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“I believe that science is not simply a matter of exploring new horizons. One must also make the new
knowledge readily available, and we have in this work a beautiful example of such a pedagogical effort.”
Claude Cohen-Tannoudji, in foreword to the book “Introduction to Quantum Optics”

by G. Grynberg, A. Aspect, C. Fabre ; Cambridge University Press 2010. 1/109

A definition (at large)

To exploit quantum properties and phenomena
for information processing and computation.

Motivations for the quantic

for information and computation :

1) When using elementary systems (photons, electrons, atoms, ions,
nanodevices, ... ).

2) To benefit from purely quantum effects (parallelism, entanglement, ...).

3) New field of research, rich of large potentialities.
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Quantum system
Represented by a state vector i)
in a complex Hilbert space H,
with unit norm () = [y = 1.

In dimension 2 : the qubit
State [y) = «|0) + B]1)

in some orthonormal basis {|0), 1)} of H,

with complex @, 8 € € such that |of? + |8 = Wy = Iyl = 1.

(photon, electron, atom, ...)

@ T * £ 2 2 2
) = [ﬁJ W =l =[] = Wiwy = WP =l + |87 scalar.

{aﬂ . |0m* afﬁ*} .
[y <l = [e",B"] = =Tl, orthogonal projector on |¢).

Measurement of the qubit

When a qubit in state |y) = «|0) + ]1)
is measured in the orthonormal basis {|0), |1)},

= only 2 possible outcomes (Born rule) :
state |0) with probability |a> = [{Oy) > = (Oly)(¥10) = (O[T, |0), or
state |1) with probability |B* = | (1) > = (L)1) = (1[I, |1).

Measurement : usually :
e a probabilistic process,
e as a destructive projection of the state [/) in an orthonormal basis,

o with statistics evaluable over repeated experiments with same preparation |i).

Hadamard basis

Another orthonormal basis of H,

1 1
{0= Bl )z =0 -m) b

<= Computational orthonormal basis

1 1
{10 S +)s =5 -1) b

B B P
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Experiments Coll. Magnet Bloch sphere representation of the qubit In dimension N (finite) (extensible to infinite dimension)
= N
4 _,__7——4 5 Qubit in state State |y) = Z @, |n) , in some orthonormal basis {Il) 2y, |N>} of Hy,
I ource | ~ creen ) = @l0) +B11) with o> + 8P = 1. m
N
e - & i) = c0s(6/2)|0) + ¢ sin(6/2) [1) with @, € C, and Z o, = (W) = 1.
o . ith 6 € [0,7]. i
Stern-Gerlach apparatus for particles with two states of spin (electron, atom). with ¢ € [0.7]
¢ €[0,2n]. Proba. Pr{|n)} = |a,|> in a projective measurement of i) in basis [In)}.
detector 1 ’ Two states L in H, are antipodal on sphere. N Skn
—— .
Inner product (kly) = Z a, {kln) = a; coordinate.
n=1
Two states of polarization of a photon : As a quantum object, N
(Nicol prism, Glan-Thompson, the qubit has infinitely many accessible values S= Z [n) (n| = Iy identity of Hy (closure or completeness relation),
polarizing beam splitter, .. .) in its two continuous degrees of freedom (6, ¢), n=1 a
N " N
yet when it is measured it can only be found in one of two states . . _ TN = _ _
datacior Q) cLwhen it measure since, V1) : SW) = Y Iny () = Y ) = W) = S = 1.
(just like a classical bit). =1 =1
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Multiple qubits
A system (a word) of N qubits has a state in 7{?”,

a tensor-product vector space with dimension 2V,

and orthonormal basis {|x;x; - - - xy)} .
e {0, 1}V

Example N =2:
Generally |) = a0 [00) + @01 101) + @10 [10) + a1; [11) (2" coord.).
Or, as a special separable state (2N coord.)

Ig) = (@110) + B1 1)) @ (22 10) + B2 1))
= a122100) + @182 101) + B122110) + 8152 |11) .

A multipartite state which is not separable is entangled.

An entangled state behaves as a nonlocal whole : what is done on one part may
influence the other part, no matter how distant they are.

Entangled states

o Example of a separable state of two qubits AB :

1 1 1
IAB) = |+)® |+) = @(|0>+|1>)® %(|0>+|1>) = 5(100) +101) + 110) +]11)).

‘When measured in the basis {|0),[1)}, each qubit A and B can be found in state |0) or [1)
independently with probability 1/2.
Pr{A in |0)} = Pr{|AB) = 100)} + Pr{|AB) = [01)} = 1/4 + 1/4 = 1/2.

o Example of an entangled state of two qubits AB :

|AB) = %(IOO) + |11)). Pr{A in |0)} = Pr{|AB) = 00)} = 1/2.

‘When measured in the basis {|0) ,|1)}, each qubit A and B can be found in state |0) or 1)
with probability 1/2 (randomly, no predetermination before measurement).

But if A is found in |0) necessarily B is found in |0),

and if A is found in |1) necessarily B is found in [1),

no matter how distant the two qubits are before measurement.

Bell basis
A pair of qubits in (Hf’z is a quantum system with dimension 22 = 4,

with original (computational) orthonormal basis {IOO) ,101),]10), |11 )}.

Another useful orthonormal basis of ‘Hfz is the Bell basis

{1Boo) » BBor) » Bro) , 1B11)),

with 1Boo) = %(mm +111))
Bor) = %(|01>+|10>)
Bio) = %000)—“1))
i) = %(|01>—|10>).
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Observables Heisenberg uncertainty relation (1/2) Heisenberg uncertainty relation (2/2)
For a quantum system in Hy with dimension N,
a projective measurement is defined by an orthonormal basis {|1) , ... |N)} of Hy, For two operators A and B : commutator [A,B] = AB-BA, For two observables A and B measured in state [if) :
and the N orthogonal projectors |n) (n|, for n = 1 to N. anticommutator {A,B} = AB +BA, the average (scalar) : (A) = (W|AlY) ,
1 1 ; : CA=A—
Also, any Hermitian (i.e. Q = Q) operator Q on Hy, so that AB = 5 [A,B] + E{A, B} . the centered or dispersion operator : A = A —(A) L,
has its eigenstates forming an orthonormal basis {|w)), ... |wy)} of Hy. N <K2> _ <A2> _ <A>2 scalar variance.
Therefore, any Hermitian operator Q on Hy defines a valid measurement, When A and B Hermitian : [A, B] is antiHermitian and {A, B} is Hermitian,
N . . ale, AR —
and has a spectral decomposition Q = Z Wy lwy) {wy with the real eigenvalues w,. and for any l(lm then (YI[A, B]]W) €iR and WA, Bily) € IR'I’ then also [A,B] = [A,B].
=1 2 2
(WIABlY) = - (WIIA, BIlY) +- (WA, Blly) = [WIABIW)| = [wA Bl ; ) (52 s 2 Heis aintv relation -
Also, any physical quantity measurable on a quantum system is represented in quantum 2 m 2 m 4 Whence <A > <B > = 4 |<[A’ B]>| Heisenberg uncertainty relation ;
theory by a Hermitian operator (an observable) Q. —p — up
. . . . . . and for two vectors A |) and B |y), the Cauchy-Schwarz inequality is or with the scalar dispersions AA = ((Az)) and AB = ((Bz>) ,
When system in state |), measuring observable Q is equivalent to performing a projec- 5 ) ) |
tive measurement in eigenbasis {|w,)}, with projectors |w,) {w,| = I1,, and yields the 1 |<W|ABM>| < WIATW) (1B W) then AAAB > §|([A, B])| Heisenberg uncertainty relation.
eigenvalue w, with probability Pr{w,} = [(w,) [ = Wlw,) (walp) = WL, Iw). so that (W|A%[y) (WIBw) > Z|<l//|[A, B]|lﬂ>|2 .
The average is (Q) = Y, w, Priw,} = W|Qly) .
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Computation on a qubit
Through a unitary operator U on H, (a 2 x 2 matrix) : (ie. Ut =U")

normalized vector |¢) € H, — U ) normalized vector € H, .

input output

) U Uly)

= quantum gate

(always reversible)

10
Hadamard gate H = Identity gate I, = [ ]

ol

0 1
H? =1, & H™! = H = H" Hermitian unitary.
HI0)=+) and HIl)=]-)
1 ’ 1
= Hly= *(I()) + (=17 |1>) =— (=D%lz) , Yxe{01}.
V2 \/EZE(ZZOJ,
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Pauli gates

0 1 0 —i 1 0
X=0,= . Y=oy=|. l, Z=0,= .
10 i 0 0 -1

X2=Y2=272=1,. Hermitian unitary. XY = -YX =iZ, ZX =iV, etc.
{Iz, XY, Z] a basis for operators on H,.

1
Hadamard gate H = —(X + Z).
2
X =0, theinversion or Not quantum gate. ~ X|[0) = [1), X]I) =|0).

1 eiﬂ/4 e—ilr/4

_ 2 _
= e em/4}:w =X,

1+i 1-1i
1-i 1+

1
w:\/>_<:\/g—x:E

is the square-root of Not, a typically quantum gate (no classical analog).
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In general, the gates U and ¢U give the same measurement statistics at the
output, and are thus physically equivalent, in this respect.

Any single-qubit gate can always be expressed as ¢U; with

Ue = exp(—i gﬁ&) = cos(g)lz - isin(%)ﬁo”- e SUQ2),

with a formal “vector” of 2 x 2 matrices & = [0y, 0y, 0],
and i = [ny, ny, n,]" areal unit vector of R? = det(Uy) = 1,

implementing in the Bloch sphere representation
a rotation of the qubit state of an angle & around the axis 7 in R? € SO(3).
Example : W = /oy = e”’“[cos(n/4) I, — isin(r/4) o—x] R (E=n/2, =2).
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An optical implementation

A one-qubit phase gate U; =

0 .
| =€ exp(—ika./2)
0 é%

optically implemented by a Mach-Zehnder interferometer

Computation on a pair of qubits

Through a unitary operator U on 7‘(2592 (a4 x 4 matrix) :

normalized vector |) € ‘Hf’z —> U ) normalized vector € ‘7-{?2 .

e Example : Controlled-Not gate

Via the XOR binary function: a®b =a whenb =0, or =a whenb =1
invertiblea®x=b ¢ x=a®b=bda.

