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“I believe that science is not simply a matter of exploring new horizons. One must also make the new

knowledge readily available, and we have in this work a beautiful example of such a pedagogical effort.”
Claude Cohen-Tannoudji, in foreword to the book “Introduction to Quantum Optics™
by G. Grynberg, A. Aspect, C. Fabre : Cambridge University Press 2010.

A definition (at large)

To exploit quantum properties and phenomena
for information processing and computation.

Motivations for the quantic

for information and computation :

1) When using elementary systems (photons, electrons, atoms, ions,
nanodevices, ...).

2) To benefit from purely quantum effects (parallelism, entanglement, ... ).

3) New field of research, rich of large potentialities.
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Quantum system Measurement of the qubit Hadamard basis )
Represented by a state vector [¢/) When a qubit in state |y = a|0) + B|1) Another orthonormal basis of H,
in a complex Hilbert space H, is measured in the orthonormal basis {|0), 1)}, I+ 1 (|0> . |l>) -y 1 (|O) “)) +)
with unit norm = [yl = 1. { -5 v = } :
Wi = Il = only 2 possible outcomes (Born rule) : V2 V2 /4
. . X state |0) with probability |a|* = [(Ol) > = (Olgr)w10) = (O[I1,|0), or i |0)
In dimension 2 : the qublt (phOtOl’l, electron, atom, .. ) state |1) with probability w|2 — |<1|¢/> |2 — <1|W><¢|1> — <1|Hl//|1>
State [y) = @ |0) + B|1)
in some orthonormal basis {|0), [1)} of >, = Computational orthonormal basis [-)
with complex @, 8 € C such that |af® + |8]> = (Wly) = |yl = 1. Measurement : usually : { 0) = 1 (|+> .l )) = 1 (|+> | >) }
e a probabilistic process, - V2 ' - V2 '
[y = [zy] L W =Wl =B = W) = I = |af® + |8 scalar. e as a destructive projection of the state [i) in an orthonormal basis,
B o with statistics evaluable over repeated experiments with same preparation |i).
al aa”  afff
) <yl = [ ][O/x,ﬁ*] = [ . _ | =11, orthogonal projector on |¢).
B ap gl
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Experiments Coll. Magnet Bloch sphere representation of the qubit In dimension N (finite) (extensible to infinite dimension)
N
i ‘ e Qubit in state State |y) = Z a, |n) , in some orthonormal basis {Il) L2) ... IN)} of Hy,
T ‘ Saresn ) = a|0) + B11) with |of? + 8] = 1. =
N
y o7 & ) = cos(6/2) [0) + € sin(6/2) |1) with @, € €, and Z el = (Uly) = 1.
. n=1
Stern-Gerlach apparatus for particles with two states of spin (electron, atom). with 6 € [0, 1,
¢ €[0,2x][. Proba. Pr{|n)} = |a,|* in a projective measurement of |y) in basis {In)}.
detector ’ Two states L in H, are antipodal on sphere. v Okn
—
Inner product (kly) = Z a, (kln) = a; coordinate.
n=1
Two states of polarization of a photon : As a quantum object, N
(Nicol prism, Glan-Thompson, the qubit has infinitely many accessible values S= Z [n) (n| = Iy identity of Hy (closure or completeness relation),
polarizing beam splitter, . ..) in its two continuous degrees of freedom (6, ¢), n=1 @
N " N
et when it is measured it can only be found in one of two states ; . _ _ _ _
dsscior 7R yerwr casure Y since, V1) : Sy = 3 In) i) = Y- aul) =) = S = I.
(just like a classical bit). =1 =1
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Multiple qubits
A system (a word) of N qubits has a state in Wf’N s

a tensor-product vector space with dimension 2V,

and orthonormal basis {|x;x; - - - xy)} .
e o, 1)y

Example N =2:
Generally [/) = agp [00) + ao; [01) + @10 [10) + aq1 [11) (2N coord.).
Or, as a special separable state (2N coord.)

I = (110) + B1 1)) @ (2 10) + B2 1))
= 2102 100) + @18, [01) + B2 [10) + BB [11) .

A multipartite state which is not separable is entangled.

An entangled state behaves as a nonlocal whole : what is done on one part may
influence the other part instantly, no matter how distant they are.

Entangled states

o Example of a separable state of two qubits AB :

1 1
IAB) = |+) @ |+) = @(|0> +D)e® %(|0>+ ) =

When measured in the basis {|0), |1)}, each qubit A and B can be found in state [0) or |1)
independently with probability 1/2.
Pr{A in |0)} = Pr{|AB) = 100)} + Pr{|AB) = [01)} = 1/4 + 1/4 = 1/2.

%(\00) +101) + 10y + |11>).

o Example of an entangled state of two qubits AB :
1
|AB) = E(lOO) + \11)). Pr{A in |0)} = Pr{|AB) = |00)} = 1/2.

When measured in the basis {|0), |1)}, each qubit A and B can be found in state [0) or |1)
with probability 1/2 (randomly, no predetermination before measurement).

But if A is found in |0) necessarily B is found in |0),

and if A is found in |1) necessarily B is found in |1),

no matter how distant the two qubits are before measurement.

Bell basis
A pair of qubits in ‘7{?2 is a quantum system with dimension 27 = 4,

with original (computational) orthonormal basis {IOO) ,|01),]10),]1 1)}.

Another orthonormal basis of (Hf’z is the Bell basis {WOO) ,1Bo1) s 1B1o) » w“)} :

Bo) = 7(|00>+|11>) 00y = 7(w00>+w10>)
= ! 01 10 01y =
Bod = 7(| ) +110)) o) = 7(|ﬁm>+|ﬁn>)
=54
(00~ 1) 10) = = - 6u)
LBH>> - \/—(l - ‘/— 01
B = 7(|01>—|10>) nn = 7(|ﬁ00)—|,310>)
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Observables Heisenberg uncertainty relation (1/2) Heisenberg uncertainty relation (2/2)
For a quantum system in Hy with dimension N,
a projective measurement is defined by an orthonormal basis {|1), ... |N)} of Hy, For two operators A and B : commutator [A,B] = AB - BA, For two observables A and B measured in state |y/) :
and the N orthogonal projectors |n) (n|, forn = 1 to N. anticommutator {A,B} = AB + BA, the average (scalar) : (A) = (W|AlY) ,
1 1 . . R A
Also, any Hermitian (i.e. Q = Q) operator Q on Hy, so that AB = 2 [A.Bl+ 2 (A B} the centered or dispersion operator : A=A = (A)1,
has its eigenstates forming an orthonormal basis {|w;), ... |wy)} of Hy. — <K2> — (A2> _ (A)2 scalar variance
Therefore, any Hermitian operator Q on Hy defines a valid measurement, When A and B Hermitian : [A, B] is antiHermitian and {A, B} is Hermitian,
N . ~ —
and has a spectral decomposition Q = an lw,) (w,|,  with the real eigenvalues w,. and for any |‘1//> then (YI[A, Bl]|l//> ciR and (Y|{A,B}ly) € ]Rl, then also [A,B] =[A,B].
= 2 2
WIABIY) = 5 WITA, BIlW) +5 (WA, Blly) = [WIABIW| = —[(WIA.BIW)[ 2 : ertai ion :
Also, any physical quantity measurable on a quantum system is represented in quantum 2 m 2 m 4 Whence <A ) < > 2 |< A, BJ>| Heisenberg uncertainty relation ;
theory by a Hermitian operator (an observable) Q. —ap 12
. . . . . . and for two vectors A |y) and B |), the Cauchy-Schwarz inequality is or with the scalar dispersions AA = ((AZ)) and AB = ((BZ))
When system in state [1/), measuring observable Q is equivalent to performing a projec- 5 ) ) )
tive measurement in eigenbasis {lw,)], with projectors lwy) (ws| = My, and yields the 1 |(w|AB|¢’>| < (WA ) WiB ) then AAAB > 5|<[A, B])| Heisenberg uncertainty relation.
eigenvalue w, with probability Pr{w,} = [{w, ) > = (lw,) (wnl) = WITLIW). so that (WIA%|y) (WIB>y) > Z|<¢|[A, B]|¢)|2 .
The average is (Q) = Y, w, Pr{w,} = WIQY) .
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Computation on a qubit
Through a unitary (linear) operator U on H, (a 2 X 2 matrix) : G.e. U™ =U")

normalized vector |) € H, —> U |y) normalized vector € H, .

input output
= quantum gate ‘ ‘
(always reversible) ¥) U Ule)
Had d gate H ! Identity gate I Lo
adamard gate H = — . entity eate I» = )
¢ vl - vere b=l

H?> =1, & H™! = H = H" Hermitian unitary.
HI0) =[+) and H|I)=]|-)

1
—(10) + (=D 1) =D*z) ,
\/5( * ) %:1 ¢

= Hp)= Vxel{0,1}.
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Pauli gates
0 1

X=a'x=[1 0

}’ Y=0,=

0 —i
i 0]

Hermitian unitary.

S
%o -1

X2=Y2=22=1,. XY =-YX=iZ, ZX =iY,etc.
[Iz, XY, Z} a basis for operators on H,.

1
Hadamard gate H = —(X + Z).
G

X=0, the inversion or Not quantum gate. ~ X[0) = [1),  X|I) =[0).
L[1+i 1-i | A )
we k== e = e,

is the square-root of Not, a typically quantum gate (no classical analog).
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In general, the gates U and ¢“U give the same measurement statistics at the
output, and are thus physically equivalent, in this respect.

Any single-qubit gate can always be expressed as ¢*U; with
U = exp(—i %ﬂ’- 5‘) = cos(g)lz - isin(%)ﬁ’~ # €SuUQ),

>

with a formal “vector” of 2 X 2 matrices & = [0, 0y, 0],
and 7 = [n,, ny,nz]'r a real unit vector of R? = det(Ug) =1,

implementing in the Bloch sphere representation
a rotation of the qubit state of an angle & around the axis 77 in R? € SO(3).

