
|n0〉.

So after rotation by θ the rotated state G |ψ〉 is closer to |n0〉.

• G |ψ〉 remains in plane
(
|n0〉 , |n⊥〉

)
, and any state in plane

(
|n0〉 , |n⊥〉

)
by G is rotated by θ.

So G2 |ψ〉 rotates |ψ〉 by 2θ toward |n0〉, and Gk |ψ〉 rotates |ψ〉 by kθ toward |n0〉.

• The angle Θ of |ψ〉 and |n0〉 is such that cos(Θ) = 〈n0 |ψ〉 = 1/
√

N =⇒ Θ = acos
(
1/
√

N
)
.

• So K =
Θ

θ
≈
√

N

2
acos

(
1/
√

N
)

iterations of G rotate |ψ〉 onto |n0〉.

At most Θ =
π

2
(when N ≫ 1) =⇒ at most K ≈ π

4

√
N .

• So when the state GK |ψ〉 ≈ |n0〉 is measured, the probability is almost 1 to obtain |n0〉 .
=⇒ The searched item |n0〉 is found with O(

√
N) interrogations instead of O(N) classically.

G|ψ〉

|ψ〉

|n⊥〉

|n0〉

U0 |ψ〉

θ

θ/2

θ/2
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Other quantum algorithms

• Shor factoring algorithm (1994) :

Finds the prime factors of an integer with a complexity polynomial in its size,

instead of exponential classically.

15 = 3 × 5, with spin-1/2 nuclei (Vandersypen et al., Nature 2001).

21 = 3 × 7, with photons (Martı́n-López et al., Nature Photonics 2012).

35 = 5 × 7, on IBM Q processor (Amico et al., Phys. Rev. A 2019).

• https://quantumalgorithmzoo.org

“A comprehensive catalog of quantum algorithms . . . ”
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Quantum cryptography

• The problem of cryptography

Message X, a string of bits.

Cryptographic key K, a completely random string of bits with proba. 1/2 and 1/2.

The cryptogram or encrypted message C(X,K) = X ⊕ K (encrypted string of bits).

This is Vernam cipher or one-time pad,

with provably perfect security, since mutual information I(C; X) = H(X) − H(X|C) = 0.

Problem : establishing a secret (private) key

between emitter (Alice) and receiver (Bob).

With quantum signals,

any measurement by an eavesdropper (Eve) disturbs the system,

and hence reveals the eavesdropping, and also certifies perfect security conditions.
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• BB84 protocol (Bennett & Brassard 1984)

q Alice has a string of 4N random bits. She encodes with
a qubit in a basis state either from {|0〉 , |1〉} or {|+〉 , |−〉}
randomly chosen for each bit.

q Then Bob chooses to measure each received qubit either in
basis {|0〉 , |1〉} or {|+〉 , |−〉} so as to decode each transmitted bit.

qWhen the whole string of 4N bits has been transmitted,
Alice and Bob publicly disclose the sequence of their basis choices
to identify where they coincide.

q Alice and Bob keep only the positions where their basis choices coincide,
and they obtain a shared secret key of length approximately 2N.

q If Eve intercepts Alice’s qubit, she cannot make a copy (no-cloning theorem).
She has to measure (and destroy) it, and forward to Bob a qubit in her known measured
state. Roughly half of the time Eve forwards an incorrect state.
From this Bob half of the time decodes an incorrect bit value.

q From their 2N coinciding bits, Alice and Bob classically exchange N bits at random.
In case of eavesdropping, around N/4 of these N test bits will differ.
If all N test bits coincide, then the remaining N bits form the shared secret key.

|0〉

|1〉

|+〉

|−〉

π/4
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• B92 protocol with two nonorthogonal states (Bennett 1992)

q To encode the bit a Alice uses a qubit in state |0〉 if a = 0

and in state |+〉 =
(
|0〉 + |1〉

)
/
√

2 if a = 1.

q Bob, depending on a random bit a′ he generates,
measures each received qubit either in basis {|0〉 , |1〉} if a′ = 0
or in {|+〉 , |−〉} if a′ = 1. From his measurement, Bob obtains the result b = 0 or 1.

q Then Bob publishes his series of b, and agrees with Alice to keep only those pairs
{a, a′} for which b = 1,
this providing the final secret key a for Alice and 1 − a′ = a for Bob.
This is granted because a = a′ =⇒ b = 0 and hence b = 1 =⇒ a , a′ = 1 − a.

q A fraction of this secret key can be publicly exchanged between Alice and Bob
to verify they exactly coincide, since in case of eavesdropping by interception and
resend by Eve, mismatch ensues with probability 1/4.