Used to construct a unitary invertible quantum C-Not gate :

input output
/ out = quantum gate — I (T target, C control)
L 4 phase shift £ > (always reversible) [1) U Ule)
! T M CeT
i — ICT) — IC,CoT) lcT) Y IC,CaT)
> Ve [00) — 00} 1000
I / 01) — [01) ¢ ¢ 0100
m Completely defined for instance by the transformation of the four state vectors | U=
of the computational basis {|00),101),110), [11)}. oy = 2 2 (1) (l)
acting on individual photons with two states of polarization |0) and |1) Hn — 110
which are selectively shifted in phase But works equally on any linear superposition of quantum states
’ . 2 _ Nof-! = C-Nof = (C- ¥ it ;
to operate as well on any superposition @ [0) + 8]1) — a [0) + Be® |1). = quantum parallelism. (C-Not)* = I & (C-Not) C-Not = (C-Not)" Hermitian unitary.
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Computation on a system of N qubits No cloning theorem (1982) Quantum parallelism
Through a unitary operator U on (HfN (a2 x 2V matrix) : ¢, Possibility of a circuit (a unitary U) that would take any state |y), associated to an For a system of N qubits,
normalized vector |y/) € (],[?N — Uy normalized vector € (Hz®N ) auxiliary register |s), to transform the input |¢) |s) into the cloned output [y} [1) ? a quantum gate is any unitary operator U from ’HfN onto ‘Hf’v.
u .
= quantum gate : N input qubits v, N output qubits. 1) ls) —— Udyi)1s) = 1) 1) (would be). The quantum gate U is completely defined
U by its action on the 2V basis states of HE" : {I)E’) ,xX € {0, I}N},
Completely defined for instance by the transformation of the 2V state vectors [¥h2) |s) —— U2) Is)) = [W2) o) (would be). just like a classical gate.
of the computational basis ; Li »
but works equally on any linear superposition of them (parallelism). inear superposition ) = a1 1) + a2 2) Yet, the quantum gate U can be operated
u . L - o
) o [y |sy —— Uy Is)) = U(oq [ri) sy + az W) |s)) on any linear superposition of the basis states {I)‘c’) ,X€{0, I}N}.
Any N-qubit quantum gate or circuit may always be composed = W) ) + @ ) 1) since U linear o ] ) ]
from two-qubit C-Not gates and single-qubit gates (universality). RS B ' This is quantum parallelism, with no classical analog.
And in principle this ensures experimental realizability. But ) [y) = ) ® ) = (a1 1) + as |¢2))((11 1) + s WZ))
) ) . =il ) + a1z ) ) + iz ) ) + @3 2 o)
This forms the grounding of quantum computation. £ U 1s)  in general. = No cloning U possible.
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Parallel evaluation of a function (1/4) Parallel evaluation of a function (2/4) Parallel evaluation of a function (3/4)
A classical Boolean function f(-) from N bits to 1 bit Toffoli gate or Controlled-Controlled-Not gate or CC-Not quantum gate : = =
i N ama P €T 4>
Fe {0, 1} — f(®) € {0, 1}. U,
a) P |a & be) f
Used to construct a unitary operator U as an invertible f-controlled gate : ) ) —y ye®f ( f) —
| 7 Tl le) le) For every basis state |¥), with £ € {0, 1}V :
U,
f (CC-Not)? = Iy <= (CC-Not)™! = CC-Not = (CC-Not)’ Hermitian unitary. Bl = 0) Uy )
Y yef@r— —
Any classical Boolean function f(X) (invertible or non) on N bits =1 1) |f(f)>
with binary output y & f(¥) = f(¥) wheny =0, or= f(¥) wheny =1, can always be implemented (simulated) by means of 3-qubit Toffoli gates. 1) 1+4) 1) L [|f(f)> n \%ﬂ =12+
(invertible as [y ® f(¥)] & f(¥) = y& f(¥) & f(¥) =y® 0 =y). I D ety @ [ o leAy) ‘{E
) B ) R " 1)) s 1) = |17 = [FR)] = 1)1y -y
) [v) 1) Iy )
NAND NOT AND
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Parallel evaluation of a function (4/4)

|+ O] T Thee
Uy

Yy f(@)—

ly) —=y

superposition of all basis states,

1 N
[N = (—) 1)

U N
[+)%N @ |0) —f> (L) Z |%)[f(®) ) superposition of all values f(x).

(0, 1)V
U, N
N @) —— (i\f) DD EDY

Xe(0,1}V

{, How to extract, to measure, useful informations from superpositions ?

Deutsch-Jozsa algorithm (1992) : Parallel test of a function (1/5)

A classical Boolean function .Y - {0,1}
JO
2 Values —> 2 values,

can be constant (all inputs into 0 or 1) or balanced (equal numbers of 0, 1 in output).

2N
Classically : Between 2 and > + 1 evaluations of f(-) to decide.

Quantumly : One evaluation of f(-) is enough (on a suitable superposition).

1 1
Lemmal:H = —(10)+ =)' 1)) = — S (=D)%), Yxelo1)
7l RPN
=>H*“’m:H|x.>®~-~®mx~>:( ]Z< DEE). vrel.n?,

Ze(0,1)V

with scalar product ¥Z = xjz; + +-- + xyzy modulo 2. (quant. Hadamard transfo.)

Deutsch-Jozsa algorithm (2/5)

|+ 2N 7 7] gon
Uy
|=) —y y D f(T)

t t !
1) [42) [13)

1 N
Input state [y = [+)®V |-) = (%) Z [%) =)
Fel{0, 1}V

LY
Internal state o) = (*) %) [-) (=1)/
2
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Deutsch-Jozsa algorithm (3/5) Deutsch-Jozsa algorithm (4/5) Deutsch-Jozsa algorithm (5/5)
) N _ RN . 2y _ _@er? [1] D. Deutsch; “Quantum theory, the Church-Turing principle and the universal quantum
Output state |y3) = (H® ® 12) [r2) So ¢ N Z . w(@)lZ) with w(z) Z N( D) ) computer”; Proceedings of the Royal Society of London A 400 (1985) 97-117.
2 2
1 N =01 ol The case N = 2.
I N N (—1)/® N 2 S5 R
—(\5) D HVIDI D For |7)=10) = 10)*Y  then wZ=0)= ) (-)/®.
Xel0, 1}V RO [2] D. Deutsch, R. Jozsa; “Rapid solution of problems by quantum computation”; Proceedings of
the Royal Society of London A 439 (1992) 553-558.
= ( ) Z Z (=D¥2) =) (=)@ by Lemma 1, e When f(-) constant : w(Z = 0) = 2V(=1)/® = +2¥ = in |y/) the amplitude of | is Extension to arbitrary N > 2.
(0, Ze(0.1)Y +1, and since |¢) is with unit norm => |) = 0, and all other w(z # §)=0.
— When | is measured, N states |0) are found. [3] E. Bernstein, U. Vazirani; “Quantum complexity theory”; SIAM Journal on Computing 26
W (1997) 1411-1473.
or Y3y =W)|-), with  |y) = (E) Z w(Z)|2) e When £(-) balanced : w(Z = 0) = 0 = |y) is not or does not contain state |3 ). Extension to f(¥) = @¥ or f(¥) = dX® b, to find binary N-word @ —> by producing output
.Y = When |¢) is measured, at least one state |1) is found. W) =1d).
i 7y = _1)y/@exz . . . .
and the scalar weight ~ w(Z) = Z (=D — Illustrates quantum ressources of parallelism, coherent superposition, interference. [4IR. Cleve, A. ern’ C. Macchiavello, M. Mosca; “Quantum algorithms revisited”; Proceedings
Fe(0,1)V N of the Royal Society of London A 454 (1998) 339-354.
(When f(-) is neither constant nor balanced, |¢/) contains a little bit of |0 ).)
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Superdense coding (Bennett 1992) : exploiting entanglement Teleportation (Bennett 1993) : of an unknown qubit state (1/3) Teleportation (2/3)
1
Alice and Bob share a qubit pair in entangled state [AB) = —(|00) + [11)) = |Boo)- H : k : < — 1.
il ) Qubit @ in unknown arbitrary state o) = a0 [0) + a I1). 1) = o) Boo) = \r [ao 10) (100) + [11)) + a1 11 (100) + 1))
Alice chooses two classical bits, used to encode by applying to her qubit A Alice and Bob share a qubit pair in entangled state |[AB) = *(\00> +11 1)) = Boo)-
o . V2
one of (I, X, iY, Z), delivering the qubit A’ sent to Bob. ‘ = —[ao 1000) + g [011) + a [100) + a1 [111)],
} Alice 9 hite DBob V2
|I'Q> 2 chits
Alice Bob __© | Measurement .
2 chits " . - in Bell basis factorizable as |y1) = ~ [— 00) + [11))(cxg [0) + ay 1)) +
—— X 1 tht, A 92 chits ;z®;2 :21;; - Igooi A {‘/3;1J/>} \/i( )( )
! . L = B / 1
N Decoder [[F—F—= )
L i Vo) (o0 0ol + e, 10)
) 7 B -
YeLIAB) = 81) ‘ L 000 — 1Y 101 — ar 115) .
|AB) 2 entangled qubits 1) 5) $(| Y= 111))(a0 10y — a1 1))
1
om0 )

Bob receives this qubit A”. For decoding, Bob measures |A’B) in the Bell basis
{Woo) s 1Bor) s 1Bro) Iﬁu)}. from which he recovers the two classical bits.
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Alice measures the pair of qubits QA in the Bell basis (so [y/p) is locally destroyed),
and the two resulting cbits x, y are sent to Bob.
Bob on his qubit B applies the gates X and Z* which reconstructs [i/¢).
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[01) = 10} (o [1) — @1 10) ] ,
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Teleportation (3/3)
1
i) = E[wo(» (@010) + @1 11)) + Bor) (@0 I1) + @1 10)) +
1B10) (20 10) = et 1)) + B11) (e 1) — e |0>)] :

The first two qubits QA measured in Bell basis {|3,,)} yield the two cbits xy,

used to transform the third qubit B by X" then Z*, which reconstructs [1/¢).
I I

When QA is measured in |Byo) then Bis in ag [0) + a; [1) —— - —= o)
X I

When QA is measured in |[8y;) then Bisin ag|l) + a;|0) — - -2, o)
I 4

When QA is measured in |B19) then Bisin ag|0) — a; |1) NN o)

X z
When QA is measured in |[81) then Bisin ag|l) —a;[|0) — - — [y ).
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Princeps references on superdense coding ...

[1] C. H. Bennett, S. J. Wiesner; “Communication via one- and two-particle operators on
Einstein-Podolsky-Rosen states”; Physical Review Letters 69 (1992) 2881-2884.