Example : W = v = e™/*[cos(x/4) T, = i sin(x/4) 0|, (E=n/2, it=2).
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An optical implementation

0
0 €
optically implemented by a Mach-Zehnder interferometer

A one-qubit phase gate U; =

] = ¢ exp(—io/2)

Computation on a pair of qubits
Through a unitary operator U on ‘H?z (a4 x4 matrix) :

normalized vector |y) € ‘Hfz — U|¥) normalized vector € ‘Hfz .

e Example : Controlled-Not gate

Via the XOR binary function: a®b =a whenb =0, or =a whenb =1
invertiblea®x=b < x=a®db=bda.

Used to construct a unitary invertible quantum C-Not gate :

input output
/ - out = quantum gate — . (T target, C control)
phase shift & = .
V4 > (always reversible) [4) U Ule) . o CeT
ICTy — |C,CaT) |CT> |Ct7 Cao T>
—_— V4 [00) — 100) 1000
i / 01) — [01) ¢ ¢ 0100
m Completely defined for instance by the transformation of the four state vectors ! U=
of the computational basis {[00) .01 ,10). [11)}. 110) — 111 8 8 ? (‘)
acting on individual photons with two states of polarization |0) and |1) ) - [y — 110
which are selectively shifted in phase, But works equally onl any linear superposition of quantum states . , . e . . 3 '
to operate as well on any superposition a [0) + 8[1) — a/|0) + e’ |1). = quantum parallelism. (E-Nop™ = Iy = (C-Not)™ = C-Not = (C-Not)" Hermitian unitary.
19/109 20/109 21/109
Computation on a system of N qubits No cloning theorem (1982) Quantum parallelism
Through a unitary operator U on ‘HfN (a 2V x 2V matrix) : ¢, Possibility of a circuit (a unitary U) that would take any state [¢), associated to an For a system of N qubits,
normalized vector ) € 7_{;9N — Uy normalized vector (],G@N ) auxiliary register |s), to transform the input [¢) |s) into the cloned output [/ [1) ? a quantum gate is any unitary operator U from WfN onto ‘HfN.
u .
= quantum gate : N input qubits U N output qubits. [r1) |s) ——— U(1) Is)) = 1) 1) (would be). The quantum gate U is completely defined
U by its action on the 2" basis states of H" : {I)?) ,Xe |0, 1}N},
Completely defined for instance by the transformation of the 2V state vectors 2} sy —— U2} Is)) = [h2) W2} (would be). just like a classical gate.
of the computational basis ; Li .
but works equally on any linear superposition of them (parallelism). inear superposition ) = a1 [y} + a2 y2) Yet, the quantum gate U can be operated
) o ) |s) _i_) U(ly) Is)) = U(aq [ri)1s) + @z ly2) |s)) on any linear superposition of the basis states {I)Z’) ,¥ € {0, I}N}.
Any N-qubit quantum gate or circuit may always be composed — o WD W) + s ) ) since U Tinear o ) ) )
from two-qubit C-Not gates and single-qubit gates (universality). A 2R ’ This is quantum parallelism, with no classical analog.
And in principle this ensures experimental realizability. But ) ) = ) ® |y = (0/1 W)+ an |¢'2>)((¥1 W) + s |l//2>)
. . . . = af W) W) + aran W) W) + aras o) W) + a3 Wa) )
This provides a foundation for quantum computation. 2U(¥)]s)  in general. = No cloning U possible.
22/109 23/109 24/109
Parallel evaluation of a function (1/4) Parallel evaluation of a function (2/4) Parallel evaluation of a function (3/4)
A classical Boolean function f(-) from N bits to 1 bit Toffoli gate or Controlled-Controlled-Not gate or CC-Not quantum gate : = =
N =T X
Xe {0, 1}V —— f(¥) €{0,1}. U,
la) D la & be) f
Used to construct a unitary operator U as an invertible f-controlled gate : ) ) —y Yy f (:L") S
7 T le) le) For every basis state |), with ¥ € {0, 1}V :
Uy .
_Not)? = _Not)~! = CC-Not = (CC-Not)" it ite R f R
= (CC-Not)~ = Ig & (CC-Not) CC-Not = (CC-Not)" Hermitian unitary. )y = 0) IR FE)
—  yof@)— ) .
Any classical Boolean function f(¥) (invertible or non) on N bits Xly =1 1) 'f()'cﬁ>
with binary output y & f(¥) = f(¥) wheny =0, or= f(¥) wheny=1, can always be implemented (simulated) by means of 3-qubit Toffoli gates. 1) 1+) %) 1 [lf(f)) 4 ‘%)] = 1T) )
(invertible as [y @ f(D)] @ f(¥) =y & f() & f(X) =y &0 = y). ) 9 lzte) 1) o ® j2) b —
» U ) 12 0 ————10) & [lf(m - \f(f))] =1¥) =) (-1
[v) ) 1) v [v)
NAND NOT AND
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Parallel evaluation of a function (4/4)

)Nl F Pl
Uy
lv) —y  y® f(@—
[N = LNZ I?)  superposition of all basis states
= perposition of all basis states,
\/— Xel0, 1)V

U N
1+°Y ©|0) ——f——> (%/_) Z |Z)f(®) ) superposition of all values f(X).

{0,V

[ @) — ( ' )NZ 1)) (1)
SVl — [ — ) |-) (1)
\/zfe(o,l)"’

( How to extract, to measure, useful informations from superpositions ?

Deutsch-Jozsa algorithm (1992) : Parallel test of a function (1/5)

A classical Boolean function £ {0, 1} > (0.1}
N Q
2N values — 2 values,
can be constant (all inputs into 0 or 1) or balanced (equal numbers of 0, 1 in output).

2N
Classically : Between 2 and > + 1 evaluations of f(-) to decide.

Quantumly : One evaluation of f(-) is enough (on a suitable superposition).

Lemma 1: H|x) = %(\0)4—(—])‘\1)) N Z =D)%), VYxelo1)

= HN[®) =Hlx) @ @H|xy) *( ) Z( Dy, vEe(o.n,
2€(0,1)V
with scalar product ¥7 = xz; +

-+ xyzy modulo 2. (quant. Hadamard transfo.)

Deutsch-Jozsa algorithm (2/5)

QN

[+) e 7 z HeN
Uy
|=) —y y D f(T)

t t !
[v1) |42) |13)

LW
Input state i) = [+)°V |-) = (—) [%) =)

1Y :
Internal state |y;) = (—) 1)) ()@
\/E fs%;)’”
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Deutsch-Jozsa algorithm (3/5) Deutsch-Jozsa algorithm (4/5) Deutsch-Jozsa algorithm (5/5)
1 ; [1] D. Deutsch; “Quantum theory, the Church-Turing principle and the universal quantum
— N - ENE . 2) = Z _VDer? : )
Output state |f3) = (H ® 12) ) So ) N Z y w(@)1z) - with w(@) \( D . computer”; Proceedings of the Royal Society of London A 400 (1985) 97-117.
Z€{0.1 xef0.1)V
1 N <01 o The case N = 2.
Y BN 12y [y (—1)/@
—(\5) 2, HN DR D For [2)=10) =[0)*Y  then w@=0)= ) (-1)/.
X0, 1V PRI [2] D. Deutsch, R. Jozsa; “Rapid solution of problems by quantum computation”; Proceedings of
1 N the Royal Society of London A 439 (1992) 553-558.
= (E) Z Z D) =) (D' by Lemma 1, o When f(-) constant : w(@ = 0) = 2V(=1)© = £2¥ — in |y) the amplitude of |0 ) is Extension to arbitrary N > 2.
Y0,V Ze(0,1)Y +1, and since |y is with unit norm = |y = =0, and all other w(Z # 0)=0.
— When |i%) is measured, N states |0) are found [3] E. Bernstein, U. Vazirani; “Quantum complexity theory”; SIAM Journal on Computing 26
"y ’ (1997) 1411-1473.
or |y3)=yyl-), with  |y) = (i) Z w(@)|Z) o When f(-) balanced : w(Z = 0)=0= ) is not or does not contain state 10). Extension to f(X) = dX or f(¥) = d¥ @ b, to find binary N-word @ — by producing output
0. = When |) is measured, at least one state |1) is found. W) =1a).
H 2) — _1y@ex? o echis cone “One . e revicitad”- .
and the scalar weight  w(Z) = Z =D — Illustrates quantum ressources of parallelism, coherent superposition, interference. [41R. Cleve, A. Fikert, €. Macchiavello, M. Mosca; “Quantum algorithms revisited™; Proceedings
Re(0. )N . . . . i N of the Royal Society of London A 454 (1998) 339-354.
(When f(-) is neither constant nor balanced, |¢/) contains a little bit of |0 ).)
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Superdense coding (Bennett 1992) : exploiting entanglement
1
%(mm +11)) = Boo)-

Alice and Bob share a qubit pair in entangled state [AB) =

Alice chooses two classical bits, used to encode by applying to her qubit A
one of {I,, X, iY, Z}, delivering the qubit A sent to Bob.

' Alice Bob
2 chits I 1 gbit A’ . L ®L|AB) = |Boo)
X _ 2 chits X® 1, AB) = [fo))
iy Decoder |f—F—= 2 o1
A B Z®L|AB) = |Bio)

iY®L|AB) = [Bu1)

|AB) 2 entangled qubits

Bob receives this qubit A’. For decoding, Bob measures |A’B) in the Bell basis
{Iﬁoo) L1Bon)  1B10) , 1811 >}, from which he recovers the two classical bits.
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Teleportation (Bennett 1993) : of an unknown qubit state (1/3)
Qubit Q in unknown arbitrary state [p) = ag [0) + a; [1).