N. Gisin, et al.; “Quantum cryptography”; Reviews of Modern Physics 74 (2002) 145–195.

|0〉

|+〉

π/4
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• Protocol by broadcast of an entangled qubit pair

qWith an entangled pair, Alice and Bob do not need a quantum channel between them
two, and can exchange only classical information to establish their private secret key.
Each one of Alice an Bob just needs a quantum channel from a common server
dispatching entangled qubit pairs prepared in one stereotyped quantum state.

q Alice and Bob share a sequence of entangled qubit pairs all prepared in the same

entangled (Bell) state |AB〉 =
(
|00〉 + |11〉

)
/
√

2 .

q Alice and Bob measure their respective qubit of the pair in the basis {|0〉 , |1〉}, and they
always obtain the same result, either 0 or 1 at random with equal probabilities 1/2.

q To prevent eavesdropping, Alice and Bob can switch independently at random to

measuring in the basis {|+〉 , |−〉}, where one also has |AB〉 =
(
|++〉 + |−−〉

)
/
√

2.

So when Alice and Bob measure in the same basis, they always obtain the same results,
either 0 or 1.

q Then Alice and Bob publicly disclose the sequence of their basis choices.
The positions where the choices coincide provide the shared secret key.

q A fraction of this secret key is extracted to check exact coincidence, since in case of
eavesdropping by interception and resend, mismatch ensues with probability 1/4.
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GdR CNRS IASIS, Groupe de travail |QuantInG〉 Cours 3 du 10 octobre 2024.

Information quantique,

calcul quantique :

Une introduction pour le traitement du signal.

François CHAPEAU-BLONDEAU

LARIS, Université d’Angers, France.

“I believe that science is not simply a matter of exploring new horizons. One must also make the new

knowledge readily available, and we have in this work a beautiful example of such a pedagogical effort.”

Claude Cohen-Tannoudji, in foreword to the book “Introduction to Quantum Optics”

by G. Grynberg, A. Aspect, C. Fabre ; Cambridge University Press 2010.
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Summary of “Cours 2”

• No cloning possible of an arbitrary unknown quantum state |ψ〉 into |ψ〉 |ψ〉.

• Parallel computation : Any (classical) Boolean function from Nin bits into Nout bits

can always be implemented by a quantum circuit (from the Toffoli gate),

and executed in parallel on superposed quantum states.

• Deutsch-Jozsa algorithm (1992) :

classifies Boolean functions from a single parallel evaluation.

• Superdense coding (1992) & teleportation (1993) :

exploit a shared stereotyped entanglement for enhanced communication.

• Grover quantum search algorithm (1997) : searches an unsorted database of N items

with O(
√

N) queries instead of O(N) classically.

• Shor factoring algorithm (1994) : Finds the prime factors of an integer with a

complexity polynomial in its size, instead of exponential classically.

• Quantum cryptography : No-cloning theorem and destructive quantum measurement

to guarantee secret key distribution (BB84 protocol, or distributed entanglement).
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Quantum correlations by entanglement
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Quantum correlations by entanglement (1/5)

For any four random binary variables A1, A2, B1, B2 with values ±1,

Γ = (A1 − A2)B1 − (A1 + A2)B2 = A1B1 − A2B1 − A1B2 − A2B2 = ±2 ,

because since A1, A2 = ±1, either (A1 − A2)B1 = 0 or (A1 + A2)B2 = 0,

and in each case the remaining term is ±2.

So for any probability distribution on (A1, A2, B1, B2), the average

〈Γ〉 =
〈
A1B1 − A2B1 − A1B2 − A2B2

〉
= 〈A1B1〉 − 〈A2B1〉 − 〈A1B2〉 − 〈A2B2〉

necessarily verifies −2 ≤ 〈Γ〉 ≤ 2 . Bell inequalities (1964).

The binary variables at ±1 will be obtained (by Alice and Bob)

from the results when measuring an entangled qubit pair.