[2] K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger; “Dense coding in experimental
quantum communication”; Physical Review Letters 76 (1996) 4656—4659.

... and teleportation
[3] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters; “Teleporting an

unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels™;
Physical Review Letters 70 (1993) 1895-1899.
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Grover quantum search algorithm (1/4)  Phys. Rev. Let. 79 (1997) 325.

o Iterative algorithm that finds an item out of N in an unsorted dataset,
in O(VN) complexity instead of O(N) classically.

o A dataset contains N possible items or states indexed by n € {1,2,--- N}. One wants to find one
(only one here, but extensible) state n = n satisfying some criterion or property. For the search of
the solution ng, one can test whether any state # is solution or not, by interrogating a classical
oracle, which amounts to evaluate a classical function f(-) responding as f(n) = dnny.

For this, we note that the oracle does not need to know or to establish the solution rng, but it needs to
be able to evaluate (efficiently at low computing cost) at each n the function f(n) so as to tell
whether the proposed 7 is solution or not.

For instance, for the RSA factoring problem, the oracle does not need to know the two prime factors
of the large integer key ; the oracle only needs to be able to tell efficiently whether a query integer n
is a factor or not, i.e. whether the query integer n divides the key or not. The oracle can do this
efficiently by computing the integer division to implement f(-).

Classically, for such search based on interrogating the oracle, it requires O(N) interrogations of
the classical oracle in order to find the solution .
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Grover quantum search algorithm (2/4)

e Quantumly, an N-dimensional quantum system in Hy with orthonormal basis {|1),---,|N)},
where the N basis states |n), for n € {1,2,--- N}, represent the N items of the dataset.

From a quantum implementation of the function f(-), it is possible to obtain the quantum oracle as
the unitary operator Uy realizing Ug [n) = (=1)/® |y for any n € {1,2,---N}.

Thus, the quantum oracle returns its response by reversing the sign of |#) when n is the solution ng,
while no change of sign occurs to |[n) when n is not the solution.

Equivalently Up = Iy — 2 |ng){nol, although |np) may not be known, but only f(-) evaluable.

The quantum oracle is able to respond to a superposition of input query states |n) in a single
interrogation, for instance to a superposition like |f) = N2 Z,lN=1 |ny.

Upon measuring |), any specific item |n;) would be obtained as measurement outcome with the
probability [(nly) > = 1/N , since (nl¢s) = 1/ VN for any nj € {1,2,---N}.

Instead, as measurement outcome, we would like to obtain the solution [np) with probability 1.

Grover quantum search algorithm (3/4) [n0)

N
elet |ny )= Z |n) normalized state L |ng)

1
W15
= ) = N-172 ZN |n) is in plane (Ino),InQ).

n=1

o With the oracle Uy = Iy — 2 |no)nol = Ug |n.) = In.) and U o) = —Ino).
So in plane (lng) s InL)), the operator Uy performs a reflection about |n, ).

e Let [y, ) normalized state L |) in plane (lno) s |nl>)A

o Define the unitary operator Uy, = 2 [y) (¢/| — Iy = Uy |¥) = [¥) and Uy [ ) = — | 1).

So in plane (lno) s |nL)), the operator Uy, performs a reflection about [i/).

e In plane (\n[)) s InL)), the composition of two reflections is a rotation U,Uy = G (Grover
2

amplification operator). It verifies G [ng) = Uy Uo Ing) = —Uy Ino) = |ng) — —= [¥).

The rotation angle 6 between |ng) and G |np), via the scalar product of |ng) and G |ng), verifies

Grover quantum search algorithm (4/4) o) Gl)
. - 2
e In plane (\no> s |nL)), the rotation G = U, Uy is with angle 6 ~ W .

2
VN

2 4
* Gly) = Uyl v = Uy(ly) - 75 Inoy) = (1 - ﬁ)l¢/>+ o).

So after rotation by 6 the rotated state G i) is closer to |ng).

e G|y) remains in plane (\nl;) NI )), and any state in plane (|l10> B \nl)) by G is rotated by 6.

So G |y) rotates [y by 26 toward |ng), and G |y) rotates |i) by k6 toward |n).

o The angle © of |) and |np) is such that cos(®) = (noly) = 1/ VN = © = acos(1/ VN).

N
eSoK = % B g acos(l/ \W) iterations of G rotate [i) onto |ng).
Atmost © = g (when N > 1) = at most K =~ g\/ﬁ

_ _ 6* 2 o So when the state GK [y = |ng) is measured, the probability is almost 1 to obtain |ng) .
cos(0) = {nolGlno) = 1 = N - 2 =0~ ﬁ anN>1. = The searched item |ng) is found in O(\/TJ) operations instead of O(N) classically.
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Other quantum algorithms Quantum cryptography e BB84 protocol (Bennett & Brassard 1984) |1)

o Shor factoring algorithm (1997) :

Factors any integer in polynomial complexity
(instead of exponential classically).

15 = 3 x 5, with spin-1/2 nuclei (Vandersypen et al., Nature 2001).

21 = 3 x 7, with photons (Martin-Lépez et al., Nature Photonics 2012).

o http://math.nist.gov/quantum/zoo/

“A comprehensive catalog of quantum algorithms ...”
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o The problem of cryptography

Message X, a string of bits.

Cryptographic key K, a completely random string of bits with proba. 1/2 and 1/2.
The cryptogram or encrypted message C(X, K) = X @ K (encrypted string of bits).

This is Vernam cipher or one-time pad,
with provably perfect security, since mutual information /(C; X) = H(X) — H(X|C) = 0.
Problem : establishing a secret (private) key

between emitter (Alice) and receiver (Bob).

With quantum signals,

any measurement by an eavesdropper (Eve) perturbs the system,

and hence reveals the eavesdropping, and also identifies perfect security conditions.
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4 Alice has a string of 4N random bits. She encodes with
a qubit in a basis state either from {|0), 1)} or {|+),|-)}
randomly chosen for each bit.

+ Then Bob chooses to measure each received qubit either in
basis {|0), |1)} or {|+),|—)} so as to decode each transmitted bit.

+ When the whole string of 4N bits has been transmitted,
Alice and Bob publicly disclose the sequence of their basis choices
to identify where they coincide.

¢ Alice and Bob keep only the positions where their basis choices coincide,
and they obtain a shared secret key of length approximately 2N.

¢ If Eve intercepts and measures Alice’s qubit and forward her measured state to Bob,
roughly half of the time Eve forwards an incorrect state, and from this Bob half of the
time decodes an incorrect bit value.

+ From their 2N coinciding bits, Alice and Bob classically exchange N bits at random.
In case of eavesdropping, around N/4 of these N test bits will differ.
If all N test bits coincide, then the remaining N bits form the shared secret key.




e B92 protocol with two nonorthogonal states (Bennett 1992) [+)

+ To encode the bit a Alice uses a qubit in state [0) if a =0
and in state |+) =(10) + 1))/ V2 if a=1. /4

4 Bob, depending on a random bit a’ he generates,
measures each received qubit either in basis {|0),|1)} if " = 0
orin {|+),|-)} if @ = 1. From his measurement, Bob obtains the result > = 0 or 1.

+ Then Bob publishes his series of b, and agrees with Alice to keep only those pairs
{a,a’} for which b = 1,

this providing the final secret key a for Alice and 1 —a’ = a for Bob.

This is granted because a =a’ = b =0 andhence b=1=a#d =1-a.

+ A fraction of this secret key can be publicly exchanged between Alice and Bob

to verify they exactly coincide, since in case of eavesdropping by interception and
resend by Eve, mismatch ensues with probability 1/4.

N. Gisin, et al.; “Quantum cryptography”; Reviews of Modern Physics 74 (2002) 145-195.

e Protocol by broadcast of an entangled qubit pair

+ With an entangled pair, Alice and Bob do not need a quantum channel between them
two, and can exchange only classical information to establish their private secret key.
Each one of Alice an Bob just needs a quantum channel from a common server
dispatching entangled qubit pairs prepared in one stereotyped quantum state.

+ Alice and Bob share a sequence of entangled qubit pairs all prepared in the same
entangled (Bell) state |AB) = (lOO) + |11>)/ V2.

4 Alice and Bob measure their respective qubit of the pair in the basis {|0), [1)}, and they
always obtain the same result, either 0 or 1 at random with equal probabilities 1/2.

+ To prevent eavesdropping, Alice and Bob can switch independently at random to
measuring in the basis {|+), |-)}, where one also has |AB) = (|++) + \——))/ V2.

So when Alice and Bob measure in the same basis, they always obtain the same results,
either O or 1.

+ Then Alice and Bob publicly disclose the sequence of their basis choices.
The positions where the choices coincide provide the shared secret key.

+ A fraction of this secret key is extracted to check exact coincidence, since in case of
eavesdropping by interception and resend, mismatch ensues with probability 1/4.
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1o - ) Quantum correlations (1/2) Quantum correlations (2/2)
& For any four random binary variables Ay, A, By, B, with values 1, A long series of experiments repeated on identical copies of [ap) :
ECHNOLOGY REPUBLIC [=(A+A)B = (A1 = A)B, = A\ B + 4By + Ay By — A By = £2, EPR experiment (Einstein, Podolsky, Rosen, 1935).
3?255,]?\7: because since A}, Ay = 1, either (A; + A,)B; = 0or (A —A)B, =0,
RROERINNG SECUIY and in each case the remaining term is +2. Alice chooses to randomly switch between measuring A; = Q(a;) or Ay = Q(as),
Geneva Gove rnment B 2 and Bob chooses to randomly switch between measuring By = Q(B;) or B, = Q(5,).
i b So for any probability distribution on (A4, A,, By, B,), necessarily
Secure Data Transfer for Elections (T) = (A1 B + ABy + AsBy — A1 B) = (A1 Bi) + (A2By) + (AsBy) — (A By) For () = (A,B)) + (A;B) + (A;B,) — (A, B,) one obtains
Gigabit Ethernet Encryption with Quantum Key Distribution verifies -2 < (I') < 2. Bell inequalities (1964). (') = —cos(a; —B1) — cos(ay — B1) — cos(ay — Ba) + cos(a; — ).
“Wehavetoprovide |  TheChal Alice and Bob sh ir of qubits in th led (Bell) state [ p) = o1 fhechoice a1 =0, @ =2 and i =7/, o = 3n/4 leads to
fiosstopt e Challenge ice and Bob share a pair of qubits in the entangled (Bell) state [y sp) = ——— . _ o B ) _ B
Zg;dlagiscmrrﬂ(yhe V2 (') = —cos(r/4) — cos(r/4) — cos(n/4) + cos(3n/4) = =2 V2 < -2.
Sauntng otbajicls:. Alice or Bob on its qubit can measure observables of the form Q(6) = sin(6)X + cos(6)Z, Bell inequalities are violated by quantum measurements.
;Ly.ﬁx[yo %‘;avpeh”y'; (afa(lhe having eigenvalues +1.
the dat[a Qas :\ot be[en Experimentally verified (Aspect et al., Phys. Rev. Let. 1981, 1982).
Foiokirliing E,',';,yrl"s' Alice measures Q(a) to obtain A = +1, and Bob measures Q() to obtain B = +1, ' g bil ' ' Jaced
O e” L ] . t . b
storag then we have the average (AB) = (xs | Q@) ® Q(B) | Yan) = — cos(@ — ). ocal realism and separabi 1'y (classical) replaced by
a nonlocal nonseparable reality (quantum).
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EPR paradox (Einstein-Podolski-Rosen) :

A. Einstein, B. Podolsky, N. Rosen ; “Can quantum-mechanical description of physical reality
be considered complete ?”; Physical Review, 47 (1935) 777-780.