1
Alice and Bob share a qubit pair in entangled state |[AB) = %(\om +[11)) = [Boo)-

W’Q) Alice 2 chits  Bob

Measurement
in Bell basis
A {|£311/> }

T

1) |4

Alice measures the pair of qubits QA in the Bell basis (so [i/o) is locally destroyed),
and the two resulting cbits x, y are sent to Bob.
Bob on his qubit B applies the gates X* and Z* which reconstructs [o).
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Teleportation (2/3)
W) = o) 1Boo) = —[ao 10) (100} + 111)) + et [1) (00 + [11))]

[oz() [000) + ag [011) + @ |100) + a; |111>],

al-sl-

factorizable as |1} = —[ (100) + 1)) a0 10) + a1 1)) +
(101) +110))(ao 1) + 1 0) +
(100) = 111))(a0 10 = a1 1)) +
( J(ao )

[01) =110} (o I1) — @1 10) ]

sl-sl-sl ~§| -
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Teleportation (3/3)
1
) = §[L800> (@010) + @1 11)) + 1Bor) (@0 I1) + @1 10)) +
1B10) (20 10) = a1 1)) + 1B11) (e 1) = e |0>)] :

The first two qubits QA measured in Bell basis {|3.,)} yield the two cbits xy,

used to transform the third qubit B by X* then Z*, which reconstructs |¢/¢).
I L

When QA is measured in |Byp) then Bisin ag|0) + a; |1) 2,2 [o)
X I

When QA is measured in |8y;) then Bisin ag|l) + a;|0) — - -2 [o)
I z

When QA is measured in |[89) then Bisin ag|0) —a; |1) 2,2 o)

X z
When QA is measured in |1;) then Bisin ap|1) — a1 10) — - — |¢p).
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Princeps references on superdense coding ...

[1] C. H. Bennett, S. J. Wiesner; “Communication via one- and two-particle operators on
Einstein-Podolsky-Rosen states”; Physical Review Letters 69 (1992) 2881-2884.

[2] K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger; “Dense coding in experimental
quantum communication”; Physical Review Letters 76 (1996) 4656—4659.

... and teleportation
[3] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters; “Teleporting an

unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels™;
Physical Review Letters 70 (1993) 1895-1899.
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Grover quantum search algorithm (1/4)  Phys. Rev. Let. 79 (1997) 325.

o [terative algorithm that finds an item out of N in an unsorted dataset,
with O(VN) queries instead of O(N) classically.

o A dataset contains N possible items or states indexed by n € {1,2,--- N}. One wants to find one
(only one here, but extensible) state n = ng satisfying some criterion or property. For the search of
the solution ng, one can test whether any state » is solution or not, by interrogating a classical
oracle, which amounts to evaluate a classical function f(-) responding as f(n) = dnny-

For this, we note that the oracle does not need to know or to establish the solution ng, but it needs to
be able to evaluate (efficiently at low computing cost) at each n the function f(n) so as to tell
whether the proposed # is solution or not.

For instance, for the RSA factoring problem, the oracle does not need to know the two prime factors
of the large integer key ; the oracle only needs to be able to tell efficiently whether a query integer n
is a factor or not, i.e. whether the query integer n divides the key or not. The oracle can do this
efficiently by computing the integer division to implement f(-).

Classically, for such search based on interrogating the oracle, it requires O(N) interrogations of
the classical oracle in order to find the solution ng.
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Grover quantum search algorithm (2/4)

o Quantumly, an N-dimensional quantum system in Hy with orthonormal basis {|1), -, |N)},
where the N basis states |n), for n € {1,2,--- N}, represent the N items of the dataset.

From a quantum implementation of the function f(-), it is possible to obtain the quantum oracle as
the unitary operator Uy realizing Ug |n) = (=1)/® |n) for any n € {1,2,---N}.

Thus, the quantum oracle returns its response by reversing the sign of [n) when n is the solution ng,
while no change of sign occurs to [n) when 7 is not the solution.

Equivalently Uy = Iy — 2 |ng){(nol, although |np) may not be known, but only f(-) evaluable.

The quantum oracle is able to respond to a superposition of input query states |n) in a single
interrogation, for instance to a superposition like ) = N™1/2 N |n).

Upon measuring |i/), any specific item |n;) would be obtained as measurement outcome with the
probability (11} P = 1/N . since (nily) = 1/ VN for any ny € {1,2,--N).

Instead, as measurement outcome, we would like to obtain the solution |ng) with probability 1.

Grover quantum search algorithm (3/4) [n0)

N
elet [n.)= Z |n) normalized state L |ng)

1
VN =1 iz

= )= NN |n) isin plane (jno) ,In.)).

n=1

e With the oracle Uy = Iy — 2 |ng){(ng| = Up In) = [n.) and Ug [ng) = — |ng).
So in plane (\no) s |nL)), the operator Uy performs a reflection about |n, ).

o Let |, ) normalized state L |¢) in plane (\no) s |nL)).

 Define the unitary operator Uy, = 2[y) (¢/| = Iy = Uy [y) = ) and Uy, 1) = — |0

So in plane (\no) s |nL)), the operator Uy, performs a reflection about |/).

o In plane (\ng) s InJ_)), the composition of two reflections is a rotation U,Uy = G (Grover
2

amplification operator). It verifies G |ng) = UyUg [no) = —=Uy Ino) = [no) — — |¥).

The rotation angle 6 between |ng) and G |ng), via the scalar product of |ng) and G |ng), verifies

Grover quantum search algorithm (4/4)

2
e In plane (\n0> s InJ_)), the rotation G = Uy Uy is with angle 6 ~ — .

VN

2 4 2
Gl = UyUolyy = Uy (1) - = o)) = (1 - N)w g

So after rotation by 6 the rotated state G [y) is closer to |ng).

o G|) remains in plane (lno) s \nL)), and any state in plane (lno) s \nl)) by G is rotated by 6.
So G? |y rotates |i) by 26 toward |ng), and G¥ |y) rotates | by k6 toward |ng).

e The angle © of |¢) and |np) is such that cos(®) = (noly) = 1/ VN = 0= acos(l/ \/N)

(€} N
eSoK = 7 ~ g acos(l / W) iterations of G rotate [i¥) onto |ng).

At most ® = (WhenN>>l)=atm0stK~%WA

ST

o G _ 2 [ 2 o So when the state GX |y/) ~ |no) is measured, the probability is almost 1 to obtain |ng) .
cos®) = (nolGlno) = 1 - N - 2 = 0= W AN> 1. = The searched item |ng) is found with O(VN) interrogations instead of O(N) classically.
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Other quantum algorithms Quantum cryptography * BB84 protocol (Bennett & Brassard 1984) 1)
o The problem of cryptogranh ¢ Alice has a string of 4N random bits. She encodes with
o Shor factoring algorithm (1997) : P yptography a qubit in a basis state either from {|0), 1)} or {|+),|-)}
galg . Message X, a string of bits randomly chosen for each bit.
Factors any integer in polynomial complexity Cryptographic key K, a completely random string of bits with proba. 1/2 and 1/2. + Then Bob chooses to measure each received qubit either in 0
(instead of exponential classically). ) ) basis {|0),|1)} or {|+),|-)} so as to decode each transmitted bit. [0)
The cryptogram or encrypted message C(X, K) = X @ K (encrypted string of bits).
s . . + When the whole string of 4N bits has been transmitted,
15 = 3 x 5, with spin-1/2 nuclei (Vandersypen et al., Nature 2001). This is Vernam cipher or one-time pad, Alice and Bob publicly disclose the sequence of their basis choices
with provably perfect security, since mutual information /(C; X) = H(X) — H(X|C) = 0. to identify where they coincide. [-)
21 = 3 x 7, with photons (Martin-Lépez et al., Nature Photonics 2012). o .
Problem : establishing a secret (private) key + Alice and Bob keep only the positions where their basis choices coincide,
between emitter (Alice) and receiver (Bob). and they obtain a shared secret key of length approximately 2.
o http://math.nist.gov/quantum/zoo/ + If Eve intercepts and measures Alice’s qubit and forward her measured state to Bob,
With quantum signals roughly half of the time Eve forwards an incorrect state, and from this Bob half of the
“A comprehensive catalog of quantum algorithms ...” s time decodes an incorrect bit value.
any measurement by an eavesdropper (Eve) perturbs the system,
K X . . . 4 From their 2N coinciding bits, Alice and Bob classically exchange N bits at random.
and hence reveals the eavesdropping, and also identifies perfect security conditions. In case of cavesdropping, around N/4 of these N test bits will differ.
If all NV test bits coincide, then the remaining N bits form the shared secret key.
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e B92 protocol with two nonorthogonal states (Bennett 1992) [+)

+ To encode the bit a Alice uses a qubit in state [0) if a =0
and in state |+) =(10) + D))/ V2 if a= 1. /4

+ Bob, depending on a random bit a’ he generates,
measures each received qubit either in basis {|0), [1)} if &’ = 0
orin {|+),|-)} if &’ = 1. From his measurement, Bob obtains the result » = 0 or 1.

+ Then Bob publishes his series of b, and agrees with Alice to keep only those pairs
{a,a’} for which b =1,

this providing the final secret key a for Alice and 1 —a’ = a for Bob.

This is granted because a =a’ = b =0 andhence b=1=a#d =1-a.

+ A fraction of this secret key can be publicly exchanged between Alice and Bob

to verify they exactly coincide, since in case of eavesdropping by interception and
resend by Eve, mismatch ensues with probability 1/4.

N. Gisin, et al.; “Quantum cryptography”’; Reviews of Modern Physics 74 (2002) 145-195.

e Protocol by broadcast of an entangled qubit pair

+ With an entangled pair, Alice and Bob do not need a quantum channel between them
two, and can exchange only classical information to establish their private secret key.
Each one of Alice an Bob just needs a quantum channel from a common server
dispatching entangled qubit pairs prepared in one stereotyped quantum state.

