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Abstract

A stochastic resonance effect, under the form of a noise-improved performance, is shown f
for a whole range of optimal detection strategies, including Bayesian, minimum error-proba
Neyman–Pearson, and minimax detectors. In each case, situations are demonstrated where the
formance of the optimal detector can be improved (locally) by raising the level of the noise. T
obtained with a nonlinear signal-noise mixture where a non-Gaussian noise acts on the ph
periodic signal.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Stochastic resonance is a phenomenon inwhich some processing done on a signal
be improved by the action of the noise [1–3]. The feasibility of stochastic resonance h
now been reported in a large variety of processes, under many different forms [4–9
until very recently, stochastic resonance as an improvement of the performance by nois
was limited to suboptimal devices or processors. In the context of detection problem
ious aspects of stochastic resonance have been investigated [10–18], yet with impro
by noise limited to suboptimal detection strategies. Very recently [19,20], stochastic res
nance has been shown feasible also in optimalprocessing, in a Bayesian detection probl
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on a nonlinear signal-noise mixture with non-Gaussian noise. In the present paper w
sider the same type of detection problem, and we extend the demonstration of fea
of stochastic resonance, to a whole range of standard optimal detection strategies, in
coherent perspective.

2. Strategies for optimal detection

In this section, we briefly review standard strategies for optimal detection. Our aim
is to exhibit the definition of the optimal detectors we will be considering, and the
their performance is assessed. Classical proofs and developments can be found in
Later on, our point will be to show that situations can be found where the perform
of each one of these optimal detectors can beimproved by operating them at higher noi
levels, over some ranges of the noise.

In a standard detection problem, one among two known signalss0(t) or s1(t) may be
mixed to a noiseη(t), the resulting mixture forming the observable signalx(t). Observa-
tion of x(t) atN distinct timestk , for k = 1 toN , providesN data pointsxk = x(tk). From
the datax = (x1, . . . , xN), it is to be decided whetherx(t) is formed byη(t) mixed tos0(t)

(hypothesis H0) or to s1(t) (hypothesis H1). Any conceivable detector is equivalent to
partition of R

N into two disjoint complementary subsetsR0 andR1, such that whenx
falls in Ri then the detector decides Hi , for i ∈ {0,1}.
2.1. Bayesian detection

If the prior probabilities are known,P0 for hypothesis H0, andP1 = 1 − P0 for H1,
it is possible to assess the performance of a given detector by means of a Bayesian co
One introduces four elementary costsCij of deciding Hi when Hj holds,i, j ∈ {0,1}, with
necessarilyC10 > C00 andC01 > C11 to penalize wrong decisions. The average Baye
cost is then

C = P0C00

∫
R0

p(x|H0) dx + P1C01

∫
R0

p(x|H1) dx

+ P0C10

∫
R1

p(x|H0) dx + P1C11

∫
R1

p(x|H1) dx, (1)

wherep(x|Hi ) is the probability density for observingx when Hi holds, and
∫

dx stands
for theN -dimensional integral

∫
. . .

∫
dx1 . . . dxN . The costC of Eq. (1) is minimized by

the optimal Bayesian detector that uses the likelihood ratio

L(x) = p(x|H1)

p(x|H0)
= Pr{x|H1}

Pr{x|H0} (2)

to implement the test

H1

L(x) ≷ P0

P1

C10 − C00

C01 − C11
, (3)

H0
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Cmin = 1

2

[
P1(C01 + C11) + P0(C10 + C00)

]
− 1

2

∫
RN

∣∣P1(C01 − C11)p(x|H1) − P0(C10 − C00)p(x|H0)
∣∣dx. (4)

2.2. Minimum error-probability detection

In the special case whereC00 = C11 = 0 andC10 = C01 = 1, the costC of Eq. (1)
represents the overall probability of detection errorPer. The optimal Bayesian detect
of Eq. (4) then representsthe detectorminimizing Per, also known as the maximum
posteriori probability (MAP) detector since test (4) becomes equivalent to a test com
Pr{H1|x}/Pr{H0|x} to 1.