Bell inequalities :

J. S. Bell ; “On the Einstein—Podolsky—Rosen paradox™; Physics, 1 (1964) 195-200.

Aspect experiments :

A. Aspect, P. Grangier, G. Roger ; “Experimental test of realistic theories via Bell’s theorem”;
Physical Review Letters, 47 (1981) 460-463.
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GHZ states (1/5)
3-qubit entangled states.

(1989, Greenberger, Horne, Zeilinger)
Three players, each receiving a binary input x; = 0/1, for j = 1,2,3,
with four possible input configurations x;x,x3 € {000,011, 101, 110}.

Each player j responds by a binary output y;(x;) = 0/1,
function only of its own input x;, for j = 1,2, 3.

T ——)|:|——) U
ZT9 ——)D——) Y2
€3 —->|:|—-> Y3

Game is won if the players collectively respond according to the input—output matches :

X1xx3 = 000 ————— y1y,y3 suchthat y, @y, ®y; =0

x1xx3 € {011,101, 110} — y,y,y5 suchthat y, @y, ®y; =1

(conserve parity),

(reverse parity).

To select their responses y;(x;), the players can agree on a collective strategy before,

but not after, they have received their inputs x;.
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GHZ states (2/5)

A strategy winning on all four input configurations
would consist in three binary functions y;(x;) meeting the four constraints :

3108 1(0) @ 35(0) = 0 b Hu
Oy ey = 1 '

(D10 ys(1) = 1 npl b
Dy @0 = 1 s Ho s

0 ® 0 ® 0 =1, bysummation of the four constraints,
= 0 =1, so the four constraints are incompatible.

So no (classical) strategy exists that would win on all four input configurations.
Any (classical) strategy is bound to fail on some input configuration(s).

We show a strategy using quantum resources winning on all four input configurations,
(by escaping local realism, y;(0) = 0/1 and y;(1) = 0/1 not existing simultaneously).

GHZ states (3/5)

Before the game starts, each player receives one qubit from a qubit triplet prepared in the

entangled state (GHZ state) 1
0 = [pizs) = 3(1000) = 0113 - 101 = [110)).

And the players agree on the common (prior) strategy :
if x; = 0, player j obtains y; as the outcome of measuring its qubit in basis {|0), [1)},
if x; = 1, player j obtains y; as the outcome of measuring its qubit in basis {|+),[-)}.

We prove this is a winning strategy on all four input configurations :

1) When x;x,x; = 000, the three players measure in {|0),[1)}
= y1 ®y, ®y; = 0 is matched.

GHZ states (4/5)
2) When x;x;x3 = 011, only player 1 measures in {|0), [1)}.

W) = %(|000>— 011) =101y = [110)) = %[\0>(|00>— 1) =11 (o1 + \10))].

Since 10)= (10 +1). 1= (1) 1) =

00y - [11) = % (1) + 1)) = (1 = 1)1+ - |—>)]
= % () + 1420 + 1=+ 1=2)) = (1+0) = [+=) = 1= + |——>)]
=)=

01) +110) = % (1) =19) + (10 = 1) (1) + 1)) = l++) = 1) ;

1
= |y) = 5(|()+—>+|0—+)—\] ++)y+ 1 ——)) =y, ®y, ®y; = 1 matched.
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GHZ states (5/5) Density operator (1/2) Density operator (2/2)
3) When x;x,x3 = 101, only player 2 measures in {|0), [1)}. Quantum system in (pure) state |i/;), measured in an orthonormal basis {|n)} : Density operator p = 3 p; I/} (/1
L = of itian -
) = 5(1000) ~ 1011) = 1101 = 110)) = %[|»0->(|0-0>—|1 D)=k (0 1+ m)] = probability Prlln)|lé)} = |l P = (k) (0 lm) . = p = p' Hermitian
) V1), Wloly) = X; pjl i) > 2 0 = p = 0 positive ;
= E[I‘O?(H EAdnk +>) - |'1'>(\+ == *))] Several possible states |i/;) with probabilities p; (with 3; p; = 1) : trace tr(p) = 3; p; () (YD) = 3 pj = 1.
1
= 5(#0-) + 104~ 1+14) + -1-)) =y @32 @3 = | matched. = Pr{lm)} = X, p, Prilm)| )} =l (X, ;10 W) 1) = (lplm) ' N N ,
On Hy, eigen decomposition p = Z Ay |4,) {A,] , with
with density operatorp = 3 p; [ ;) (W] . di
HWh — 110. only ol ; 1105 11 vop SRS eigenvalues {4, } a probability distribution,
) When x1,%; = > only player 3 measures in {10)., [1}}. and Pr{|n)} = (n|p|n) = tr(p |n) (n]) = tr(p11,) . eigenstates {|4,)} an orthonormal basis of Hy.
1 1
w/>=5(\00(»—\011>—\101>—\110>):5[(\00>—\11>)|0>—(|01>+|10>)\1>j L . - ul
The quantum system is in a mixed state, corresponding to the statistical ensemble Purity tr(p®) = Z 22 = 1 for a pure state, and tr(p?) < 1 for a mixed state.
= 3|+ 4 =)0 = (1+) - 1) |1>j {(ps 1)} described by the density operator p. -
1 A valid density operator on Hy = any positive operator p with unit trace,
- E(H “0 =40 -+ sl = D) =31 @5, ®; = | matched. Lemma : For any operator A with trace tr(A) = 3., (n| A|n), one has provides a general representation for the state of a quantum system in Hy.
(A ) (pl) =2, (nl Al) (Bln) = X, (Bln) (nl Aly) = <¢|(Z,, Ir2) <11|)A|11/> = (glAl) . . .
State evolution [¢;) — Uy;) = p — UpU™ .
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Noisy preparation [1) Average of an observable Density operator for the qubit
N
Noise-free preparation of a qubit |) = |0). A quantum system in Hy has observable Q of diagonal form Q = Z Wy W) {w,l. {00 =L, 07, 0y, 02} a basis of L(FH) (vector space of operators on H),
. . . /) n=1 orthogonal for the Hilbert-Schmidt inner product tr(A'B).
Noisy preparation [i) = cos(¢)|0) + sin(é)[1) [4) ) !
with probability density ps(¢) (assumed even). £ |0) When the quantum system is in state p, measuring Q amounts to performing Any p = 5(12 + 1O+ oy + FZO'Z) = E(12 + ?5—).
_ a projective measurement on p in the orthonormal eigenbasis {|w;), ... |wx)} of Hy, 1
Density operator p = fl’f(f) ) <ypldé L with the N orthogonal projectors |w,) (w,|, for n = 1 to N. = ulp) =1
¢ 5 g 3 p=p =r = Iy Ty =1y, =711 = Iy ry, 0 real.
=p= <C052(§)> [0) <0l + <5111 (§)> r. g 2 The outcome yields the eigenvalue w, € R with probability 1
g 1 Pr{w,) = (Wl plwy) = tr(p |w) {wnl). Eigenvalues A, = 5(1 + II?II) >0= |7 < 1.
Measurement : Pr{lO) |p} = (0lpl|0) = <cosz(§)> s 04-08-02-01 0 Q1 02 03 04 ) |I7]l < 1 for mixed states,
Over repeated measurements of Q on the system prepared in the same state p,
.o . [I”]l =1 for pure states. B
Pr{ll) |p} = 1lpll) = <sm (f)) . the average value of Q is o=+l
N N N 7= [ry, 1y, r2]7 in Bloch ball of R3.
Similar to the statistical ensemble {((cos2(¢)),10)). ((sin®()). 1))} - = Zl @n Prien} = Zl o o) () = p Zl o) @)
= tr(pQ). -1
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Observables on the qubit

Any operator on H, has general form Q = qol, + d &,
two eigenvalues ap + \/_2

(o= ac V)

with determinant det(Q) = a3 — a2,

and two projectors on the two eigenstates |+a) (+d| =

For an observable, Q Hermitian requires @y € R and @ = [ay,a,,a.]" € R3.

1 a 1
Probabilites Pr{\iﬁ}} = 5[1 + ?ﬁ) when measuring a qubit in state p = —(Iz + ?5—).
a
(= ag has no effect on Pr{|+a)} ).