4 Alice and Bob share a sequence of entangled qubit pairs all prepared in the same
entangled (Bell) state |AB) = (J00) +[11))/ V2 .

+ Alice and Bob measure their respective qubit of the pair in the basis {|0) ,[1)}, and they
always obtain the same result, either 0 or 1 at random with equal probabilities 1/2.

+ To prevent eavesdropping, Alice and Bob can switch independently at random to
measuring in the basis {|+), |-}, where one also has [AB) = (|++> + \77))/ V2.

So when Alice and Bob measure in the same basis, they always obtain the same results,
either O or 1.

+ Then Alice and Bob publicly disclose the sequence of their basis choices.
The positions where the choices coincide provide the shared secret key.

+ A fraction of this secret key is extracted to check exact coincidence, since in case of
eavesdropping by interception and resend, mismatch ensues with probability 1/4.
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) i Quantum correlations (1/2) Quantum correlations (2/2)
For any four random binary variables Ay, Az, By, By with values +1, A long series of experiments repeated on identical copies of [yap) :
FROM VISION TO TECHNOLOGY REPUBLIC ['= (A +A2)B1 = (A = A2)By = A By + A2B1 + Ay By — A By = £2, EPR experiment (Einstein, Podolsky, Rosen, 1935).
el because since A, A, = +1, either (A, + A2)B; = 0 or (A; — Ay)B, =0,
REDEFINING SECURITY and in each case the remaining term is 2. Alice chooses to randomly switch between measuring A; = Q(a) or A; = Q(a»),
Ge neva Gove rnm ent » and Bob chooses to randomly switch between measuring B, = Q(8;) or B, = Q(8,).
e —— e .
i So for any probability distribution on (A, A,, B, B,), necessarily
Secure Data Transfer for Elections (1) = (A + AsBy + AyBy — A1By) = (A1B) + (AxB1) + (A2By) — (A1 Ba) For (I) = (A,B,) + (AyB)) + (A1By) — (A;By) one obtains
Gigabit Ethernet Encryption with Quantum Key Distribution verifies -2 < (I') < 2. Bell inequalities (1964). (') = —cos(a; —B1) — cos(ay — B1) — cos(aa — Ba) + cos(a; — Bo).
e vt i — Al 4 Bob sh i+ of qubits in h led (Bell [01) — [10) The choice @) =0, @, =n/2 and By =n/4, B, = 3n/4 leads to
e have to provide e Challenge ice and Bob share a pair of qubits in the entangle ell) state =
optimal security Switzerland epitomises the concept of direct democracy. Cilizens of Geneva are P q gled (Bell) Was? V2 (T) = — cos(n/4) — cos(n/4) — cos(n/4) + cos(3rm/4) = —2 V2 < 2.
z‘”‘ﬁ:":”zf‘z’a",lfs called on to vote multiple times every year, on anything from elections for the
Quantum e S e e Alice or Bob on its qubit can measure observables of the form Q(6) = sin(6)X + cos(6)Z, Bell inequalities are violated by quantum measurements.
SRy oyentythat | gty el e e g et sy 1 e having eigenvalucs 1. ‘ ,
the data has not been : Experimentally verified (Aspect ez al., Phys. Rev. Let. 1981, 1982).
corrupted in transit The Solution X . )
between entry & On 21st October 2007 the Geneva government implemented for the first time Alice measures Q() to obtain A = +1, and Bob measures Q(p) to obtain B = 1, Local i d bility (classical) laced b
storage” " ocal realism and separability (classical) replace
then we have the average (AB) = (Yap | Q@) ® Q(B) |Yap) = —cos(a — ). P ‘y P 4
Robert Hensler, ex- a nonlocal nonseparable reality (quantum).
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EPR paradox (Einstein-Podolski-Rosen) : s ANRINENS
A. Einstein, B. Podolsky, N. Rosen ; “Can quantum-mechanical description of physical reality T ——— GHZ states (1/5) (1989, Greenberger, Horne, Zeilinger)
be considered complete ?”; Physical Review, 47 (1935) 777-780. .
i 3-qubit entangled states.
. . Physica A
Bell inequalities :
1. S. Bell ; “On the Einstein—Podolsky—Rosen paradox™; Physics, 1 (1964) 195-200. journal homepage: www.elsevier.com/locats/physa
Aspect experiments : Three players, each receiving a binary input x; = 0/1, for j = 1,2,3,
A. Afpecl, P. ‘Grangler, G. Roger ; “Experimental test of realistic theories via Bell’s theorem™; Tsallis entropy for assessing quantum correlation with @mmﬁ with four possible input configurations x;x,x3 € {000,011, 101, 110}. 1 -)D—-) Y1
Physical Review Letters, 47 (1981) 460-463. Bell-type inequalities in EPR experiment To _)D__) n
Frangois Chapeau-Blondeau* Each player j responds by a binary output y;(x;) = 0/1, o
i s i e e function only of its own input x;, for j = 1,2,3. 3 _')D_" Y3
Contents lists available at ScienceDirect A
Physica A T Telis cxmopy ke e 2 gemeralsed oo suboca aependence Game is won if the players collectively respond according to the input—output matches :
o Itis applied to classical outcomes of quantum measurements, as in the EPR setting.
o Superiority of the generalized Bell .
jnurnal e - . 1(isahlzmdﬂ!nnuﬂlo(alqu&mummr\'ela(innfmmllargﬂx:(;fcbservahlrs. xlx2x3 = 000 },l)yzy:; such that yl @ y2 @ ),3 = 0 (COTBeI‘Ve panty)’
ARTICLE INFO ABSTRACT .
Tsallis entropy for assessing quantum correlation with @c,ﬂssm b e . = e x1x0x3 € {011,101, 110} — y1y2y3 suchthat y; @y, @y; =1 (reverse parity).
Bell-type inequalities in EPR experiment Recone e fom 13y 2014 e g, e of a EFR xperiment. This new incuiy s conroted with
Ve il 10 [y 2D 1 standard correlation-based Bell inequalities, and with other known Bell-type inequalities
. based on the Shannon entropy for which it constitutes a generalization. For an optimal . .
Frangois Chapeau-Blondeau* Koo range ofthe Tsalls order, me"f.fw inequality s abe to detect nonlocal auantum correls To select their responses y;(x;), the players can agree on a collective strategy before,
Laboratoire Angevin de Recherche en Ingénierie des Systémes (LARIS), Université d’Angers, 62 avenue Notre Dame du Lac, Quantum correlation s it sl St e et : . L
49000 Angers, France S rmen e but not after, they have received their inputs x;.
Quantim nformacin ©2014 Esevier BY. Al rghts reserved.
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GHZ states (2/5)

A strategy winning on all four input configurations
would consist in three binary functions y;(x;) meeting the four constraints :

Y10y @ y:(0) @ y3(0) =0 1 __)D__,yl
YO @y(l)@ys(l) =1
D@0 ®ys(1) = 1 v
N ey @y = 1 zs Heus
0 © 0 @& 0 =1, bysummation of the four constraints,
= 0 =1, sothe four constraints are incompatible.

So no (classical) strategy exists that would win on all four input configurations.
Any (classical) strategy is bound to fail on some input configuration(s).

We show a strategy using quantum resources winning on all four input configurations,
(by escaping local realism, y;(0) = 0/1 and y;(1) = 0/1 not existing simultaneously).

GHZ states (3/5)

Before the game starts, each player receives one qubit from a qubit triplet prepared in the

entangled state (GHZ state) 1
09 = [w1as) = 5(1000) = 10113 - [101) = [110)),

And the players agree on the common (prior) strategy :
if x; = 0, player j obtains y; as the outcome of measuring its qubit in basis {|0),[1)},
if x; = 1, player j obtains y; as the outcome of measuring its qubit in basis {|+),[-)}.

We prove this is a winning strategy on all four input configurations :

1) When x;x,x3 = 000, the three players measure in {|0), |1)}
= y1 ® )2 @ y; = 0 is matched.

GHZ states (4/5)

2) When x;x,x3 = 011, only player | measures in {|0), [1)}.

) = %(\000)7\011>7\101>7\110>) = %[|0>(\00>7|11>)7|1>(|01>+|10>)].

. 1 1
Since 10) = (42 +19)). 1D = (k0 -12) =
1
100y =11y = 31 (1) + 1)) + 1)) = (1) = 1) (1) = |—>)]

= %[(\++> +H=) =)+ =) = () = ) = =) + |——>)]
=H-)+ -4

1
01) +[10) = =
01) +110) = 5

() + 1)y = 190) + (19 = 19)(1+) + =)

= b4 = =)