2.3. Neyman–Pearson detection

WhenP0 andP1 are unknown, a strategy to implement an optimal detection is to
to maximize the probability of detection

Pd =
∫
R1

p(x|H1) dx, (5)

while keeping the probability of false alarm

Pf =
∫
R1

p(x|H0) dx (6)

no larger than a prescribed levelPf,sup.
This constrained maximization is achieved by the optimal Neyman–Pearson detec

which also implements a likelihood-ratio test

H1

L(x) ≷ µ(Pf,sup), (7)

H0

with a thresholdµ(Pf,sup), a function ofPf,sup, which is found from Eq. (6) by imposin
Pf ≤ Pf,sup, with the subsetR1 defined as those pointsx for whichp(x|H1) > µp(x|H0).

2.4. Minimax detection

In the absence of knownP0 andP1, another strategy for an optimal detection, wh
does not require to specify aPf,sup, is to look for the valueP ∗

0 of P0 that maximizes
the minimal costCmin of Eq. (4). The optimal minimax detector then implements
likelihood-ratio test of Eq. (4) withP0 set toP ∗

0 . For any detector, the Bayesian costC

in Eq. (1) is a function ofP0, which goes through a maximum for someP0 ∈ [0,1]. This
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maximum turns out to be minimized by the optimal minimax detector1 defined above, an
the minimal value achieved for this maximum is expressable as

Cminimax= C10 + (C00 − C10)

∫
R0

p(x|H0) dx

= C01 + (C11 − C01)

∫
R1

p(x|H1) dx. (8)

So for an unknownP0, adopting the optimal minimax detector minimizes the highest
we would incur if nature were to impose us the least favorableP0.

3. Detection with phase noise

We now apply the strategies of Section 2 to a specific detection problem. This
same detection problem that was used in [19,20] for the first report of a noise-imp
performance in an optimal Bayesian detector, and that we adopt here to test a whole
of optimal detectors. We consider a periodic “mother” wavew(t) of period unity. A pos-
sibility could bew(t) = sin(2πt), but w(t) will be further specified later. One of the tw
signals to be detected is the wavew(t) with frequencyν0, i.e., s0(t) = w(ν0t); the other
signal is the same wavew(t) with frequencyν1 �= ν0, i.e., s1(t) = w(ν1t). A noiseη(t)

acts on signalss0(t) ands1(t) as a phase noise, so as to form the observable signal

x(t) = w
[
ν0t + η(t)

]
(hypothesis H0) or (9)

x(t) = w
[
ν1t + η(t)

]
(hypothesis H1). (10)

Such periodic signals corrupted by a phase noise arise, for instance, when a period
propagates in a fluctuating medium or traverses a fluctuating interface. Phase noise
present in oscillators, phase-locked loops, coherent imaging. A simple concretization
the present setting is realized by a plane wave radiated or received by a transduc
jected to a random motion producing the phase noise.

Based on the datax = (x1, . . . , xN) it is to be decided whether the wave corrupted
the phase noise has frequencyν0 or ν1. In order to allow a complete analytical treatment o
the optimal detection strategies presented in Section 2, we consider, as in [19,20], t
wherew(t) is a square wave of period 1 withw(t) = 1 whent ∈ [0,1/2) andw(t) = −1
whent ∈ [1/2,1). In such a case, the possible values of the observationsxk reduce to±1,
and quantities suchp(x|Hi ) dx define the finite probabilities Pr{x|Hi} which are nonzero
only at the locations of the 2N statesx = (±1, . . . ,±1).