Generalized measurement

In a Hilbert space Hy with dimension N, the state of a quantum system
is specified by a Hermitian positive unit-trace density operator p.

e Projective measurement :
Defined by a set of N orthogonal projectors |n) (n| =
verifying 3, 1) (nl = %, T1, = Iy,

and Pr{|n)} = tr(pll,) . Moreover ), Pr{ln)} = 1,Vp & 3, 11, = Iy.

o Generalized measurement (POVM) : (positive operator valued measure)

A generalized measurement (POVM) for the qubit

2
POVM {Mk =% lexy (ek\}, fork=0,1,...K -1, and K > 2,

with  |ey) = 005(2 )IO) + sm( )Il)

An important observable measurable on the qubitis Q = dd with ||@|| = 1, ) |0)
known as a spin measurement in the direction @ of R?, Equivalent to a projective measurement in a larger Hilbert space (Naimark th.). 10)
1 . ..
yielding as possible outcomes the two eigenvalues +[|@|| = +1, with Pr{+1} = 5(1 + ?ﬁ). Defined by a set of an arbitrary number of positive operators M,,,
verifying ), M, = Iy,

L : F 7 i 3, has: (F& 7)=(Fd)l i (7 7.

emma : Forany 7 andd in R°, one has : (F&)dF) = (Fad)L+i(Fxd)c and Pr{M,,} = tr(oM,) . Moreover 3, PriMy} = 1,Yp &= 3, M,, = Iy. K=3 K=5 K=7
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Information in a quantum system Entropy from a quantum system But how much of the input information can be retrieved out ?
How much information can be stored in a quantum system ? For a quantum system of dim. N in Hy, with a state p (pure or mixed), bWith a qu:mtur: stystem ofi;m. N in (HNL,C(;{ch clzfissiﬁ:al slta;e X; 1Js coded
. . . . . . a generalized measurement by the POVM with K elements A, fork = 1,2,... K. Y a quantum state [yy;) € Hy or p; € LHy), for j=1,2,...J.
A classical source of information : a random variable X, with J possible states x;, for . .
j=1,2,...J, with probabilities Pr{X = x;} = p; . Measurement outcome Y with K possible values y, for k = 1,2,... K, A generalized measurement by the POVM with K elements Ay, for k=1,2,... K.
J of probabilities Pr(¥ =y} = tr(oAy) . Measurement outcome Y with K possible values yy, for k = 1,2,... K,
Information content by Shannon entropy : H(X) = — Z pjlog(p)) <log(J) . K of conditional probabilities Pr{Y = yk\X = x;} = tr(p;Ag)
= Shannon output entropy H(Y) = — Z Pr{Y = y;} log(PrlY = Yk}) .
= and total probabllmes Pr{Y =y} = ZPr{Y YilX = xjip; = tr(pAy) ,
With a quantum system of dimension N in Hy, each classical state x; is coded K =
by a quantum state [if;) € Hy or p; € L(Hy) ,for j=1,2,...J. Z tr(pAy) log tr(pAk)) with p = Z pjp;j the average state.
k=1 =

Since there is a continuous infinity of quantum states in Hy, =

an infinite quantity of information can be stored in a quantum system of dim. N For any given state p (pure or mixed), K-element POVMs can always be found The input-output mutual information I(X;Y) = H(Y) — H(Y|X) < X(p) < H(X) ,

(an infinite number J), as soon as N = 2 with a qubit. achieving the limit H(Y) ~ log(K) at large K. J

with the Holevo information X(p) = S(p) — p;iS(p;) <log(N),
In this respect, with H(Y) — co when K — oo, ; I ¢
But how much information can be retrieved out ? an infinite quantity of information can be drawn from a quantum system of dim. N, _
as soon as N = 2 with a qubit. and von Neumann entropy S (p) tr[p log(p)] .
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The von Neumann entropy
For a quantum system of dimension N with state p on Hy :
S(p) = ~tulplog(o)] .

N
p unit-trace Hermitian has diagonal form p = Z A | A

n=1

N
whence S(p) = — Z A, log(4,) € [0,1og(N)] .

n=1
e S(p) =
oS(p) =

0 for a pure state p =

)<yl

log(N) at equiprobability when A, = 1/N and p = Iy/N .
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The accessible information

For a given input ensemble {(p;, p;)} :
the accessible information I..(X;Y) = grolel)\(d I(X;Y) <X(pj.p)) »
is the maximum amount of information about X

which can be retrieved out from Y,

by using the maximally efficient generalized measurement or POVM.

For states p; in L(Hy), there always exists such an optimal POVM under the

form {A; = ay |¢r){xl }, with ;. € [0, 1], for k= 1 to K, and N < K < N2,

this by Theorem 3 of E. B. Davies; “Information and quantum measurement”;
IEEE Transactions on Information Theory 24 (1978) 596-599.

But, there is no general characterization of optimal POVM. [Sasaki, PRA 59 (1999) 3325]
There are hardly some known expressions for some special ensembles {(p;,0;)}.
SOMIM (Search for Optimal Measurements by an Iterative Method) for numerical
maximization by steepest-ascent that follows the gradient in the POVM space, and also
uses conjugate gradients for speed-up. [arXiv:0805.2847]
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Compression of a quantum source (1/2)

A quantum source emits states or symbols p; with probabilities p;, for j = 1to J.

With p = Z pjpj » the D-ary quantum entropy is SD(p) - tr[plogb(p)]
=1
and the Holevo information is Xp(p;,p;) = Sp(p) — Z PiSpp;)) .
=1

For lossless coding of the source, the average number of D-dimensional quantum

systems required per source symbol is lower bounded by X p(p;,p;) .

For pure states p; = |y;) (|, the lower bound Xp(p;,p;) = S p(p) is achievable
(by coding successive symbols in blocks of length L — o0).

B. Schumacher; “Quantum coding”; Physical Review A 51 (1995) 2738-2747.

R. Jozsa, B. Schumacher; “A new proof of the quantum noiseless coding theorem™;
Journal of Modern Optics 41 (1994) 2343-2349.
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Compression of a quantum source (2/2)

For mixed states p;, the compressed rate is lower bounded by Xp(pj,p;) < Sp(p) but
this lower bound X (pj, p;) is not known to be generally achievable.

The compressed rate S p(p) is however always achievable (by purification of the p; and
optimal compression of these purified states).

Depending on the mixed p;’s, and the index of faithfulness, there may exist an
achievable lower bound between X p(p;, p;) and S p(p). (Wilde 2016, §18.4)

The problem of general characterization of an achievable lower bound for the
compressed rate of mixed states still remains open. (Wilde 2016, §18.5)

M. Horodecki; “Limits for compression of quantum information carried by ensembles of mixed
states”; Physical Review A 57 (1997) 3364-3369.

H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa, B. Schumacher; “On quantum coding for
ensembles of mixed states™; Journal of Physics A 34 (2001) 6767-6785.

M. Koashi, N. Imoto; “Compressibility of quantum mixed-state signals”; Physical Review Letters
87 (2001) 017902,1-4.
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Quantum noise (1/2)

A quantum system of Hy in state p interacting with its environment represents an open
quantum system. The state p usually undergoes a nonunitary evolution.

With pe,y the state of the environment at the onset of the interaction, the joint state

£ ® peny can be considered as that of an isolated system, undergoing a unitary evolution
by U as p ® peny — U0 ® pen)U".

At the end of the interaction, the state of the quantum system of interest is obtained by
the partial trace over the environment : p — N(p) = lre,w[U(p ® penV)UT]. (1)

Very often, the environment incorporates a huge number of degrees of freedom, and is

largely uncontrolled ; it can be understood as quantum noise inducing decoherence.

A very nice feature is that, independently of the complexity of the environment, Eq. (1)
can always be put in the form p — N(p) = X, AgpA} operator-sum or Kraus
representation, with the Kraus operators A, which need not be more than N?, satisfying
S AN =1y,
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Quantum noise (2/2)

A general transformation of a quantum state p can be expressed by the
quantum operation p — N(p) = ), A[p/\j ,with ), A;A[ =1y,
representing a linear completely positive trace-preserving map,
mapping a density operator on Hy into a density operator on Hy.

Probabilistic interpretation : the action of the quantum operation 0
is equivalent to randomly replacing the state p by the state

T a - i z
A, | tr(A[pAf) with probability tr(A,pA[).
1
For an arbitrary qubit state defined by p = —(I: +7 (?)
ran g 2
with [|7]| <1,
S ¥

this is equivalent to the affine map 7 — A7+ ¢,

with A a 3x3 real matrix
and ¢ a real vector in R?,
mapping the Bloch ball onto itself. 1

Quantum noise on the qubit (1/4)

Quantum noise on a qubit in state p can be represented by random applications of some
of the 4 Pauli operators {I,, 0, o, 0} on the qubit, e.g.

Bit-flip noise : flips the qubit state with probability p by applying o, or leaves the
qubit unchanged with probability 1 — p :

1 0
F— A= 0 1-2p 0 7.

0 0 1-2p

p— N(p) = (1 - p)p + popo,

Phase-flip noise : flips the qubit phase with probability p by applying o, or leaves the
qubit unchanged with probability 1 — p:
1-2p 0 0

Quantum noise on the qubit (2/4)

Depolarizing noise : leaves the qubit unchanged with probability 1 — p, or apply any
of o, o, or o, with equal probability p/3 :

p— N(p)=(1-pp+ g((rxprfi +oyp0 + 0po),

Quantum noise on the qubit (3/4)

Amplitude damping noise : relaxes the excited state |1) to the ground state |0) with
probability y (for instance by losing a photon) :

p— N(p) = AipA] + AopA],

with A, = \ = /710)(1] taking |1} to |0) with probability y,
0
0 )
and Ay = =10)¢0] + /1 —y|1)(1]  which leaves |0) unchanged and

0 1-v

reduces the probability amplitude of resting in state |1).

JVi—y 0 0 0

S = 77— AP+ ¢ = — P+
p— Np)=(0=-pp+porps., F—AF=| 0 1-2p 0 |F. 0 Vi-y 0 0
0 0 1 0 0 1-y b%
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. . More on quantum noise, noisy qubits : L. .
Quantum noise on the qubit (4/4) Quantum state discrimination
t(yenerz:llze;i amplitude damping noise : interaction of the qubit with a thermal bath at 0 T S O R SRR e A quantum system can be in one of two alternative states 00 0T pi
emperature N + . . . . .
p— N(p) = AipA] + AapA} + AspA] + AgpAl, Optimization of Quantum States for Signaling with prior probabilities Py and Py = 1 — P,.
1 N N Across an Arbitrary Qubit Noise Channel ) . .
with A = ﬁ{ . Aa= P VY l pyel0l, @) 1=sr TRANSACTIONS ON With Minimium-Error Detection Question : What is the best measurement {My, M} to decide
0 yi-y 0 0 I’I‘I\IT-IF}‘E?(%{B%ATION Frangois Chapeau-Blondcau with a maximal probability of success Pgyc ?
As=T=p vi-y 0 Ai=T=p 0 0 Abstract—For discrimination between two signaling states of a  invitable ertors and such o genral stuation is frequent since
: r 0 I r v ool ::K:.‘;J“.:.?h::‘:'.:..‘,‘.‘fi:‘b;‘;’@:'z‘;?.:‘.ﬁi‘:;.‘:.:“:::L":;z:;:;';:::: T T S e e Answer : One has Py, = Py tr(ooMo) + P tr(o;M;) = Py + tr(TM)) ,
with the test operator T = P;p; — Pypo.