=W =50+ +10-H =11 +4) 411 =) = 1@y, @ s = | matched.
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GHZ states (5/5) Density operator (1/2) Density operator (2/2)
3) When x,x;x3 = 101, only player 2 measures in {|0), [1)}. Quantum system in (pure) state [/;), measured in an orthonormal basis {|n)} : Density operator p = 33; p; /) (/)1
P = of Hi it .
W) = %(|ooo> ~[0LL) - 101) - |110)) = %[m-)(\o-m S D)= (0 D+ 1L -0>)] = probability Pr{ln)|ly/;)} = |<nly;) P = (aly;) (wjln) . = p=p Hermitian:
1 Yy, Wlols) = 3 pil (i) P = 0 = p > 0 positive ;
= 5[|-0->(\+ Sl R) ) () = 1= —>)J Several possible states |y with probabilities p; (with 3; p; = 1) : trace tr(p) = 3, p () (Wi = X, p; = 1.
1
= S(H09 4106~ [+14) +1-1-)) = 1 ®y, @3 = | matched. = Pr{ln)} = X, p; Prlin) W) =l (3, ps ) ) Iy = Gl p N
On Hy, eigen decomposition p = Z An [A) (A] , with
with density operator p = 3 p; [ ;) (¥l - n=1
£ Wh TP 5 1103 11 yo r 1P1W W eigenvalues {4,} a probability distribution,
) When x1,x5 = 110, only player 3 measures in {{0).,[1)}. and Pr{|n)) = (nlp|n) = tr(p|n) (nl) = (o 1L,) . eigenstates {|4,)} an orthonormal basis of .
1 1
[¢) = 5(1000) - [011) = [101) = [110)) = *[ [00) = [11))]0) = (101 + [10) H)] N
2( ) 2 ( ) ( ) The quantum system is in a mixed state, corresponding to the statistical ensemble Purity tr(p?) = Z 22 = 1 for a pure state, and tr(p?) < 1 for a mixed state.
= o+ ) o~ (- |——>)|1>] {(ps» 1)}, described by the density operator p. -
1 | hed A valid density operator on Hy = any positive operator p with unit trace,
- E(H “0 40 -+ D rl-= D) = 1@y, ®; = | matched. Lemma : For any operator A with trace tr(A) = %, (n| A|n), one has provides a general representation for the state of a quantum system in Hy.
tr(A ) (@) =3, (nl Al) (ln) = 3, (gln) n| ALy = <¢|(Zu ) <HI)A [y = (Bl Al . . .
State evolution [i;) — Uly;) = p — UpU" .
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Noisy preparation 1) Average of an observable Density operator for the qubit
N
Noise-free preparation of a qubit [} = |0). A quantum system in Hy has observable Q of diagonal form Q = Z Wy | W) Wyl {o0 = 15,0, 0y, 07;} a basis of L(HH) (vector space of operators on ),
. . . N n=1 orthogonal for the Hilbert-Schmidt inner product tr(ATB).
Noisy preparation /) = cos(é)|0) + sin(¢)|1) [v) I I
with probability density p:(¢) (assumed even). S |0) When the quantum system is in state p, measuring Q amounts to performing Any p = E(Iz + 1Oy 1oy + rzg'z) = E(12 + 7 &)‘
= a projective measurement on p in the orthonormal eigenbasis {lw; ), . . . lwy)} of Hy,
Density operator p = f Pe(®) ) (Wl dé S with the N orthogonal projectors w,) (@,l, for 1 = 1 1o N. = ulp) =1
5 ¢ L ga p=p =r.=r, Ty =1y, Iy =TI = Iy Ty, real
=p= (COS (f)> [0)<0I + <sm (f)> . Ex The outcome yields the eigenvalue w, € R with probability 1
g 1 Priw,) = (Wal p lwn) = tr(p |w,) (wl). Eigenvalues A, = 5(1 + ||?||) >0=|”<1.
Measurement :  Pr{|0) o} = (Olpl0) = {cos?(#)) , ~ -owa0z07 g 37 0z as s IFll < 1 for mixed states,
Over repeated measurements of Q on the system prepared in the same state p, 17l =1 for e states
Pr{ll) |p} =1lp|l) = <Sin2(§)> . the average value of Q is - pur : o=+l
N N N 7= [ry 1y, r;]" in Bloch ball of R3.
Similar to the statistical ensemble {((cosz(.f)), IO)), ((sinz(.f)), II))] . @)= ZI wn Prio} = Z]w” tr(p leon) {n) = tr(p Z:; @nlwn) <w”|)
= tr(pQ). 1
61/109 62/109 63/109




Observables on the qubit

Any operator on H, has general form A = qol, + @ - &,
with determinant det(A) = ao — a2, two eigenvalues ay + Va2

712id~5'/‘/17_2.
2

and two projectors on the two eigenstates |+d) (+d| =

For A = Q an observable, Q Hermitian requires ap € R and @ = [ay,ay,a.]" € R3.

1
Probabilites Pr{\;t(i)} (1 +7 T ”] when measuring a qubit in state p = 7(12 +7- 6—).
(= ay has no effect on Pr{|+d)})

An important observable measurable on the qubitis Q =d- & with||d|| =1,

known as a spin measurement in the direction @ of IR?,

yielding as possible outcomes the two eigenvalues £||@|| = £1, with Pr{+1} = —(l + F’Zi).
~

Lemma : For any 7 and @ in R?, one has : (#- &)@~ &)= (Fa), +i(Pxad)- .
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Generalized measurement

In a Hilbert space Hy with dimension N, the state of a quantum system
is specified by a Hermitian positive unit-trace density operator p.

o Projective measurement :

Defined by a set of N orthogonal projectors |n) (n| = I1,

verifying 3, In) (] = 3,11, = I,

and Pr{|n)} = tr(pIl,) . Moreover ), Pr{ln)} = 1,Yp & 3, I, = 1.

e Generalized measurement (POVM) : (positive operator valued measure)
Equivalent to a projective measurement in a larger Hilbert space (Neumark th.).
Defined by a set of an arbitrary number of positive operators M,,,

verifying Zm M,, = Ly,
and Pr{M,,} = tr(oM,,) . Moreover ), Pr{iM,,} = 1,¥p & },,M,, = Iy.
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A generalized measurement (POVM) for the qubit

2
POVM {Mk:E\ek)(ek\}, fork=0,1,...K-1, andK>2,

with |ek>_coq(2K)|o>+sm( )|1>
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Information in a quantum system

How much information can be stored in a quantum system ?

A classical source of information : a random variable X, with J possible states x;, for
Jj=1,2,...J, with probabilities Pr{X = x;} = p; .

J
Information content by Shannon entropy : H(X) = — Z pjlog(p;) <log(J) .

J=1

With a quantum system of dimension N in Hy, each classical state x; is coded
by a quantum state |y;) € Hy or p; € L(Hy) ,for j=1,2,...J.

Since there is a continuous infinity of quantum states in Hy,
an infinite quantity of information can be stored in a quantum system of dim. N
(an infinite number J), as soon as N = 2 with a qubit.

But how much information can be retrieved out ?
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Entropy from a quantum system
For a quantum system of dim. N in Hy, with a state p (pure or mixed),
a generalized measurement by the POVM with K elements Ay, fork = 1,2,... K.
Measurement outcome Y with K possible values yy, fork = 1,2,... K,
of probabilities Pr{Y = y;} = tr(pAy) .

K
Shannon output entropy H(Y) = — Z Pr{Y = y;} log(Pr{Y = yk}) .

k=1

K

== t(pAo) log(tr(pAp)) -

k=1
For any given state p (pure or mixed), K-element POVMs can always be found
achieving the limit H(Y) ~ log(K) at large K.
In this respect, with H(Y) — oo when K — oo,

an infinite quantity of information can be drawn from a quantum system of dim. N,
as soon as N = 2 with a qubit.
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But how much of the input information can be retrieved out ?

With a quantum system of dim. N in Hy, each classical state x; is coded
by a quantum state [y;) € Hy or p; € L(Hy) ,for j=1,2,...J.

A generalized measurement by the POVM with K elements A, fork =1,2,... K

Measurement outcome Y with K possible values y, fork = 1,2,... K,
of conditional probabilities Pr{Y = y;|X = x;} = tr(o;Ay) ,
J

and total probabilities Pr{Y = y;} = Z Pr{Y = ylX = xjp; = tr(pAy) ,
J j=1

with p = Z pjp; the average state.
j=1

The input—output mutual information /(X Y) H(Y)-HY|X) <X(p) <HX),

with the Holevo information X(p) = S(p) — Zp,S (p;) < log(N),
J=1
and von Neumann entropy S(p) = — lr[p log(p)] .
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The von Neumann entropy
For a quantum system of dimension N with state p on Hy :
Sp) =— tr[p log(p)] .

N
p unit-trace Hermitian has diagonal form p = Z A 14X Al

n=1

N
whence S(p) == )" 4, log(4,) € [0, log(N)] .

n=1
e S(p) =0 fora pure state p = [Y)Y|,

e S(p) =log(N) at equiprobability when A, = 1/N and p = Iy/N .
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The accessible information

For a given input ensemble {(p;,p;)} :

the accessible information I,..(X;Y) = 1%31)\(/1 I(X;Y) <X(pj,p)) »

is the maximum amount of information about X

which can be retrieved out from Y,

by using the maximally efficient generalized measurement or POVM.

For states p; in L(Hy), there always exists such an optimal POVM under the

form {Ax = oy )bl }, with ag € [0,1], fork = 1to K, and N < K < N?,

this by Theorem 3 of E. B. Davies; “Information and quantum measurement’”;
IEEE Transactions on Information Theory 24 (1978) 596-599.

But, there is no general characterization of optimal POVM. [Sasaki, PRA 59 (1999) 3325]
There are hardly some known expressions for some special ensembles {(p;,p;)}.
SOMIM (Search for Optimal Measurements by an Iterative Method) for numerical
maximization by steepest-ascent that follows the gradient in the POVM space, and also
uses conjugate gradients for speed-up. [arXiv:0805.2847]
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Compression of a quantum source (1/2)

A quantum source emits states or symbols p; with probabilities p;, for j = 1to J.

With p = Zplpf , the D-ary quantum entropy is SD(p) = trlp logD(p)l
J=1
and the Holevo information is Xp(p;,p;) = S p(p) — Zp, () .
J=1

For lossless coding of the source, the average number of D-dimensional quantum
systems required per source symbol is lower bounded by X »(p;.p;) .

For pure states p; = [/;) {¥;|, the lower bound Xp(p;,p;) = S p(p) is achievable
(by coding successive symbols in blocks of length L — o).

B. Schumacher; “Quantum coding”; Physical Review A 51 (1995) 2738-2747.

R. Jozsa, B. Schumacher; “A new proof of the quantum noiseless coding theorem™;
Journal of Modern Optics 41 (1994) 2343-2349.
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Compression of a quantum source (2/2)

For mixed states p;, the compressed rate is lower bounded by Xp(pj, p;) < S p(p) but
this lower bound X 5(p;, p;) is not known to be generally achievable.