We assume the noise samplesη(tk) statistically independent for distincttk ’s, so that
the conditional probabilities factorize as Pr{x|Hi} = ∏N

k=1 Pr{xk|Hi}. Also, the samples
η(tk) are identically distributed, with cumulative distribution functionFη(u) and probabil-

1 Also, it can be shown that the Bayesian costC in Eq. (1) attached to the optimal minimax detector turns
to be equal to the constantCminimax of Eq. (8) for anyP0.
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Pr{xk = 1|H1} = Pr
{
w

[
ν1tk + η(tk)

] = 1
}
, (11)

= Pr
{
ν1tk + η(tk) ∈

⋃
�

[�, � + 1/2)
}
, (12)

= Pr
{
η(tk) ∈

⋃
�

[� − ν1tk, � − ν1tk + 1/2)
}
, (13)

=
+∞∑

�=−∞

�−ν1tk+1/2∫
�−ν1tk

fη(u) du, (14)

=
+∞∑

�=−∞

[
Fη(� − ν1tk + 1/2) − Fη(� − ν1tk)

]
, (15)

� integer, and

Pr{xk = −1|H1} = 1− Pr{xk = 1|H1}. (16)

In the same way, we have

Pr{xk = 1|H0} =
+∞∑

�=−∞

[
Fη(� − ν0tk + 1/2) − Fη(� − ν0tk)

]
(17)

and

Pr{xk = −1|H0} = 1− Pr{xk = 1|H0}. (18)

The probabilities Pr{x|Hi} that follow from Eqs. (15)–(18), allow an explicit impleme
tation of the optimal detectors of Section 2 along with the assessment of their perform
as a function of the properties of the noise conveyed byFη(u).

4. Improvement by noise

The optimal Bayesian detector of Eq. (4) achieves the minimal costCmin of Eq. (4)
which here is computable as

Cmin = 1

2

[
P1(C01 + C11) + P0(C10 + C00)

]
− 1

2

∑
x1∈{−1,1}

. . .
∑

xN∈{−1,1}

∣∣P1(C01 − C11)Pr{x1|ν1} . . .Pr{xN |ν1}

− P0(C10 − C00)Pr{x1|ν0} . . .Pr{xN |ν0}
∣∣, (19)

the multiple sum running over the 2N states accessible to the datax.
For illustration of the possibility of a stochastic resonance, Fig. 1 shows the perform

of the optimal Bayesian detector measured by the costCmin of Eq. (19), as a function o
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Fig. 1. Minimal detection costCmin from Eq. (19) of the optimal Bayesian detector, as a function of the
amplitudeση of the zero-mean uniform noiseη(t). Also C00 = C11 = 0, P0 = 0.5, ν0 = 1, ν1 = 2/3, with
N = 13 data samples equispaced with time step 0.2 from t1 = 0 to t13 = 2.4. Solid line:C10 = 2 andC01 = 5,
dashed line:C10 = 1 andC01 = 2.

the rms amplitudeση of the phase noiseη(t) which has been chosen zero-mean unifo
In the representative conditions of Fig. 1, the evolutions of the costCmin are clearly non-
monotonic as the noise levelση increases. This demonstrates the possibility, over s
ranges of the noise levelση, of reducing the cost of the optimal detection by opera
at higher noise levels. It is this very possibility that we want to emphasize, and th
interpret as a form of stochastic resonance, the nonmonotonic evolution of the optim
formance, when the noise level increases, instead of a monotonic degradation as com
observed in standard optimal detection processes.

For another illustration, we choose for the phase noiseη(t), the family of Gaussian
mixture densitiesfη(u) = fgm(u/ση)/ση defined through the standardized probabi
density

fgm(u) = 1

2
√

2π
√

1− m2

{
exp

[
− (u + m)2

2(1− m2)

]
+ exp

[
− (u − m)2

2(1− m2)

]}
, (20)

with 0 < m < 1, and cumulative distribution function

Fgm(u) = 1

2
+ 1

4

[
erf

(
u + m√

2
√

1− m2

)
+ erf

(
u − m√

2
√

1− m2

)]
. (21)