[1] A. Einstein, B. Podolsky, N. Rosen ; “Can quantum-mechanical description of physical reality
be considered complete ?”; Physical Review 47, 777–780 (1935).

[2] J. S. Bell ; “On the Einstein–Podolsky–Rosen paradox”; Physics 1, 195–200 (1964).

[3] J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt ; “Proposed experiment to test local

hidden-variable theories”; Physical Review Letters 23, 880–884 (1969).
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Quantum correlations by entanglement (2/5)

Alice or Bob gets results ±1 by measuring qubit observable Ω(θ) = sin(θ)X + cos(θ)Z ,

having eigenvalues ±1, equivalent to a qubit measurement in the eigenbasis{
|λ+(θ)〉 = [cos(θ/2), sin(θ/2)]⊤ , |λ−(θ)〉 = [− sin(θ/2), cos(θ/2)]⊤

}
.

Alice measures at θ = α to obtain A = ±1, and Bob measures at θ = β to obtain B = ±1,

with the joint probabilities P(A = ±1, B = ±1) =
∣∣∣
〈
λ±(α) ⊗ λ±(β) |ψAB

〉∣∣∣2 .

Alice and Bob share a qubit pair AB in the entangled state |ψAB〉 =
1
√

2

(
|01〉 − |10〉

)
.
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Quantum correlations by entanglement (3/5)

=⇒ Joint probabilities

P(A = +1, B = +1) = P(A = −1, B = −1) =
1

4

[
1 − cos(α − β)

]
,

P(A = +1, B = −1) = P(A = −1, B = +1) =
1

4

[
1 + cos(α − β)

]
,

and by summation the marginal probabilities

P(A = +1) = P(A = −1) = P(B = +1) = P(B = −1) =
1

2
,

and the correlation 〈AB〉 = − cos(α − β) ,

or alternatively (from p. 15) : 〈AB〉 = 〈ψAB |Ω(α) ⊗ Ω(β) |ψAB〉 = − cos(α − β) .
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Quantum correlations by entanglement (4/5)

To obtain four binary variables ±1 ,

Alice randomly switches between measuring A1 when θ = α1 or A2 when θ = α2,

Bob randomly switches between measuring B1 when θ = β1 or B2 when θ = β2.

For 〈Γ〉 = 〈A1B1〉 − 〈A2B1〉 − 〈A1B2〉 − 〈A2B2〉 one obtains

〈Γ〉 = − cos(α1 − β1) + cos(α2 − β1) + cos(α1 − β2) + cos(α2 − β2).

The choice α1 = 0, α2 = π/2 and β1 = 3π/4, β2 = π/4 leads to

〈Γ〉 = − cos(3π/4) + cos(π/4) + cos(π/4) + cos(π/4) = 2
√

2 > 2 .

Bell inequalities are violated by quantum correlations !!

Experimentally verified (Aspect et al., Phys. Rev. Let. 1981, 1982.) Nobel 2022

[4] A. Aspect, P. Grangier, G. Roger ; “Experimental test of realistic theories via Bell’s theorem”;

Physical Review Letters 47, 460–463 (1981).
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Quantum correlations by entanglement (5/5)

• Einstein-Podolsky-Rosen : Quantum mechanics might be incomplete (1935).

[1] A. Einstein, B. Podolsky, N. Rosen ; “Can quantum-mechanical description of physical reality

be considered complete ?”; Physical Review 47, 777–780 (1935).

• If hidden variables exist =⇒ Bell inequalities are satisfied (1964).

• A. Aspect experiments : Bell inequalities are violated by Reality (1982).

=⇒ No possibility of hidden-variables theories underneath quantum mechanics.

• Quantities that cannot be simultaneously measured (incompatible)

have no simultaneous physical existence or reality.

• Correlations between variables obtained from measurements of incompatible

quantum quantities on entangled systems, may escape classical constraints.

=⇒ a resource for information processing.

64/79



65/79

GHZ states (1/5) (1989, Greenberger, Horne, Zeilinger) Nobel 2022

3-qubit entangled states.

Three players, each receiving a binary input x j = 0/1, for j = 1, 2, 3,

with four possible input configurations x1x2x3 ∈ {000, 011, 101, 110}.