The compressed rate S (o) is however always achievable (by purification of the p; and
optimal compression of these purified states).

Depending on the mixed p;’s, and the index of faithfulness, there may exist an
achievable lower bound between Xp(p;, p;) and S p(p). (Wilde 2016, §18.4)

The problem of general characterization of an achievable lower bound for the
compressed rate of mixed states still remains open. (Wilde 2016, §18.5)

M. Horodecki; “Limits for compression of quantum information carried by ensembles of mixed
states”; Physical Review A 57 (1997) 3364-3369.

H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa, B. Schumacher; “On quantum coding for
ensembles of mixed states”; Journal of Physics A 34 (2001) 6767-6785.

M. Koashi, N. Imoto; “Compressibility of quantum mixed-state signals”; Physical Review Letters
87 (2001) 017902,1-4.
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Quantum noise (1/2)
A quantum system of Hy in state p interacting with its environment represents an open
quantum system. The state p usually undergoes a nonunitary evolution.

With pe,, the state of the environment at the onset of the interaction, the joint state

£ ® peny can be considered as that of an isolated system, undergoing a unitary evolution
by U as p ® peny — U(0 ® peny)U".

At the end of the interaction, the state of the quantum system of interest is obtained by
Ul ® penn)U']. M
((M/) POVM for A = {M; ® Iz} POVM for AB. Then traz[pap(M; ®1p)] = tra(oaMy) with ps = [x-,,(p,4,f>.)

the partial trace over the environment : p — N(p) = trepy

Very often, the environment incorporates a huge number of degrees of freedom, and is
largely uncontrolled ; it can be understood as quantum noise inducing decoherence.

A very nice feature is that, independently of the size of the environment, Eq. (1) can
always be put in the form p — N(p) = X, A(pA; operator-sum or Kraus
representation, with the Kraus operators A, which need not be more than N2, satisfying
S AIA =1y
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Quantum noise (2/2)

A general transformation of a quantum state p can be expressed by the
quantum operation p — N(p) = ), Apr; ,with ), A;A[ =1y,
representing a linear completely positive trace-preserving map,
mapping a density operator on Hy into a density operator on Hy.

Probabilistic interpretation : the action of the quantum operation 0
is equivalent to randomly replacing the state p by the state
AepA] [ tr(ApA]) with probability tr(AspA;).

1
For an arbitrary qubit state defined by p = 5(12 +7- 5—)
with [|7]| <1,

this is equivalent to the affine map 7 — A7+ ¢, ¥
with A a 3x3 real matrix
and @ a real vector in R,
mapping the Bloch ball onto itself. 1
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Quantum noise on the qubit (1/4)

Quantum noise on a qubit in state p can be represented by random applications of some
of the 4 Pauli operators {I,, o, o7y, 0.} on the qubit, e.g.

Bit-flip noise : flips the qubit state with probability p by applying o, or leaves the
qubit unchanged with probability 1 — p
1 0 0
1-2p 0 7.
0 1-2p

p— Np)=(l-pp+popoy, F—AF=|0
0
Phase-flip noise : flips the qubit phase with probability p by applying o, or leaves the
qubit unchanged with probability 1 — p
1-2p 0 0
p— N(p) = (1 = p)p + popo , F— AP = 0 1-2p 0 |7
0 0 1
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Quantum noise on the qubit (2/4)

Depolarizing noise : leaves the qubit unchanged with probability 1 — p, or apply any
of oy, o, or o, with equal probability p/3 :

p— N() = (1= pip + (e p0 + ,p0] + 0p0).

P— AP = 0 1-=p 0 .
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Quantum noise on the qubit (3/4)

Amplitude damping noise : relaxes the excited state |1) to the ground state |0) with
probability y (for instance by losing a photon) :

p— N(p) = AipA] + AypA],

= 4/Y10)(1|  taking |1) to |0) with probability y,

VY
0

1

0 yl-vy

reduces the probability amplitude of resting in state |1).
Vi-vy 0 0

= F— AP+2= 0 Vi-y 0 |F+| O

0 0 1-y b4

and A| =

1 [0y €0l + /1 —y[1)(1]  which leaves |0) unchanged and
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Quantum noise on the qubit (4/4)
Generalized amplitude damping noise : interaction of the qubit with a thermal bath at

temperature 7" : B & i +
p — N(p) = AMipA| + MopA, + AspAy + AupAy

VY
0o o |

., A= Ap p.y€10,1],

1 0
with Aj = \p
\/—l 0 -y

]

0 0
A“:m[ Vi Ol’

V1i-v 0 0 0

= F— AF+C= 0 NIEEY 0 P+ 0
0 0 -y 2p -1y
Damping [0,1] 3y = 1 —e™/T1 — 1 as the interaction time 7 — co with the bath of the qubit relaxing to
equilibrium pe = p0) (0] + (1 — p)[1) (1], with equilibrium probabilities p = exp[—Eq/(kgT)]/Z and
1 - p =exp[-E/(kgT)1/Z with Z = exp[—Ey/(kgT)] + exp[—E/(kgT)] governed by the Boltzmann distribution
between the two energy levels Ej of [0) and E| > Ej of |1).
T=0=2p=1=2ps=[0)0. T—oo00=p=1/2=ps — (10)O0+(1){1)/2=15/2.
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More on quantum noise, noisy qubits :
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Optimization of Quantum States for Signaling
Across an Arbitrary Qubit Noise Channel
With Minimum-Error Detection

Frangois Chapeau-Blondeau

@ IEEE TRANSACTIONS ON
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THEORY

ofa inevitable error; and such a general situation is frequent since
qubt, the optimal detector minimizing the probabllty of error 15 quantum noise and decoherence are prone to break the orthog-
afiified 1o the dituiatan e detoction hai @ b periuriiied W0 55ty of two mlual quantum tates, A mmnmm mem
4 nolsy qubit affected by an arbitrary quantum noise separately i
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Optimized probing states for qubit phase estimation with general quantum noise

Frangois Chapeau-Blondeau
Laboratoire Angevin de Recherche en Ingénicrie des Systémes (LARIS), Université d’Angers,
62 avenue Notre Dame du Lac, 49000 Angers, France
(Received 27 March 2015; published 12 May 2015)

We exploit the theory of quantum estimation fo investigate quantum state estimation in the presence of
soise. The quantun Fisher nformation i used to asses the estimaton peformance. For the qubit in Bloch
derived for score and then for the quantum Fisher information.

From this latter expression, it is proved that the Fisher information always increases with the purity of the
measured qubit state. An arbitrary quantum noise affecting the qubit is taken into account for its impact on 80/109

Quantum state discrimination

A quantum system can be in one of two alternative states py or p;
with prior probabilities Py and P; = 1 — P,.

Question : What is the best measurement {My, M;} to decide
with a maximal probability of success Py ?

Answer : One has Py, = Py tr(pgMy) + Py tr(piM;) = Py + tr(TMy) ,
with the test operator T = Pyp; — Popo = Zn 1 An [ )X

Then Py, is maximized by Mopl Z [ Al 5
A,>0
the projector on the eigensubspace of T with positive eigenvalues A,,.

The optimal measurement [ant, Mgpl =Iy— MT'”}

(Helstrom 1976)
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suc

N
max _
achieves the maximum P_ o = 2(1 + Z |/ln|).




Discrimination from noisy qubits

Quantum noise on a qubit in state p implements the transformation p — N(p).

With a noisy qubit, discrimination from N(pg) and N(p;).

— Impact of the preparation and level of quantum noise,

on the performance P33 of the optimal detector,

suc
F. Chapeau-Blondeau, “Détection quantique optimale sur un qubit bruité ”,
25eme Colloque GRETSI sur le Traitement du Signal et des Images, Lyon, France, 8-11 sept. 2015.

in relation to stochastic resonance and enhancement by noise.

F. Chapeau-Blondeau ; “Quantum state discrimination and enhancement by noise” ;
Physics Letters A 378 (2014) 2128-2136.

N. Gillard, E. Belin, F. Chapeau-Blondeau ; “Qubit state detection and enhancement
by quantum thermal noise” ; Electronics Letters 54 (2018) 38-39.
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Quantum state discrimination and enhancement by noise
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Frangois Chapeau-Blondeau
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ARTICLE INFO ABSTRACT

Aricle history: Discrimination between two quantum states is addressed as a quantum detection process where a
Received 12 February 2014 measurement with two outcomes is performed and a conclusive binary decision results about the
Received in revised form 15 May 2014

Accepted 17 May 2014

Available online 27 May 2014
Communicated by CR. Doering

state. The performance is assessed by the overall probability of decision error. Based on the theory of
quantum detection, the optimal measurement and its performance are exhibited in general conditions.
An application is realized on the qubit, for which generic models of quantum noise can be investigated
for their impact on state discrimination from a noisy qubit. The quantum noise acts through random

Keywords: application of Pauli operators on the qubit prior to its measurement. For discrimination from a noisy
Quantum state discrimination qubi, various situations are exhibited where reinforcement of the action of the quantum noise can
Quantum noise be associated with enhanced performance. Such implications of the quantum noise are analyzed and
Quantum detection interpreted in relation to stochastic resonance and enhancement by noise in information processing.
Signal detection © 2014 Elsevier BV. All rights reserved.
Enhancement by noise
Stochastic resonance
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Discrimination among M > 2 quantum states
A quantum system can be in one of M alternative states p,,, form = 1 to M,
with prior probabilities P,, with ¥ P, = 1.

Problem : What is the best measurement {M,,} with M outcomes to decide
with a maximal probability of success Py ?

M
— Maximize Py, = Z Py, tr(p,,M,,) according to the M operators M,,,
m=1

subjectto 0 <M, <Iy and Zm My, =1y,

For M > 2 this problem is only partially solved, in some special cases.
(Barnett et al., Adv. Opt. Photon. 2009).