Figure 2 shows the performance of the optimal Bayesian detector measured by t
Cmin of Eq. (19), as a function of the rms amplitudeση of the Gaussian-mixture nois
η(t), in two representative sets of conditions. Again, the evolutions of Fig. 2 are cl
nonmonotonic as the noise levelση increases, demonstrating the same type of stoch
resonance with the optimal Bayesian detector. Figure 2 also presents numerical
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Fig. 2. Minimal detection costCmin of the optimal Bayesian detector, as a function of the rms amplitudeση of
the Gaussian-mixture noiseη(t) with m = 0.95. The solid lines areCmin of Eq. (19); the discrete points areCmin
numerically evaluated with 104 Monte Carlo trials of the test (4) for eachση ; with C10 = 2 andC01 = 5 (∗),
C10 = 1 andC01 = 2 (◦). Also C00 = C11 = 0,P0 = 0.5, ν0 = 1, ν1 = 2/3, with N = 6 data samples equispace
with time step 0.3 from t1 = 0 to t6 = 1.5.

tions of the theoretical performance, through a Monte Carlo implementation of the op
detector of Eq. (4).

The same possibility of improvement by noise also exists for the performance
optimal MAP detector, or minimum error-probability detector, measured by the (minim
probability of detection errorPer. Figures 3 and 4 illustrate the possibility of reduci
Per, by increasing the level of noiseση , over some ranges, successively for the zero-m
uniform noise and for the Gaussian-mixture noise from Eq. (20).

For the optimal Neyman–Pearson detector, with the nonlinear signal-noise mixtur
phase noise, we did not find it possible to obtain a general explicit analytical charac
tion of the thresholdµ(Pf,sup) of Eq. (8), for an arbitrary noise densityfη(u). Nevertheless
here, for a reasonable number of data pointsN leading to 2N = NS different states access
ble to the datax, it is feasible to exhaustively test all the 2NS possible partitions(R0,R1),
select those associated to aPf in Eq. (6) no larger thanPf,sup, and among them retain th
one with maximalPd in Eq. (5). This was done so at eachση in various configurations, an
the results are shown in Figs. 5 and 6, successively for the zero-mean uniform noise
the Gaussian-mixture noise from Eq. (20). The evolutions of Figs. 5 and 6 demonstra
the optimal Neyman–Pearson detector, the possibility of increasing its probability of d
tion Pd, by raising the level of noiseση, over some ranges. This is again a nonmonoto
evolution of the performance of the optimal detector when the noise level is raised, th
interpret as a form of stochastic resonance.

Finally, it is possible to findP ∗
0 that maximizesCmin of Eq. (19), opening the wa

to the optimal minimax detector andits performance measured by the costCminimax of
Eq. (8). Evolutions ofCminimax are shown in Figs. 7 and 8, successively for the zero-m
uniform noise and for the Gaussian-mixture noise from Eq. (20). The results of F
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Fig. 3. Probability of detection errorPer from Eq. (19) of the optimal MAP detector, as a function of the r
amplitudeση of the zero-mean uniform noiseη(t). Also ν0 = 1, ν1 = 2/3, with N = 11 data samples equispac
with time step 0.2 from t1 = 0 to t11 = 2. Solid line:P0 = 0.5, dashed line:P0 = 0.4, dotted line:P0 = 0.3.

Fig. 4. Probability of detection errorPer of the optimal MAP detector, as a function of the rms amplitudeση

of the Gaussian-mixture noiseη(t). The solid lines arePer from Eq. (19); the discrete points arePer numeri-
cally evaluated from 104 Monte Carlo trials of the MAP test (4) for eachση ; with m = 0.9 (◦), m = 0.95 (∗),
m = 0.99 (�). Also P1 = 0.5, ν0 = 1, ν1 = 2/3, with N = 6 data samples equispaced with time step 0.3 from
t1 = 0 to t6 = 1.5.

and 8 establish the possibility of decreasing the costCminimax, by increasing the level o
noiseση , over some ranges. This again reveals the same type of nonmonotonic ev
of the performance of the optimal detectorwhen the noise level is raised, instead o
monotonic degradation.
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Fig. 5. Probability of detectionPd of Eq. (5) of the optimal Neyman–Pearson detector, as a function of the
amplitudeση of the zero-mean uniform noiseη(t), with ν0 = 1, ν1 = 2/3, with N = 3 data samples measured
t1 = 0.1, t2 = 0.4, andt3 = 0.6. Also Pf,sup= 0.1 (solid line),Pf,sup= 0.2 (dashed line),Pf,sup= 0.3 (dotted
line).