Each player j responds by a binary output y j(x j) = 0/1,

function only of its own input x j, for j = 1, 2, 3.

Game is won if the players collectively respond according to the input–output matches :

x1x2x3 = 000 −−−−−−−−−−−−−→ y1y2y3 such that y1 ⊕ y2 ⊕ y3 = 0 (conserve parity),

x1x2x3 ∈ {011, 101, 110} −−−→ y1y2y3 such that y1 ⊕ y2 ⊕ y3 = 1 (reverse parity).

To select their responses y j(x j), the players can agree on a collective strategy before,

but not after, they have received their inputs x j.

x1 y1

x2 y2

x3 y3
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GHZ states (2/5)

A strategy winning on all four input configurations

would consist in three binary functions y j(x j) meeting the four constraints :

y1(0) ⊕ y2(0) ⊕ y3(0) = 0

y1(0) ⊕ y2(1) ⊕ y3(1) = 1

y1(1) ⊕ y2(0) ⊕ y3(1) = 1

y1(1) ⊕ y2(1) ⊕ y3(0) = 1

0 ⊕ 0 ⊕ 0 = 1 , by summation of the four constraints,

=⇒ 0 = 1 , so the four constraints are incompatible.

So no (classical) strategy exists that would win on all four input configurations.

Any (classical) strategy is bound to fail on some input configuration(s).

We show a strategy using quantum resources winning on all four input configurations,

(by escaping local realism, y j(0) = 0/1 and y j(1) = 0/1 not existing simultaneously).

x1 y1

x2 y2

x3 y3
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GHZ states (3/5)

Before the game starts, each player receives one qubit from a qubit triplet prepared in the

entangled state (GHZ state)
|ψ〉 =

∣∣∣ψ123

〉
=

1

2

(
|000〉 − |011〉 − |101〉 − |110〉

)
.

And the players agree on the common (prior) strategy :

if x j = 0, player j obtains y j as the outcome of measuring its qubit in basis {|0〉 , |1〉},
if x j = 1, player j obtains y j as the outcome of measuring its qubit in basis {|+〉 , |−〉}.

We prove this is a winning strategy on all four input configurations :

1) When x1x2x3 = 000, the three players measure in {|0〉 , |1〉}
=⇒ y1 ⊕ y2 ⊕ y3 = 0 is matched.
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GHZ states (4/5)

2) When x1x2x3 = 011, only player 1 measures in {|0〉 , |1〉}.

|ψ〉 = 1

2

(
|000〉 − |011〉 − |101〉 − |110〉

)
=

1

2

[
|0〉

(
|00〉 − |11〉

)
− |1〉

(
|01〉 + |10〉

)]
.

Since |0〉 = 1
√

2

(
|+〉 + |−〉

)
, |1〉 = 1

√
2

(
|+〉 − |−〉

)
=⇒

|00〉 − |11〉 = 1

2

[(
|+〉 + |−〉

)(
|+〉 + |−〉

)
−

(
|+〉 − |−〉

)(
|+〉 − |−〉

)]

=
1

2

[(
|++〉 + |+−〉 + |−+〉 + |−−〉

)
−

(
|++〉 − |+−〉 − |−+〉 + |−−〉

)]

= |+−〉 + |−+〉 ;

|01〉 + |10〉 = 1

2

[(
|+〉 + |−〉

)(
|+〉 − |−〉

)
+

(
|+〉 − |−〉

)(
|+〉 + |−〉

)]
= |++〉 − |−−〉 ;

=⇒ |ψ〉 = 1

2

(
|0 + −〉 + |0 − +〉 − |1 + +〉 + |1 − −〉

)
=⇒ y1 ⊕ y2 ⊕ y3 = 1 matched.
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GHZ states (5/5)

3) When x1x2x3 = 101, only player 2 measures in {|0〉 , |1〉}.

|ψ〉 = 1

2

(
|000〉 − |011〉 − |101〉 − |110〉

)
=

1

2

[
|·0·〉

(
|0 · 0〉 − |1 · 1〉

)
− |·1·〉

(
|0 · 1〉 + |1 · 0〉

)]

=
1

2

[
|·0·〉

(
|+ · −〉 + |− · +〉

)
− |·1·〉

(
|+ · +〉 − |− · −〉

)]

=
1

2

(
|+0−〉 + |−0+〉 − |+1+〉 + |−1−〉

)
=⇒ y1 ⊕ y2 ⊕ y3 = 1 matched.