84/109

Error-free discrimination between M = 2 states

Two alternative states py or p; of Hy, with priors Py and P; = 1 — Py,
are not full-rank in Hy, e.g. supp(py) C Hy <= [supp(po)]* D {6}.
If Sy = supp(po) N [supp(o1)]* # {6}, error-free discrimination of py is possible.
IS,

supp(p1) N [supp(po)]* # {6}, error-free discrimination of p; is possible.

Necessity to find a three-outcome measurement {Mo, My, My}

Find 0 < My < Iy s.t. Mg = doII; “proportional” to I1; projector on [supp(o;)]*,
and 0 <M, < Iy s.t. My = a1, “proportional” to Iy projector on [supp(pg)]*,

and My + M; < Iy e IMU + M + My = Iy with 0 < My < ]
maximizing Py, = Py tr(Mopo) + Py tr(M;py) (= min Pype = 1 = Pgye)

This problem is only partially solved, in some special cases,
(Kleinmann et al., J. Math. Phys. 2010).
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Error-free discrimination between M > 2 states

M alternative states p,, of Hy, with prior P, form=1,...M ;

every p,, must be with defective rank < N.
Kon

For all m = 1 to M, define S,, = supp(p,,) N {m[SUPP(P[)]L}

t#m

For each nontrivial S,, # {5}, then p,, can go where none other p; can go.
= Error-free discrimination of p,, is possible,

by M,, such that 0 < M,, < Iy and M,, “proportional” to the projector on %,,.
To parametrize M,,, find an orthonormal basis [|u’;’))‘;':";(7(’") of %,
then M,, = 39 @ [u?) | = @™ T1,,, with TI,, projector on %;,.

Find the M,, (the @™) with Y, M,, < Iy maximizing Py, = Y., Py tr(M,,0,).

This problem is only partially solved, in some special cases, (Kleinmann, J. Math. Phys. 2010).
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Communication over a noisy quantum channel (1/3)

(X =x;p) — p; l Nipj) = pf, —| K-clement POVM |

Rate I(X;Y)sX(p,-,p,-):S(p)—ijS(pj) with o’ —Zp,p,
Jj=1 j=1

Y{(p;,p;)} and N(-) given, there always exists a POVM to achieve

1(X;Y) =X, p))

ie. X (p’]., p;) is an achievable maximum rate for error-free communication,

by coding successive classical input symbols X in blocks of length L — oo.

B. Schumacher, M. D. Westmoreland; “Sending classical information via noisy quantum channels”;
Physical Review A 56 (1997) 131-138.

A. S. Holevo; “The capacity of the quantum channel with general signal states™;
IEEE Transactions on Information Theory 44 (1998) 269-273.
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Communication over a noisy quantum channel (2/3)

For given N(:) therefore X, = (max))((N(p_,-), pj)
Pipj

is the overall maximum and achievable rate for error-free communication
of classical information over a noisy quantum channel,

or the classical information capacity of the quantum channel,

for product states or successive independent uses of the channel.

NB : The maximum X, can be achieved by no more than N? pure input states

j = W)yl with ;) € Hy
[Shor, J. Math. Phys. 43 (2002) 4334. Shor, Com. Math. Phys. 246 (2004) 453].
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KXimax (N1 @ N2) 2 X (N1) + Xinax (N2)

Communication over a noisy quantum channel (3/3)

For product states or successive independent uses of the channel (with given dimensiona-
lity), the Holevo information is additive X pax(N) ® N2) = Xinax(N1) + X max(N2) .

For non-product states or successive non-independent but entangled uses of the channel,
due to a convexity property, the Holevo information is always superadditive
[Wilde 2016 Eq. (20.126)]

For many channels it is found additive, X . (N| @ N2) = Ximax(N1) + Ximax (N2)
so that entanglement does not improve over the product-state capacity.

Yet for some channels it has been found strictly superadditive,

Kimax (N1 ® N2) > X nax (N1) + X nax (N2) meaning that entanglement does improve over

the product-state capacity.

M. B. Hastings; “Superadditivity of communication capacity using entangled inputs”;
Nature Physics 5 (2009) 255-257.

Then, which channels ? which entanglements ? which improvement ?
which capacity ? ... (largely, these are open issues).
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Continuous infinite dimensional states (1/5)

00

A particle moving in one dimension has a state |i) = W(x)|x)dx in an

orthonormal basis {|x)} of a continuous infinite-dimensional Hilbert space H.

The basis states {|x)} in H satisfy (x|x") = 6(x — x’) (orthonormality),

[x) (x|dx =1 (completeness).

The coordinate € 3 y/(x) = (x|) is the wave function, satisfying

1= f WPdx = f W) () dx = f WY gy e = (o)

with [/(x)| the probability density for finding the particle at position x when

measuring position operator (observable) X = f x|x) (x| dx (diagonal form).
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Continuous infinite dimensional states (2/5)

A particle moving in three dimensions has a state [¢) = | (7)) d7 in an

orthonormal basis {|7)} of a continuous infinite-dimensional Hilbert space H.

The basis states {|7)} in H satisfy (7|F’) = 6(F—F’) (orthonormality),

flf') (F|d7? =1 (completeness).

The coordinate C 3 y/(7) = (7|¢) is the wave function, satisfying

1= f W()Pd7 = f WP ) d7 = f WIRY (W) d7 = )

with [(7)? the probability density for finding the particle at position 7
when measuring the position observable R= f 7|7) (#|d7 (diagonal form),
vector operator with components the 3 commuting position operators X=Rj,
Y=R,, Z=R,, and orthonormal basis of eigenstates {|7')} i.e. R |7y =7 |7).
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Continuous infinite dimensional states (3/5)

Another orthonormal basis of H is formed by {|7)} the eigenstates of the
momentum observable P or velocity V=F /m,

also satisfying (7 |p’) = 6(7 — p’) (orthonormality),

flﬁ) (p|dp =1 (completeness), and 24 |7 = P |P) (eigen invariance).

After De Broglie, by empirical postulation, a particle with a well defined
momentum j is endowed with a wave vector k= P/h and a wave function

o) cxp(ilz ?) =

AN . .
= G exp (i % ) in position representation,

1
© rhy2

. B B 1 P
defining the state |7) = f¢(?)|?)d?— —(271_7’)3/2 fexp(z 5 )I?)d?,
with (7|p) = ¢(¥) .

92/109

Continuous infinite dimensional states (4/5)

Particle with arbitrary state H > |y) = f (@) |7ydi = f‘l’(ﬁ) |pydp,
(Flyry (Pl

| I 77
with 169 = ) = [0 07 = s [wmenn (-5 or.

i.e. the wave function V() in momentum representation is the
Fourier transform of the wave function ¢(7) in position representation.

Position operator R =f? |7 (F|dF acting on state |) with wave function /()

in F-representation = R [y has wave function 7y/(7) in F-representation,
since ﬁ>|w> = f7|7)(?|d7 ) = f?|?) (Flyy dF = f Fy(?) |Fydr.
Niyss _

w(P) wi of Bly)
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Continuous infinite dimensional states (5/5)

Momentum operator P= f PPy (pldp (its diagonal form)
acting on state |yy) with wave function W(7) in p-representation
=P [y has wave function 7W(7) in p-representation,

sinceﬁ’|w>:fﬁ|ﬁ><ﬁ|dﬁ|w>:fﬁ|ﬁ><ﬁ|¢>dﬁ:fﬁ%ﬁ) 17ydp .
= —_—
Y(p) w of Bly)

FT! [ﬁ V(g )] = —ihvw(? ) gives wave function(s) of P [ty in F-representation.

Canonical commutation relations [R;, P/] = ifid; 1, fork, ¢ = x,y,z,

i
then AryAp; > % ore  Heisenberg uncertainty relations.
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Continuous-time evolution of a quantum system

By empirical postulation Schrodinger equation (for isolated systems) :

d i i ("

S W) = = 2HID) = W) = exp-1 f ) () = U, 1) W)
n

—_—
unitary U(z, )

Hermitian operator Hamiltonian H, or energy operator.

Or, postulating U(#, 1) = exp(—% J; Itz H(t)dt) recovers Schrodinger equa.

1 2

A particle of mass m in potential V(7 ) has Hamiltonian H = 2—? + V(ﬁ, 1),
m

giving rise to the Schrodinger equation for the wave function (7, 1) = (F|¥)

0 h?
in F-representation iha—t VGO —%Az//(?, 0N+ VEHWFED .

95/109

Quantum feedback control

PHYSICAL REVIEW A 80. 013805 (2009)

Quantum feedback by discrete quantum nondemolition measurements:
Towards on-demand generation of photon-number states

L Dotsenko.,">* M. Mirrahimi.* M. Brune," S, Haroche." J.-M. Raimond,' and P, Rouchon®
'Laboratoire Kastler Brossel Ecole Normale Supérieure, CNRS, Université P. et M. Curie,
24 rue Lhomond, F-75231 Paris Cedex 5, France
2College de France, I1 Place Marcelin Berthelot, F-75231 Paris Cedex 5, France
*INRIA Rocquencouri, Domaine de Vouceau, BP 105, 78153 Le Chesnay Cedex, France
*Centre Automatique et Sysiémes, Mathématiques et Systémes, Mines ParisTech,
60 Boulevard Saint-Michel, 75272 Paris Cedex 6, France
(Received 1 May 2009: published 9 July 2009)

We propose a quantum feedback scheme for the preparation and protection of photon-number states of Tight
trapped in a high-Q microwave cavity. A quantum nondemolition measurement of the cavity field provides
information on the photon-number distribution. The feedback loop is closed by injecting into the cavity a
coherent pulse adjusted to increase the probability of the target photon number. The efficiency and reliability
of the closed-loop state stabilization is assessed by quantum Monte Carlo simulations. We show that, in
realistic experimental conditions. the Fock states are efficiently produced and protected against decoherence.