Fig. 6. Probability of detectionPd of Eq. (5) of the optimal Neyman–Pearson detector, as a function of the
amplitudeση of the Gaussian-mixture noiseη(t) with m = 0.9 (dotted line),m = 0.95 (dashed line),m = 0.99
(solid line). AlsoPf,sup= 0.1, ν0 = 1, ν1 = 2/3, with N = 3 data samples measured att1 = 0.1, t2 = 0.4, and
t3 = 0.6.

5. Discussion

The present results essentially stand for a proof of feasibility in principle, by d
examination, of a stochastic resonance effect under the form of a noise-improved
mance in a whole range of standard optimal detection strategies. Detailed analyse



28 D. Rousseau, F. Chapeau-Blondeau / Digital Signal Processing 15 (2005) 19–32

e

ude

tep

m-

of
this case
same
Fig. 7. Minimax costCminimax of Eq. (8) of the optimal minimax detector, as a function of the rms amplitudση

of the zero-mean uniform noiseη(t). Also C00 = C11 = 0, C01 = C10 = 1. Solid line:ν0 = 1, ν1 = 2/3, with
N = 6 data samples equispaced with time step 0.25 from t1 = 0 to t6 = 1.5. Crosses (×): ν0 = 1, ν1 = 1/3, with
N = 4 data samples equispaced with time step 0.6 from t1 = 0 to t4 = 1.8.

Fig. 8. Minimax costCminimax of Eq. (8) of the optimal minimax detector, as a function of the rms amplit
ση of the Gaussian-mixture noiseη(t) with m = 0.9 (dotted line),m = 0.95 (dashed line),m = 0.99 (solid line).
Also C00 = C11 = 0, C01 = C10 = 1, ν0 = 1, ν1 = 2/3, with N = 11 data samples equispaced with time s
0.2 from t1 = 0 to t11 = 2.

influence of the distinct parameters playing a role in the detection process are not acco
plished in the present study, and remainopen for subsequent investigations.

Among the important parameters is the waveform of the periodic input the frequency
which we seek to detect. We have chosen here a square wave, essentially because
is simple enough to lend itself to a complete analytical treatment, which was at the
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time verified by Monte Carlo simulations of the optimal detectors, as shown in Fi
and 4. These conditions allowed our proof of feasibility in principle,with the double check
of an analytical treatment and a numerical simulation. The case of detection on a sine wa
for instance, is a more complicated one, that remains open for future study.

It is to note that in all the optimal detection strategies we have tested, the perform
is always at its best when the detectors are operated with no noise, atση = 0. This is a
common behavior which can reasonably be expected from any optimal detector, to achie
its absolute best performance when no noise is present. Then, when a small am
noise is added aboveση = 0, the performance of the optimaldetectors naturally starts t
degrade compared to the absolute best performance atση = 0. Our main finding is that thi
evolution of the performance of the optimal detectors does not continue as a mon
degradation: at higher levels of noise, ranges ofση exist where the performance improve
at least locally, when the noise is further raised. A pre-existing amount of noise h
be present, in order to have access to improvement by noise via the stochastic res
effect. But a pre-existing noise is usually the rule in a detection problem, compared
situation of no noise.