4) When x1x2x3 = 110, only player 3 measures in {|0〉 , |1〉}.

|ψ〉 = 1

2

(
|000〉 − |011〉 − |101〉 − |110〉

)
=

1

2

[(
|00〉 − |11〉

)
|0〉 −

(
|01〉 + |10〉

)
|1〉

]

=
1

2

[(
|+−〉 + |−+〉

)
|0〉 −

(
|++〉 − |−−〉

)
|1〉

]

=
1

2

(
|+ − 0〉 + |− + 0〉 − |+ + 1〉 + |− − 1〉

)
=⇒ y1 ⊕ y2 ⊕ y3 = 1 matched.
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So far,

well defined state vectors (pure state),

unitarily evolved,

to represent closed or isolated quantum systems.

Next to come,

open quantum systems,

interacting with an uncontrolled environment,

inducing uncertainty to the quantum state (mixed state),

and evolving non-unitarily,

under decoherence.
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Density operator (1/3)

Quantum system in (pure) state |ψ j〉 ∈ HN , measured in an orthonormal basis {|n〉}Nn=1 :

=⇒ probability Pr{|n〉 |ψ j〉} = | 〈n|ψ j〉 |2 = 〈n|ψ j〉 〈ψ j|n〉 . (nonlinear in the state |ψ j〉)

J possible states |ψ j〉 with probabilities p j ,
(

with

J∑

j=1

p j = 1
)

:

=⇒ Pr{|n〉} =
J∑

j=1

p j Pr{|n〉 |ψ j〉} = 〈n|
( J∑

j=1

p j |ψ j〉 〈ψ j|
)
|n〉 = 〈n| ρ |n〉 ,

with density operator ρ =

J∑

j=1

p j |ψ j〉 〈ψ j| ∈ L(HN) .

and Pr{|n〉} = 〈n| ρ |n〉 = tr(ρ |n〉 〈n|) = tr(ρΠn) . (linear in the state ρ)

The quantum system is in a mixed state, corresponding to the statistical ensemble{(
p j, |ψ j〉

)}
, described by the density operator ρ.

Lemma : For any operator A with trace tr(A) =
∑

n 〈n|A |n〉, one has

tr(A |ψ〉 〈φ|) =∑
n 〈n|A |ψ〉 〈φ|n〉 =

∑
n 〈φ|n〉 〈n|A |ψ〉 = 〈φ|

(∑
n |n〉 〈n|

)
A |ψ〉 = 〈φ|A |ψ〉 .
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Density operator (2/3)

The statistical ensemble of states
{(

p j, |ψ j〉
)}

has density operator ρ =
∑

j

p j |ψ j〉 〈ψ j|
=⇒ ρ = ρ† Hermitian ;

∀ |ψ〉 , 〈ψ|ρ|ψ〉 = ∑
j p j| 〈ψ|ψ j〉 |2 ≥ 0 =⇒ ρ ≥ 0 positive ;

trace tr(ρ) =
∑

j p j tr(|ψ j〉 〈ψ j|) =
∑

j p j = 1.

OnHN , eigen decomposition ρ =

N∑

n=1

λn |λn〉 〈λn| , with

eigenvalues {λn} a probability distribution,

eigenstates {|λn〉} an orthonormal basis ofHN .

Purity tr(ρ2) =

N∑

n=1

λ2
n = 1 for a pure state, and tr(ρ2) < 1 for a mixed state.

A valid density operator onHN ≡ any positive operator ρ with unit trace,

provides a general representation for the state of a quantum system inHN .

State evolution |ψ j〉 → U |ψ j〉 =⇒ 〈ψ j| → 〈ψ j|U† =⇒ ρ→ UρU† .
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Density operator (3/3 another motivation)

A bipartite system AB in a pure (entangled) state |AB〉 ∈ HA ⊗HB.

Only A is accessible for measurement, with the set of projectors
{
Πm ⊗ IB

}
.

Probability of outcome m :

P(m) = 〈AB |Πm ⊗ IB | AB〉 = trAB

(
Πm ⊗ IB |AB〉 〈AB|

)
= trA trB

(
Πm ⊗ IB |AB〉 〈AB|

)
.