DOI: 10.1103/PhysRevA.80.013805 PACS number(s): 42.50.Dv, 02.30.Yy. 42.50.Pq 96/109

System dynamics :
o Schrodinger equation (for isolated systems)

d . : D
G0 == 2HW = ) = exp(- f Har) (1)) = U, 12) i)
n

—_—
unitary U(ty,t)

Hermitian operator Hamiltonian H = Hy + H,, (control part H,,).

d i ;
Bp = —%[H,p] (Liouville — von Neumann equa.) = p(t2) = U(1,12) p(t1) Uf(, ).

e Lindblad equation (for open systems)

d i B B
i —%[H,p] + Z(ZLJpL} - {L} Lj,p)), Lindblad op. L; for interaction with environment.
J

Measurement : Arbitrary operators {E,,} such that ¥, E,T,,Em =1y,

Pr{m} = tr(E,pE},) = tr(pE},E,y) = tr(oM,,) with M,,, = EJ,E,, positive,
EnpE),

tr(EnpE,,)

Post-: ement state p,, =
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PHYSICAL REVIEW A 91. 052310 (2015)

Optimized probing states for qubit phase estimation with general quantum noise

Francois Chapeau-Blondeau
Laboratoire Angevin de Recherche en Ingénierie des Systemes (LARIS), Université d’Angers,
62 avenue Notre Dame du Lac, 49000 Angers, France
(Received 27 March 2015: published 12 May 2015)

We exploit the theory of quantum estimation to investigate quantum state estimation in the presence of
noise. The quantum Fisher information is used to assess the estimation performance. For the qubit in Bloch
representation, general expressions are derived for the quantum score and then for the quantum Fisher information.
From this latter expression, it is proved that the Fisher information always increases with the purity of the
measured qubit state. An arbitrary quantum noise affecting the qubit is taken into account for its impact on
the Fisher information. The task is then specified to estimating the phase of a qubit in a rotation around an
arbitrary axis, equivalent to estimating the phase of an arbitrary single-qubit quantum gate. The analysis enables
determination of the optimal probing states best resistant to the noise, and proves that they always are pure
states but need to be specifically matched to the noise. This optimization is worked out for several noise models
important to the qubit. An adaptive scheme and a Bayesian approach are presented to handle phase-dependent
solutions.

DOTI: 10.1103/PhysRevA.91.052310 PACS number(s): 03.67.—a, 42.50.Lc. 05.40.—a
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PHYSICAL REVIEW A 94, 022334 (2016)
Optimizing qubit phase estimation

Francois Chapeau-Blondeau
Laboratoire Angevin de Recherche en Ingénierie des Systemes (LARIS), Université d’Angers,
62 avenue Notre Dame du Lac, 49000 Angers, France
(Received 5 June 2016 revised manuscript received 2 August 2016; published 24 August 2016)

The theory of quantum state estimation is exploited here to investigate the most efficient strategies for this task,
especially targeting a complete picture identifying optimal conditions in terms of Fisher information, quantum
measurement, and associated estimator. The approach is specified to estimation of the phase of a qubit in a
rotation around an arbitrary given axis, equivalent to estimating the phase of an arbitrary single-qubit quantum
gate, both in noise-free and then in noisy conditions. In noise-free conditions, we establish the possibility of
defining an optimal quantum probe. optimal quantum and optimal together capable of
achieving the ultimate best performance uniformly for any unknown phase. With arbitrary quantum noise, we
show that in general the optimal solutions are phase dependent and require adaptive techniques for practical
implementation. However, for the important case of the depolarizing noise, we again establish the possibility of
a quantum probe, quantum measurement, and estimator uniformly optimal for any unknown phase. In this way,
for qubit phase estimation, without and then with quantum noise, we characterize the phase-independent optimal
solutions when they generally exist, and also identify the complementary conditions where the optimal solutions
are phase dependent and only adaptively implementable.

DOI: 10.1103/PhysRevA.94.022334
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Abstract

For binary images, or bit planes of v images, we i igate the possibility of a
quantum coding decodable by a receiver in the absence of reference frames shared with the
emiller. Direcl image coding wilh one qubil per pixel and non-aligned fromes Teads o decoding
errors equivalent to a quantum bit-flip noise increasing with the misalignment. We show the
feasibility of frame-invariant coding by using for each pixel a qubit pair prepared in one of two
contralled entangled states. With just ane cammon axis shared hehveen the emitter and
receiver, exact decoding for each pixel can be obtained by means of two two-outcome projective
measurements operating separately on each qubit of the pair. With strictly no alignment
information between the emitter and receiver, exact decoding can be obtained by means of a

o jecti ing jointly on the qubit pair. In addition, the

frame-invariant coding is shown much more resistant Lo quantum bit-flip noise compared Lo
the dircet non invariant coding. For a cost per pixel of two (cntangled) qubsits instead of one,

complete frame-invariant image coding and enhanced noise resistance are thus obtained.

Dimensionality explosion in quantum theory

o The most elementary and nontrivial object of quantum information is the qubit, representable with a state vector
|¥1) in the 2-dimensional complex Hilbert space ;.

Such a pure state |/ ) of a qubit is thus a 2-dimensional object (a 2 X 1 vector).

On such a pure state |y ), any unitary evolution is described by a unitary operator belonging to the 4-dimensional
space L(H>), the space of linear maps or operators on H>.

A unitary evolution of a pure state |y, ) of a qubit is thus a 4-dimensional object (a 2 X 2 matrix).

o Accounting for the essential property of decoherence on a qubit, requires it be represented with the extended
notion of a density operator p;, existing in the 4-dimensional space L().

Such a mixed state p; of a qubit is thus a 4-dimensional object (a 2 X 2 matrix).

On such a mixed state p; of a qubit, any nonunitary evolution such as decoherence, should be described by an
operator belonging to the 16-dimensional space L(ﬁ(’Hg)).

A nonunitary evolution of a mixed state p; of a qubit is thus a 16-dimensional object (a 4 X 4 matrix).

© The essential property of intrication starts to arise with a qubit pair. A qubit pair in a pure state [/») exists in the
4-dimensional Hilbert space H, ® H,, while a qubit pair in a mixed state is represented by a density operator p,
existing in the 16-dimensional Hilbert space L(H> ® H>).

A mixed state p, of a qubit pair is thus a 16-dimensional object (a 4 X 4 matrix).

On such a mixed state p, of a qubit pair, any nonunitary evolution such as decoherence, should be described by an
operator belonging to the 256-dimensional space .C(L(’Hz ®(Hz)).

A nonunitary evolution of a mixed state p, of a qubit pair is thus a 256-dimensional object (a 16 x 16 matrix).

Technologies for quantum computer

+ Quantum-circuit decomposition approach :
e Photons : with mirrors, beam splitters, phase shifters, polarizers.

e Trapped ions : confined by electric fields, qubits stored in stable electronic states,
manipulated with lasers. Interact via phonons.

e Light & atoms in cavity : Cavity quantum electrodynamics (Jaynes-Cummings
model).

2012 Nobel Prize of S. Haroche (France) and D. Wineland (USA).
e Nuclear spin : manipulated with radiofrequency electromagnetic waves.

e Superconducting Josephson junctions : in electric circuits and control by electric
signals.

(Quantronics Group, CEA Saclay, France.)

e Electron spins : in quantum dots or single-electron transistor, and control by electric
signals.

M. Veldhorst et al.; “A two-qubit logic gate in silico

Nature 526 (2015) 410-414.
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¢ Quantum annealing, adiabatic quantum computation : A commercial quantum computer : Canadian D-Wave : e
. o . o . R Voo o Adticle Talk Read | Edit Viewhistory | |Se2 Q
For finding the global minimum of a given objective function, coded as the ground 2/
state of an objective Hamiltonian. wikrpepiA ~ Quantum Experiments at Space Scale
TheFee Encyopei =
Computation decomposed into a slow continuous transformation of an initial S A
i i H 3 H H o 1 . Mahpage Quantum Experiments at Space Scale (QUESS; Chinese: EFRIFTR TS, &

Hamiltonian into a final Hamiltonian, whose ground states contain the solution. Q uantum compu tin g T e pinyin: LiangzT kexueé shyan weiing; iteraly: “Quantum Science Experiment e
Starts fi it £ all didate stat tati tat £ a simpl 3 :i‘:::vzn":e” Satellite"). is an international research project in the field of quantum physics. A Names gmus/’;’i:‘m <L

arts Irom a superposition ot all candidate states, as stationary states ol a sSimple has arrlved A sateliite, nicknamed Micius or Mozi (Chinese: ) after the ancient Chinese

controllable initial Hamiltonian.

Probability amplitudes of all candidate states are evolved in parallel, with the
time-dependent Schrodinger equation from the Hamiltonian progressively deformed
toward the (complicated) objective Hamiltonian to solve.

Quantum tunneling out of local minima helps the system converge to the ground
state solution.

A class of universal Hamiltonians is the lattice of qubits (with Pauli operators X, Z) :
H= Z hiZ;+ Z X + Z TiZiZi + X X) + Z KiXZi .
7 X I

ik

J. D. Biamonte, P. J. Love; “Realizable Hamiltonians for universal adiabatic quantum
computers”; Physical Review A 78 (2008) 012352,1-7.

Since 2011 : a 128-qubit processor, with superconducting circuit implementation.
Based on quantum annealing, to solve optimization problems.

May 2013 : D-Wave 2, with 512 qubits. $15-million joint purchase by NASA & Google.
Aug. 2015 : D-Wave 2X with 1000 qubits. Jan. 2017 : D-Wave 2000Q with 2000 qubits.

M. W. Johnson, et al.;
T. Lantin,
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