Vi-vy 0 0 0

= F— AF+¢= 0 Vi-vy 0 P+ 0
0 0 -y @p-1l)y
Damping [0, 1] 3y = 1 — ¢ /71 — 1 as the interaction time 7 — co with the bath of the qubit relaxing to
equilibrium pe, = p|0) (0] + (1 — p)[1) (1], with equilibrium probabilities p = exp[—Eq/(kgT)]/Z and
1 - p =expl—E; /(kgT)]/Z with Z = exp[—Ey/(kgT)] + exp[—E, /(kgT)] governed by the Boltzmann distribution
between the two energy levels Ej of |0) and E| > Eg of |1).
T=0=2p=12p=[0){0]. T—-co=p=1/2=ps— (10)O0[+(1)({1)/2=1,/2.
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PHYSICAL REVIEW A 91, 052310 (2015)
Optimized probing states for qubit phase estimation with general quantum noise

Frangois Chapeau-Blondeau
Laboratoire Angevin de Recherche en Ingénierie des Svstémes (LARIS), Université d'Angers,
62 avenue Notre Dame du Lac, 49000 Angers, France

(Received 27 March 2015; published 12 May 2015)

We exploit the theory of quantum estimation to investigate quantum state estimation in the presence of

noise. The quantum Fisher information is used to assess the estimation performance. For the qubit in Blach
general derived for the

From this latter expression, it is proved that the Fisher information always increases with the purity of the

measured qubit state. An arbitrary quantum noise affecting the qubit is taken into account for its impact on

score and then for the quantum Fisher information.

Then Py, is maximized by M(I’pl = Z [ Al
1,50
the projector on the eigensubspace of T with positive eigenvalues A,,.

The optimal measurement {M‘l)pt, Mgp‘ =Iy - M?pl}

(Helstrom 1976)
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suc

N
1
: : ax _
achieves the maximum PLo* = 2(1 + ,,:51 |/ln|).




Discrimination from noisy qubits

Quantum noise on a qubit in state p implements the transformation p — N(p).

With a noisy qubit, discrimination from N(pg) and N(p;).

— Impact of the preparation and level of quantum noise,

on the performance P.2* of the optimal detector,

F. Chapeau-Blondeau, “Détection quantique optimale sur un qubit bruité”,
25¢me Colloque GRETSI sur le Traitement du Signal et des Images, Lyon, France, 8-11 sept. 2015.

in relation to stochastic resonance and enhancement by noise.

F. Chapeau-Blondeau ; “Quantum state discrimination and enhancement by noise” ;
Physics Letters A 378 (2014) 2128-2136.

Physics Letters A 378 (2014) 2128-2136
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Quantum state discrimination and enhancement by noise @mm

Frangois Chapeau-Blondeau

b de Recherche en
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ARTICLE INFO ABSTRACT

Anice history: Discrimination between two quantum states is addressed as a quantum detection process where a
Received 12 February 2014 measurement with two outcomes is performed and a conclusive binary decision results about the
Received in revised form 15 May 2014
Acceped 17 May 2014

Available online 27 May 2014
Communicated by CR. Doering

state. The performance is assessed by the overall probability of decision error. Based on the theory of
quantum detection, the optimal measurement and its performance are exhibited in general conditions.
An application is realized on the qubir, for which generic models of quantum noise can be investigated
for their impact on state discrimination from a noisy qubit. The quantum noise acts through random

Discrimination among M > 2 quantum states

A quantum system can be in one of M alternative states p,,, form = 1to M,
with prior probabilities P, with ¥, P, = 1.

Problem : What is the best measurement {M,,} with M outcomes to decide
with a maximal probability of success Pgyc ?

M
= Maximize Py, = Z Py, tr(p,,M,,) according to the M operators M,,,,
m=1

subjectto 0 <M, <Iy and ng:] M, = Iy.

For M > 2 this problem is only partially solved, in some special cases.

N. Gillard, E. Belin, F. Chapeau-Blondeau ; “Qubit state detection and enhancement :mﬁ state discrimination :ﬁgilx“:;?nﬂ gfx‘::zz]ﬁm:?fei'r:.;?t:amw:eri"::,:r)a:;iy.tt;:sirfeﬁ:macfﬁnd::f"[‘rzl'::;?.Lg?':n:; T;yn (B arnett et al'v Adv. Opt- Photon. 2009)~
by quantum thermal noise” ; Electronics Letters 54 (2018) 38-39. Sﬁim feecion .”,f,;’,f,i‘;ﬁ‘;‘d‘e.',’. ,“,’};"‘,OT'JS’:i;"hfﬁé‘cﬁ‘;‘;,'.‘,i}f"ﬁd‘L'.‘f.’.':f."c‘,‘?,'\‘:,.? L"':J;‘.‘:.‘"..’.'}J’;ff.;.‘,",,ﬁiﬁf,‘.}' -
Zm;;l::":y i © 2014 Elsevier BYV. All rights reserved.
Stochastic resonance
82/109 83/109 84/109
Error-free discrimination between M = 2 states Error-free discrimination between M > 2 states Communication over a noisy quantum channel (1/3)
Two alternative states po or p; of Hy, with priors Py and P, = 1 — Py, M alternative states p,, of Hy, with prior P, form=1,...M ;
e o Oy OF T, WITLPHOIS Fo an@ F1 = 2 = Jo fom OF TN WIEL PIOT B (X = x},p)) — p; IN@,) = K- element POVM
are not full-rank in Hy, e.g. supp(pp) C Hy < [supp(po)]* D {0}. every p,, must be with defective rank < N.
Kin
If Sy = supp(po) N [supp(p1)]* # 0} error-free discrimination of py is possible. [ u—
— — L
If S; = supp(p;) N [supp(po)]* # {0}, error-free discrimination of p, is possible. Forallm = 1to M, define S,, = supp(on) N {D[SUPP('O[)] } Rate [(X;Y) < X(p./" P =S() - Z Pj S(pj with p’ = Z Pj p/
t#m p
. J=1 J=1
Necessity to find a three-outcome measurement (Mo, M, Munc} : For each nontrivial S,, # {0}, then p,, can go where none other p; can go. . . .
Etror-free discrimination of p. i Gibl V{(pj,pj)} and N(-) given, there always exists a POVM to achieve
Find 0 < My < Iy s.t. My = @pI1; “proportional” to IT; projector on [supp(o;)]*, = Error-free discrimination ot p,, 15 possible, 1Y) =X (s p))
. . 1) = j» Pj
and 0 < My <1y s.t. My = @I, “proportional” to ITy projector on [suj -, by M,, such that 0 < M,, < Iy and M,, tional” to th ject . . S . . L
P=w ! itlo prop . o ProJ [supp(po)] Y My such that 0 < M,, < Iy and M, “proportional” to the projector on %, ie X', p ;) is an achievable maximum rate for error-free communication,
and My + My < Ty &= [Mo + My + My = Iy with 0 < My,e < Iy}, R ) al basis {juery 9 B : o )
. ) To parametrize M, find an orthonormal basis {|u})};7;™"" of K, by coding successive classical input symbols X in blocks of length L — co.
maximizing Py, = Py tr(Mopo) + Py tr(M;p;) (= min Pype = 1 = Pgye) dim( %) N
then M,, = Z o a”‘ Iu'”) (u"‘l = d"I1,,, with II,, projector on %K.
. . . . . B. Schumacher, M. D. Westmoreland; “Sending classical information via noisy quantum channels”;
This problem is only partially solved, in some special cases, Find the M,, (the @™) with 3, M,, < Iy maximizing Py, = Y, P tr(M,,0,). Physical Review A 56 (1997) 131-138.
(Kleinmann er al., J. Math. Phys. 2010). A. S. Holevo; “The capacity of the quantum channel with general signal states”;
This problem is only partially solved, in some special cases, (Kleinmann, J. Math. Phys. 2010). IEEE Transactions on Information Theory 44 (1998) 269-273.
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Communication over a noisy quantum channel (2/3)

For given N(-) therefore X .« = (max)X(N(p,), pj)
Pip

is the overall maximum and achievable rate for error-free communication
of classical information over a noisy quantum channel,

or the classical information capacity of the quantum channel,

for product states or successive independent uses of the channel.

NB : The maximum X, can be achieved by no more than N? pure input states

pj = W) il with ;) € Hy .
[Shor, J. Math. Phys. 43 (2002) 4334. Shor, Com. Math. Phys. 246 (2004) 453].
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Communication over a noisy quantum channel (3/3)

For non-product states or successive non-independent but entangled uses of the
channel, due to a convexity property, the Holevo information is always
superadditive X (N1 ® N2) 2 Ximax(N1) + X max(N2) (Wilde 2016 Eq. (20.126))

For many channels it is found additive, X, (N ® N2) = Xmax (N1) + Xmax(N2)
so that entanglement does not improve over the product-state capacity.

Yet for some channels it has been found strictly superadditive,

Ximax(N1 @ N2) > Xpnax (N]) + Ximax (N2) meaning that entanglement does

improve over the product-state capacity.

M. B. Hastings; “Superadditivity of communication capacity using entangled inputs”;
Nature Physics 5 (2009) 255-257.

Then, which channels ? which entanglements ? which improvement ?
which capacity ? ... (largely, these are open issues).
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Continuous infinite dimensional states (1/5)

)

A particle moving in one dimension has a state [i/) = Y(x) |x) dx in an

—co
orthonormal basis {|x)} of a continuous infinite-dimensional Hilbert space .

The basis states {|x)} in H satisfy (x|x’) = 6(x — x’) (orthonormality),

[x) (x|dx =1 (completeness).

—00

The coordinate € 3 y/(x) = (x|y) is the wave function, satisfying

1= f WoPdx = f W) dx = f W) g dx = (Yo

with [/(x)|> the probability density for finding the particle at position x when

measuring position operator (observable) X = f x|x) (x| dx (diagonal form).
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Continuous infinite dimensional states (2/5)
A particle moving in three dimensions has a state [y/) = | ¥(F)

7ydF in an

orthonormal basis {|7*)} of a continuous infinite-dimensional Hilbert space H.

The basis states {|7*)} in H satisfy (7|#’y = 6(F—7’) (orthonormality),
fl?) (F|dF =1 (completeness).