Mathematically trB

(
Πm ⊗ IB |AB〉 〈AB|

)
= Πm trB

(
|AB〉 〈AB|

)
= ΠmρA,

with ρA = trB

(
|AB〉 〈AB|

)
a density operator (positive unit-trace) onHA,

which alone determines the measurement probabilities P(m) = trA

(
ΠmρA

)
.

=⇒ A density operator ρA arises to describe a system A

entangled to an unobserved (unaccessed) environment B.

System A entangled to its environment B has no definite pure state of its own,

but an uncertain or mixed state describable by ρA.
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Noisy preparation

Noise-free preparation of a qubit |ψ〉 = |0〉.

Noisy preparation |ψ〉 = cos(ξ) |0〉 + sin(ξ) |1〉
with probability density pξ(ξ) (assumed even).

Density operator ρ =

∫

ξ

pξ(ξ) |ψ〉 〈ψ| dξ

=⇒ ρ =
〈
cos2(ξ)

〉
|0〉 〈0| +

〈
sin2(ξ)

〉
|1〉 〈1| .

Measurement : Pr
{
|0〉

∣∣∣ρ
}
= 〈0|ρ|0〉 =

〈
cos2(ξ)

〉
,

Pr
{
|1〉

∣∣∣ρ
}
= 〈1|ρ|1〉 =

〈
sin2(ξ)

〉
.

Similar to the statistical ensemble
{(
〈cos2(ξ)〉, |0〉

)
,
(
〈sin2(ξ)〉, |1〉

)}
.

ξ
|0〉

|1〉

|ψ〉

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

0
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)
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Average of an observable

A quantum system inHN has observable Ω ∈ L(HN) vector space of operators onHN .

• In pure state |ψ j〉 : from p. 15 :

average 〈Ω〉 j = 〈ψ j|Ω|ψ j〉 = tr
(
Ω |ψ j〉 〈ψ j|

)
nonlinear in |ψ j〉, but linear in |ψ j〉 〈ψ j| .

• In statistical ensemble
{(

p j, |ψ j〉
)}

of density operator ρ =
∑

j

p j |ψ j〉 〈ψ j| :

average 〈Ω〉 =
∑

j

p j 〈Ω〉 j =

∑

j

p j tr
(
Ω |ψ j〉 〈ψ j|

)
= tr

(
Ω

∑

j

p j |ψ j〉 〈ψ j|
)
= tr(Ωρ) .
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Density operator for the qubit{
σ0 = I2, σx, σy, σz

}
a basis of L(H2) (with Pauli operators from p. 19),

orthogonal for the Hilbert-Schmidt inner product tr(A†B).

Any ρ =
1

2

(
I2 + rxσx + ryσy + rzσz

)
=

1

2

(
I2 + ~r · ~σ

)
.

=⇒ tr(ρ) = 1.

ρ = ρ† =⇒ rx = r∗x, ry = r∗y , rz = r∗z =⇒ rx, ry, rz real.

Eigenvalues λ± =
1

2

(
1 ± ‖~r ‖

)
≥ 0 =⇒ ‖~r ‖ ≤ 1.

‖~r ‖ = 1 for pure states,

‖~r ‖ < 1 for mixed states.

~r = [rx, ry, rz]
⊤ Bloch vector for ρ,

in Bloch ball of  3.



77/79

Observables of the qubit

Any operator onH2 has general form A = a0I2 + ~a · ~σ,

with determinant det(A) = a2
0
− ~a 2, two eigenvalues a0 ±

√
~a 2,

and two projectors on the two eigenstates |±~a 〉 〈±~a | = 1

2

(
I2 ± ~a · ~σ/

√
~a 2

)
.

For A ≡ Ω an observable, Ω Hermitian requires a0 ∈  and ~a = [ax, ay, az]
⊤ ∈  3.

Probabilities Pr
{
|±~a 〉

}
= 〈±~a | ρ | ± ~a 〉 = tr

(
|±~a 〉 〈±~a| ρ

)
=

1

2

1 ± ~r
~a

‖~a ‖



when measuring a qubit in state ρ =
1

2

(
I2 + ~r · ~σ

)
. (=⇒ a0 has no effect on Pr{|±~a 〉} ).