A qualitative explanation can be proposed for the observed effect of improveme
noise in optimal detection. For the observable signal-noise mixturex(t) of Eqs. (9)–(10),
let us assume that the corrupting phase noiseη(t) is a binary or dichotomous noise, ra
domly switching between the two levels−ση and +ση . Whenση = 1, because of th
periodicity 1 of the wavew(t), the binary phase noiseη(t) has actually no action on th
signalx(t), which is preserved exactly as if no noisewere present. Therefore, at the no
level ση = 1, the performance of any detector willreturn to the performance of this d
tector atση = 0. It can be expected that the performance will first degrade asση is raised
above zero, but later on, the performance will improve asση approaches one, to return
its initial value atση = 0. A similar effect can be expected when the binary phase n
η(t) switches between±ση = ±0.5, or any integer multiple of such configurations. T
Gaussian-mixture noise from Eq. (20) that we have tested in Figs. 2, 4, 6, and 8, pre
tends to the binary noise at±ση whenm → 1, and it reflects this qualitative behavior w
have explained for the binary noise. In this respect, our present report can be se
quantitative analysis, extended to any type of noise, of the qualitative behavior antic
for the binary noise. The important and nonobvious point is that the behavior antic
for the binary noise and which leads to a nonmonotonic evolution of the perform
is in actuality preserved for non-binary noises, noises with a bimodal structure lik
Gaussian-mixture noise from Eq. (20), but also unimodal noises like the uniform
tested in Figs. 1, 3, 5, and 7. The nonmonotonic behavior of the performance is
tially caused by the action of the nonlinearity itself, as in Eqs. (9)–(10), which mixe
information signal and the noise, through a phase coupling which introduces a sen
to the amplitude of the noise in relation to the periodicity2 of w(t). The noise, somehow

2 It is to be noted that the level of the phase noiseη(t) ought not be measured modulo 1. The noise le
is given, in principle at an arbitrary value, prior tothe nonlinear coupling with the information signal through
Eqs. (9)–(10). It is for instance the arbitrary level at which the transducer evoked at the end of the paragra
Eq. (10), is randomly shaken. Subsequently, it is the action of the nonlinear coupling via Eqs. (9)–(10), whi
brings the (arbitrary) amplitude of the noise to have an action on the phase between 0 and 1.
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is able to bring some phase shift which places the nonlinear coupling in a better con
uration for the detection task, by making the waves atν0 and atν1 more distinguishable
And this mechanism can take place for various types of noise, not necessarily binary
not necessarily bimodal noise, especially unimodal noise. The outcome, which is the
point of this report, is the possibility of (local) improvement of the performance ofoptimal
detectors as the noise level increases.

In the tested configurations, with a square wavew(t), the stochastic resonance effe
was not observed with Gaussian noise (m = 0), but it appears with Gaussian-mixture noi
and in a more pronounced way as we depart more from the Gaussian, withm → 1 (evo-
lution to binary noise), and also with uniform noise. The uniform noise is a genera
Gaussian noise [14] with exponent+∞, while the standard Gaussian noise correspond
an exponent of 2. We have observed, with a few other instances of generalized Ga
noises, that the stochastic resonance effect tends to vanish smoothly (the nonmo
evolution of the performance gradually gives way to a monotonic degradation) as t
ponent tends to 2 from above. The effect disappears for an exponent of 2 or below. F
studies will be useful for a more detailed appreciation of the influence of the type o
noise on the stochastic resonance. Many other settings and conditions have been
where a form of stochastic resonance (in suboptimal processing) takes place with Ga
noise [1–3,11,23]. In the future, conditions may well be found allowing stochastic re
onance in optimal processing with Gaussian noise. This issue remains open for
investigation. In this perspective, studies are currently under way to investigate th
sibility of extending stochastic resonance to optimal estimation [24].

Important nonlinear processes that have been shown to lend themselves to man
esting forms of stochastic resonance are the neural processes [4,13,25–31]. Neurons
intrinsically nonlinear devices, they naturally operate in noisy conditions (of extern
internal origins), and they achieve high efficiency for signal and information proces
In addition, neurons handle the signals essentially under the form of trains of stereotype
pulses (action potentials) mostly invariant in shape, but with their coding capability
ported by the temporal sequencing of the pulses along the trains. This can be vie
a coding in phase, and the conditions of the present study, with phase coupling and
noise, could carry some relevance for neural information processing, this perspecti
remaining open for detailed investigation.

The present results contribute a new step in the inventory and analysis of the p
ties and potentialities of stochastic resonance, at large, understood as an effect o
improved information processing. Beyond the present proof of feasibility in principle, o
a stochastic resonance in optimal detection strategies, further studies can proceed in m
directions to extend our knowledge of noise-enhanced information processing.
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