The coordinate C 3 y/(7) = (F|) is the wave function, satisfying

L= fltﬁ(?)lzd?: fl//*(f')tﬁ(?)d?: f<w|7><7|w> dr = (),

with [/(7)[? the probability density for finding the particle at position 7
when measuring the position observable R= f 7 |#)(F|dF (diagonal form),
vector operator with components the 3 commuting position operators X =Ry,
Y =R,, Z=R;, and orthonormal basis of eigenstates {|7)} i.e. R [Py = F|F).
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Continuous infinite dimensional states (3/5)

Another orthonormal basis of H is formed by {|7)} the eigenstates of the
= . =

momentum observable P* or velocity V =P /m,

also satisfying (F|p’) = 6(F — p’) (orthonormality),

flﬁ) (P|dp =1 (completeness), and =4 |7 = P |P) (eigen invariance).

After De Broglie, by empirical postulation, a particle with a well defined
momentum f is endowed with a wave vector k= P/h and a wave function

1 > 1 pr
¢(7) = T LD exp(z’k ?) = RrAuE exp (z% ) in position representation,

2

|
defining the state |ﬁ):f¢(?)|?)d?: erxp(i%’)vm?,
with (7)) = ¢(7) .
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Continuous infinite dimensional states (4/5)

Particle with arbitrary state H > |) = f W(F) |PYdF = f‘{’(ﬁ) |pydp,
—_—— ——
(Fly) (Pl

with () = W) = [ ) (1) o7 = wa)exp(—z%’)dr,

i.e. the wave function V() in momentum representation is the
Fourier transform of the wave function ¢(7) in position representation.

Position operator R= f 7 |#) (7| dF acting on state |yr) with wave function ¢/(7)

in F-representation = R [/) has wave function 7#¢(7) in F-representation,

since ﬁ)h//):fﬂ?)(ﬂd?hﬂ):fm?)(ﬂlﬁ)d?:f Fy(#) |P)dP.
—— ——

W(F) wf of Rly)
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Continuous infinite dimensional states (5/5)

Momentum operator P = fﬁ |Z){P|dp (its diagonal form)
acting on state |i/) with wave function W(7) in p-representation
=P [y has wave function p\W(7) in p-representation,

sinceﬁ’|w>:fﬁ|ﬁ><ﬁ|dﬁw/>:fﬁlﬁxmwdﬁ:fﬁW(ﬁ) 17)dp .
—— ——
Y(p) wr of Ply)

FT™! [ﬁ Y(p )] = —[h_V)w(? ) gives wave function(s) of P [/} in P-representation.

Canonical commutation relations [Ry, P/] = ihd. 1, fork,( =x,y,z,

h . . .
then AryApp > 3 ore  Heisenberg uncertainty relations.
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Continuous-time evolution of a quantum system

By empirical postulation Schrodinger equation (for isolated systems) :

d . . 13
S0 =~ HI) = W) = exp(-+ f ) 1)) = Ut 12 W)

NI —
unitary U(ty, 1)

Hermitian operator Hamiltonian H, or energy operator.

1 =2
A particle of mass m in potential V(7, ) has Hamiltonian H = z—ﬁ + V(ﬁ, 1),
m

giving rise to the Schrédinger equation for the wave function Y(7, 1) = (7|y)
. . .0 n
in 7-representation ZhEW(?’ 1) = 72—Alﬁ(7, DERIGHYIGHE

m
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Quantum feedback control

PHYSICAL REVIEW A 80. 013805 (2009)

Quantum feedback by discrete quantum nondemolition measurements:
Towards on-demand generation of photon-number states

L Dotsenko."** M. Mirrahimi.* M. Brune,' S. Haroche."” J.-M. Raimond." and P. Rouchon®
"Laboratoire Kastler Brossel Ecole Normale Supérieure, CNRS, Université P. et M. Curie,
24 rue Lhomond, F-75231 Paris Cedex 5, France
2College de France, 11 Place Marcelin Berthelot, F-75231 Paris Cedex 5, France
*INRIA Rocquencourt, Domaine de Vouceau, BP 105, 78153 Le Chesnay Cedex, France
ACentre Automatique et Systemes, Mathématiques et Systemes, Mines ParisTech,
60 Boulevard Saint-Michel, 75272 Paris Cedex 6, France
(Received 1 May 2000; published 9 July 2009)

We propose a quantum feedback scheme for the preparation and protection of photon-number states of light
trapped in a high-Q microwave cavity. A quantum nondemolition measurement of the cavity field provides
on the ph ber distribution. The feedback loop is closed by inj nto the cavity a

coherent pulse adjusted to increase the probability of the target photon number. The eff and reliability
of the closed-loop state stabilization is assessed by quantum Monte Carlo simulations. We show that, in
realistic experimental conditions, the Fock states are efficiently produced and protected against decoherence.

DOI: 10.1103/PhysRevA.80.013805 PACS number(s): 42.50.Dv. 02.30.Yy. 42.50.Pq 96/109

System dynamics :
e Schrodinger equation (for isolated systems)
h

—_—
unitary U(11.2)

d i i ("
S0 == HI) = () = exp(-7 fn Hdr) (1)) = U, 12) (1))

Hermitian operator Hamiltonian H = Hy + H,, (control part H,,).

%p = —%[H,p] (Liouville — von Neumann equa.) = p(t2) = U(t1, 1) p(t1) UT(tl,tz)A

o Lindblad equation (for open systems)

% = —%[H,p] + ;(2L/pLj - {Lj Lj,p}), Lindblad op. L; for interaction with environment.
Measurement : Arbitrary operators {E,,} such that ¥, ELE,, = Iy,
Prim} = tr(EpEL) = (oL, Ep) = tr(oM,,) with M,, = E},E,,, positive,

EnpEp,

Post-measurement state Pm = N
tr(EnpEp)
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PHYSICAL REVIEW A 91. 052310 (2015)

Optimized probing states for qubit phase estimation with general quantum noise

Frangois Chapeau-Blondeau
Laboratoire Angevin de Recherche en Ingénierie des Systémes (LARIS), Université d’Angers,
62 avenue Notre Dame du Lac, 49000 Angers, France
(Received 27 March 2015: published 12 May 2015)

We exploit the theory of quantum estimation to i i antum state esti

g | in the presence of
noise. The quantum Fisher information is used to assess the estimation performance. For the qubit in Bloch
representation, general expressions are derived for the quantum score and then for the quantum Fisher information.
From this latter expression, it is proved that the Fisher information always increases with the purity of the
measured qubit state. An arbitrary quantum noise affecting the qubit is taken into account for its impact on
the Fisher information. The task is then specified to estimating the phase of a qubit in a rotation around an
arbitrary axis, equivalent to estimating the phase of an arbitrary single-qubit quantum gate. The analysis enables
determination of the optimal probing states best resistant to the noise, and proves that they always are pure
states but need to be specifically matched to the noise. This optimization is worked out for s
important to the qubit. An adaptive scheme and a Bayesian approach are presented to handle phase-dependent
solutions.

sl

eral noise models

DOI: 10.1103/PhysRevA.91.052310 PACS number(s): 03.67.—a, 42.50.Lc. 05.40.—a
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PHYSICAL REVIEW A 94. 022334 (2016)

Optimizing qubit phase estimation

Frangois Chapeau-Blondeau
Laboratoire Angevin de Recherche en Ingénierie des Systemes (LARIS). Université d’Angers,
62 avenue Notre Dame du Lac, 49000 Angers, France
(Received 5 June 2016: revised manuscript received 2 August 2016: published 24 August 2016)

The theory of quantum state estimation is exploited here to i
especially targeting a complete picture identifying optimal conditions in terms of Fisher information. quantum
and iated esti The approach is sy imation of the phase of a qubit in a

rotation around an arbitrary given axis, equivalent to estimating the phase of an arbitrary s -qubit quantum
gate, both in noise-free and then in noisy In diti we establish the possibility of
defining an optimal quantum probe, optimal quantum measurement, and optimal estimator together capable of
achieving the ultimate best performance uniformly for any unknown phase. With arbitrary quantum noise. we

show that in general the optimal solutions are phase dependent and require adaptive techniques for practical

the most efficient strategies for this task.

cified to e

implementation. However, for the important case of the depolarizing noise. we again establish the possibility of
a quantum probe, quantum measurement, and estimator uniformly optimal for any unknown phase. In this way,
for qubit phase estimation. without and then with quantum noise. we characterize the phase-independent optimal
solutions when they generally exist, and also identify the complementary conditions where the optimal solutions
are phase dependent and only adaptively implementable.

DOI: 10.1103/PhysRevA.94.022334
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Quantum image coding with a reference-frame-
independent scheme
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Abstract

For binary images, or bit planes of non-binary images, we investigate the possibility of a
quantum coding decodable by a receiver in the absence of reference frames shared with the
emitter. Dircct image coding with one qubit per pixel and non aligned frames leads to decoding
errors equivalent to a quantum bit-flip noise increasing with the misalignment. We show the
feasibility of frame-invariant coding by using for each pixel a qubit pair prepared in one of two
controlled entangled states. With just one common axis shared between the emitter and
receiver, exact decoding for each pixel can be oblained by means of lwo lwo-oulcome projective
measurements operating separately on each qubit of the pair. With strictly no alignment
information between the emitter and receiver, exact decoding can be obtained by means of a

two-outcome projective measurement operating jointly on the qubit pair. Tn addition, the

Dimensionality explosion in quantum theory

© The most elementary and nontrivial object of quantum information is the qubit, representable with a state vector
|1) in the 2-dimensional complex Hilbert space H,.

Such a pure state [/ ) of a qubit is thus a 2-dimensional object (a 2 x 1 vector).

On such a pure state |/ ), any unitary evolution is described by a unitary operator belonging to the 4-dimensional
space L(H>), the space of linear applications or operators on H5.

A unitary evolution of a pure state [i/;) of a qubit is thus a 4-dimensional object (a 2 x 2 matrix).

* Accounting for the essential property of decoherence on a qubit, requires it be represented with the extended
notion of a density operator p;, existing in the 4-dimensional space L(H5).

Such a mixed state p; of a qubit is thus a 4-dimensional object (a 2 X 2 matrix).

On such a mixed state p; of a qubit, any nonunitary evolution such as decoherence, should be described by an
operator belonging to the 16-dimensional space .C(L(’Hg)).

A nonunitary evolution of a mixed state p; of a qubit is thus a 16-dimensional object (a 4 x 4 matrix).

© The essential property of intrication starts to arise with a qubit pair. A qubit pair in a pure state |i/,) exists in the
4-dimensional Hilbert space H, ® >, while a qubit pair in a mixed state is represented by a density operator p,
existing in the 16-dimensional Hilbert space L(H> ® H>).

A mixed state p; of a qubit pair is thus a 16-dimensional object (a 4 X 4 matrix).