An important observable measurable on the qubit is Ω = ~a · ~σ with ‖~a ‖ = 1,

known as a spin measurement in the direction ~a of 3,

yielding as possible outcomes the two eigenvalues ±‖~a ‖ = ±1, with Pr{±1} = 1

2

(
1 ± ~r~a

)
.

Lemma : For any ~r and ~a in 3, one has : (~r · ~σ )(~a · ~σ ) = (~r~a ) I2 + i (~r × ~a ) · ~σ .

A consequence : A′ = a′
0
I2 + ~a

′ · ~σ =⇒ AA′ = (a0a′
0
+ ~a~a′)I2 + (a′

0
~a + a0~a

′
+ i~a × ~a′) · ~σ .
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Generalized measurement of a state |ψ〉 ∈ HN

• Standard von Neumann projective measurement : Defined by

a set of N orthogonal projectors Πn = |n〉 〈n| ∈ L(HN), satisfying
∑N

n=1 Π
†
nΠn = IN ,

with N outcomes of probability P(n) =
∥∥∥Πn |ψ〉

∥∥∥2
= 〈ψ|Π†nΠn|ψ〉 = tr

(
|ψ〉 〈ψ|Π†nΠn

)
,

and post-measurement state |φpost
n 〉 = Πm |ψ〉∥∥∥Πm |ψ〉

∥∥∥ =
Πm |ψ〉√

P(n)
= |n〉 .

Moreover
∑N

n=1 P(n) = 1 ,∀ |ψ〉 ⇐⇒ ∑N
n=1 Π

†
nΠn = IN .

For a mixed state ρ ∈ L(HN ) : probability P(n) = tr
(
ρΠ†nΠn

)
and ρ

post
n =

ΠnρΠ
†
n

P(n)
= |n〉 〈n| .

• Generalized measurement : Defined by

a set of M measurement operators Mm ∈ L(HN) satisfying
∑M

m=1 M†mMm = IN ,

with M outcomes of probability P(m) =
∥∥∥Mm |ψ〉

∥∥∥2
= 〈ψ|M†mMm |ψ〉 = tr

(
|ψ〉 〈ψ|M†mMm

)
,

and post-measurement state |φpost
m 〉 = Mm |ψ〉∥∥∥Mm |ψ〉

∥∥∥ =
Mm |ψ〉√

P(m)
.

Moreover
∑M

m=1 P(m) = 1 ,∀ |ψ〉 ⇐⇒ ∑M
m=1 M†mMm = IN .

For a mixed state ρ ∈ L(HN ) : probability P(m) = tr
(
ρM
†
mMm

)
and ρ

post
m =

MmρM
†
m

P(m)
.
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Justification for the generalized measurement

State |ψ〉 ∈ HN coupled to an auxiliary M-dimensional spaceHM by

|ψ〉 ⊗ |e0〉
U−−−−−−−−→ U |ψ〉 ⊗ |e0〉 =

M∑

m=1

Mm |ψ〉 ⊗ |m〉 ,

with arbitrary state |e0〉 ∈ HM and {|m〉}M
m=1

an orthonormal basis ofHM .

Operator U fromHN⊗HM ontoHN⊗HM is a valid unitary, as it conserves inner product :
(
U |ψ1〉 ⊗ |e0〉 ,U |ψ2〉 ⊗ |e0〉

)
=

M∑

m=1

M∑

m′=1

〈ψ1 |M†mMm′ |ψ2〉 〈m|m′〉 = 〈ψ1 |
M∑

m=1

M
†
mMm |ψ2〉 = 〈ψ1 |ψ2〉 .

Nothing is done inHN , while inHM a standard VN projective measurement
by M projectors IN ⊗ |m〉 〈m| on the pre-measurement state U |ψ〉 ⊗ |e0〉 ,
yields Mm |ψ〉 ⊗ |m〉 of squared norm

∥∥∥Mm |ψ〉 ⊗ |m〉
∥∥∥2
= 〈ψ|M†mMm|ψ〉 = P(m) ,

and post-measurement state
Mm |ψ〉√

P(m)
⊗ |m〉 separable betweenHN andHM .

The standard VN projective measurement inHM with M outcomes, realizes the
generalized measurement inHN (thanks to the entanglement by U).