On such a mixed state p, of a qubit pair, any nonunitary evolution such as decoherence, should be described by an

Technologies for quantum computer

¢ Quantum-circuit decomposition approach :
e Photons : with mirrors, beam splitters, phase shifters, polarizers.

e Trapped ions : confined by electric fields, qubits stored in stable electronic states,
manipulated with lasers. Interact via phonons.

e Light & atoms in cavity : Cavity quantum electrodynamics (Jaynes-Cummings
model).

2012 Nobel Prize of D. Wineland (USA) and S. Haroche (France).
o Nuclear spin : manipulated with radiofrequency electromagnetic waves.

e Superconducting Josephson junctions : in electric circuits and control by electric
signals.

(Quantronics Group, CEA Saclay, France.)

e Electron spins : in quantum dots or single-electron transistor, and control by electric

signals.

frame invariant coding is shown much more resistant to quantum bit flip noise compared to

operator belonging to the 256-dimensional space L(L(’Hz ®‘7-{3)),
ature 526 (2015) 410-414.

the direct non-invariant coding. F t ixel of two (entangled) qubits instead of . . A D o . . . M. Veldhorst et al.; “A two-qubit logic gate in silicon”
0 S U 5 SIS 2 M W A nonunitary evolution of a mixed state p, of a qubit pair is thus a 256-dimensional object (a 16 x 16 matrix). ! q s e

complete frame-invariant image coding and enhanced noise resistance are thus obtained.

100/109 101/109 102/109
+ Quantum annealing, adiabatic quantum computation : A commercial quantum computer : Canadian D-Wave :
31 hittp:/ /veew dwavesys. ucts-services html | 4+ 2 )“, -
For finding the global minimum of a given objective function, coded as the ground ?f\\v‘ Aricle. Talk Read Edit View history a
state of an objective Hamiltonian. h° he®
WikieepiA  Quantum Experiments at Space Scale

Computation decomposed into a slow continuous transformation of an initial
Hamiltonian into a final Hamiltonian, whose ground states contain the solution.

The Free Encyclopedia

Quantum computing

Contents

From Wikipedia, the free encyclopedia

Quantum Experiments at Space Scale (QUESS, Chinese: £

- pinyin: Lidngz/ éxué shiyan wéixing, iterally: "Quantum Science Experiment

:a::;i‘::“:” Satelite"). is an intemational research project in the field of quantum physics. A Nuenes

it ing satelite, nicknamed Micius of Mozi (Chinese: ) after the ancient Chinese

philosopher and scientist, is operated by the Chinese Academy of Sciences, ag well | Missiontype  Technology demonstrator
Chinese Academy of Science

Starts from a superposition of all candidate states, as stationary states of a simple
controllable initial Hamiltonian.

has arrived.

Wicis T oz

Dorate to Wikpedia

Wikipedia store as ground stations in China. The University of Vienna and the Austrian Academy of | OPerator

viscion Sciences are running the sateliite’s European receiving stations “Il QUESS is a COSPARID  2018-0514"
Fiah proot-of-concept mission designed to faciltate quantum optics experiments over Mission
About Wikivedia long distances to allow the development of quantum encryption and quantum i
Communiy porta teleportation tet hnology ¥ Quantum encryption uses the principie of entanglement
Rec’em change 1o facilitate communication that is totally safe against eavesdropping, let alone.
Contact page

. . . . . . . decryption, by a third party. By producing pairs of entangled photons, QUESS will BOL mass
Since 2011 : a 128-qubit processor, with superconducting circuit implementation. Toois

N allow ground stations separated by many thousands of kilometres to establish A

W secure quantum channels.” QUESS itself has imited nicaton capabites 1t [ e 7o
Vg needs line-of-sight, and can only operate when not in suniight ¥ If QUESS is I—I

Probability amplitudes of all candidate states are evolved in parallel, with the
time-dependent Schrodinger equation from the Hamiltonian progressively deformed
toward the (complicated) objective Hamiltonian to solve.

2 years (planned)

Spacacraft properties
Manufacturer  Chinese Academy of Science
621kg (1,391 10)

Quantum tunneling out of local minima helps the system converge to the ground
state solution.

A class of universal Hamiltonians is the lattice of qubits (with Pauli operators X, Z) : Based on quantum annealing, to solve optimization problems.

Uploaa fie Rocket Tono
_ . s _— s e 2 successful. further Micius sateliites wil follow, allowing a European-Asian quantum-
H= Z hiZ;+ Z Xy + Z Ti(ZiZi + XiXp) + Z KXz . May 2013 : D-Wave 2, with 512 qubits. $15-million joint purchase by NASA & Google. s T R KT il DRI — -
- h: \cademy of Spacefiight
! , " Aug. 2015 : D-Wave 2X with 1000 qubits. Jan. 2017 : D-Wave 2000Q with 2000 qubits. ool ThRm S IS ST it
J. D. Biamonte, P. J. Love; “Realizable Hamiltonians for universal adiabatic quantum . . 5 .
- by . - M. W. Johnson, ef al.; “Quantum annealing with manufactured spins”; Nature 473 (2011) 194-198.
computers”; Physical Review A 78 (2008) 012352,1-7. . Q . = . P . 3 ( )
T. Lanting, et al.; “Entanglement in a quantum annealing processor”’; Phys. Rev. X 4 (2014) 021041.
103/109 104/109 105/109
SRR
La communauté frangaise du chiffrement se mobilise. Elle h d
a lancé en début d'année 'iniiative Risq (Regtoupement de From ri r in
QUATRE GEANTS ET UN PIONNIER POUR FABRIQUER LE PROCESSEUR DE DEMAIN Vindustie francaise pour la sécurité post-quantique)| Une o esearch to UStry
quinzaine d'acteurs se sont regroupés, A Ia fois des laboratoires English Portal

académiques (CEA, Tnria, Irisa, UPMC...), des grands groupes

Go gle ( ntel) B Microsoft D:waue et des PME (Aitbus, Gemalto, Orange, Thales, CS, Secure-IC.. el ey T
Linitiative a bénéficié d'un financement du programme des

POUR LA SUPREMATIE PASA PAS VERS LESILICIUM ROI LE PARI TOPOLOGIQUE LE PIONNIER CONTESTE investissements d'avenir 4 hauteur d'environ 7,5 millions £= il B ROFEAN RROIES

QUANTIQUE L'UNIVERSEL d'euros sur trois ans dans le cadre de 'appel 4 projets liés

Intel veut mettre e siicium
au cceur de [ordinateur
quantique. Avec lavantage
aujourd hui par un ordinateur  de pouvoir utiliser e savoir-
quiméle l'approche souple  de 16 qubits accessible dans  faire et les process
et dédiée 3 une gamme lecloud. Utiisant des qubits  traditionnels. Laméricain

e problémes de D-Wave implantés  travaille sur un qubit

Lafime de Redmondsuit ~ Ce spécialiste américain
unevoie originale en pariant  néen 1999 estle seul 3 avoir
pour ses qubits sur des déja vendu des machines
tresses de quasi-particules, (3 la Nasa, & Lockheed
appelées fermions de Martin..) et a présenté
Majorana, généréesdans  en 2017 son nouveau

des gaz d'électrons 2D. modéle 32000 qubits

aux grands défis du numérique. Vu la sensibilité du sujet,
I'Etat soutient et suit e prs cette initiative, fournissant des
tenforts de IAgence nationale pour la sécurité des systémes
dinformation (Anss) et de la Direction générale de 'armement
(DGA). «Le projet Risq définit une feuille de route pour la
commercialisation de produits de sécurité post-quantique»,
précise Adrien Facon, le porte-parole de cette initiative. Des

é aux différents cas

De ses échanges initiaux Lancée en 2016, I1BMQ You are here : Home > News >
avec D-Wave, Googleagardé  Experience se trachit ) ) ,
une démarche hybride | | European & | New
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Australian Prime Minister and French President
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etla correction derreurs sur du silicium et sattachant  matérialisé par unélectron | Uintérét de cetteapproche  supraconducteurs. Mais ces L | prevspour e NEWSLETTER announce pla ns for new quantum compu ti ng
alalBM. Le géant de amatriser les erreursliées  piégé dans un transistor dite topologique est d'avoir  qubits connaissent beaucoup ENF'N | 1l :
Mountain View travaillerait 4[a décohérence, IBM modifié. Mais Intel suit aussi | une protection intrinséque _ d'erreurs et e caractére LAREVOLUTION collaboration
sur un prototype dispose aussi d'une machine  la piste supraconductrice, contre la décohérence et quantique des calculs est Q « Le projet Risq définit une feullle
de 20 qubits et espére de 17 qubits sur laquelle comme en témoigne donc de limiter la redondance ~ contesté. Une chose est w» @& | deroute pour lacommerclalisation The Prime Minister of Australia, Malcolm Turnbull, and the President of
«démontrer lasuprématie il travaille pour développer  : la puce de 17 qubits en qubits utilisée pour sire, lamachine de D-Wave +p  de prodults de sécurité post-quantique. » France, Emmanuel Macron, today announced plans for a new French-
guantique dans le courant un ordinateur universel supraconducteurs préserftée | corriger les erreurs. est cantonnée a des calculs 7 N - Australian collaboration between Australia’s first quantum computing
de 2018 » avec une machine  ¢'ici 4 2026. mi-octobre. Une premi hineest  spécifiques (mas trés utiles) « NOUS |NTEGRERONS A m;u';',“e,f;;;“;g‘;’;;f%,:é;;’;‘,“qm‘fmw company, Silicon Quantum Computing Pty Ltd (SQC), and the world
de 49 qubits. attendue « pour bientdt ». d'optimisation. y g leading French research and development organisation, the

DES ACCELER ATEURS L'USINE NOUVELLE | N° 35361 2 NOVEMBRE 2017 Commissariat a I'Energie Atomique et aux Energies Alternatives (the

8 CEA).
QUANTIQUES » INDUSTRIELS La puissance de |'ordinateur © Folacom MG
L’Usine Nouvelle, N°3536 du 2 nov. 2017. T ——— quantique séduit déja. Aprés Lockheed Martin, Published on 2 May 2018 @*EOOMD
)e Vannier est conseiller os i i i i
o esveingr e ondoten Volkswagen et Biogen travaillent avec le pionnier
quantique est un impératif pour surmonter D-Wave et Airbus a monté une équipe dédiée. hitp/Awwwcea. fr/english/Pages/N Jian-Prime-Minister-and-French-Preside plans-for-new-q puting aspx

lafin dea loi de Moore.
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