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Abstract

We investigate power estimation on a random noise from measurements taken by one-bit quantizers, with an efficacy assessed
by the Fisher information. In isolated quantizers, an optimal tuning of the quantization threshold exists to maximize the estimation
efficacy. When the quantizers are assembled in parallel arrays, no specific tuning of the quantization threshold is any longer
required. Instead, addition of noise in the array can be employed as a means of enhancing the estimation efficacy. This is interpreted
as a form of stochastic resonance or improvement by noise, applied to parametric estimation on a noise, which is shown improvable
by adding more noise.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

For signal and information processing, it is progressively realized that noise is not necessarily a nuisance, but
can sometimes play a beneficial role. This possibility of a constructive action of noise can be identified under the
generic term of “stochastic resonance.” Various forms of stochastic resonance or improvement by noise have been
reported for signal processing, mainly in nonlinear systems or processes. Stochastic resonance effects have been
demonstrated with the amplification by noise of the signal amplitude, or the signal-to-noise ratio, at the output of
various nonlinear systems [1–3]. Improvements by noise have also been obtained in nonlinear detection [4–8], and in
nonlinear estimation [9].

When isolated nonlinear systems are assembled into parallel arrays, it has been shown that new mechanisms of
improvement by noise can come into play [10–12]. Arrays of threshold comparators or one-bit quantizers are among
the simplest arrays of this type. With these arrays of comparators, enhancement by noise has been reported for the
input–output mutual information [11], for the input–output signal correlation [13], and for the output signal-to-noise
ratio [14].

For estimation purposes as we address in the present paper, arrays of one-bit quantizers have been studied in [15].
In the study of [15], parametric estimation is considered on a deterministic input signal contaminated by some input
noise. When measurements for estimation are performed by an array of quantizers, it is shown in [15] that a nonzero
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amount of added noise injected into the array is able to improve the performance for estimation on the deterministic
input signal. The estimation performance in [15] is assessed by the Fisher information, and an enhancement of this
Fisher information is shown possible thanks to the action of noise added into the array. Another type of nonlinear ar-
rays, made with saturating devices, has also been studied recently by [16] in this context of array stochastic resonance
and noise-aided estimation. In [16] also, parametric estimation is considered on a deterministic input signal, with a
performance assessed by the Fisher information.

In stochastic resonance effects assessed with the Fisher information, essentially a deterministic signal has been
considered for estimation, be it in arrays as in the recent studies of [15,16] or in isolated nonlinearities as in the earlier
studies of [17–20]; and often the examples are worked out for a constant deterministic signal. This is consistent with
a classic picture for stochastic resonance, where an information-carrying signal coupled to a noise benefits from the
presence (or increase) of the noise. By contrast here, we consider estimation of a statistical parameter (power) of a
noise. There is no deterministic signal. This somehow enlarges the scope of stochastic resonance to estimation on
a noise, which is shown improvable by adding more noise. We study in the context of stochastic resonance, how
to handle power estimation on an input noise, when the measurements are taken by one-bit quantizers. These very
common nonlinear devices offer a very parsimonious signal representation. This can be specially relevant for fast
real-time processing, or for systems with limited hardware resources or energy supply. We demonstrate a constructive
impact of added noise, for power estimation using one-bit quantizers assembled in arrays.

2. Estimation from a single quantizer

2.1. Output Fisher information

A random signal x(t) has probability density function fx(u) and power or mean-squared value E[x2(t)] = σ 2.
Without loss of generality, we consider throughout that signal x(t) is zero mean. This signal x(t) is observed by
means of a one-bit quantizer with threshold θ delivering the binary signal

y(t) = Γ
[
x(t) − θ

] = 0 or 1, (1)

with the Heaviside function Γ (u) = 0 for u � 0 and Γ (u) = 1 otherwise. From the quantizer output y(t), one wants
to estimate the noise power σ 2. To this aim, at M distinct times tj one collects M observations y(tj ) = yj , for j = 1
to M . For estimation purposes from the data (y1, . . . , yM) = y, a fundamental quantity is the Fisher information
J (y, σ 2) which provides a measure of the information contained in the data y about the unknown parameter σ 2 to
be estimated [21]. J (y, σ 2) serves to define a bound fixing a limit to the performance of any conceivable estimator
of σ 2 from y: the mean squared estimation error is always lower bounded by a bound (the Cramér-Rao lower bound)
directly related to the reciprocal Fisher information. Moreover, the well known maximum likelihood estimator, in the
asymptotic regime of a large number of measurements M , achieves estimation with minimum mean squared error.
And this minimum, fixing the best achievable performance, is exactly given by the reciprocal Fisher information.
From the probability Pr{y} of a given data vector y, Fisher information J (y, σ 2) is defined as [21]

J (y, σ 2) =
∑
y

1

Pr{y}
[

∂

∂σ 2
Pr{y}

]2

, (2)

where the sum runs over the 2M feasible configurations of the data vector y.
We further assume a common condition in metrology where the data yj are mutually statistically independent; this

is achieved by choosing the observation times tj sufficiently separated in relation to the correlation duration of x(t).
In this common case of independent measurements, Fisher information is additive and yields

J
(
y, σ 2) =

M∑
j=1

J
(
yj , σ

2), (3)

where

J
(
yj , σ

2) =
∑

y ∈{0,1}

1

Pr{yj }
[

∂

∂σ 2
Pr{yj }

]2

(4)

j
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is the Fisher information contained in measurement yj about σ 2. Moreover, when the measurements yj are identically
distributed, J (yj , σ

2) is the same for every j and J (y, σ 2) = MJ(yj , σ
2).

From the observed binary signal of Eq. (1), one has

Pr{yj = 0} = Pr
{
x(tj ) � θ

} = Fx(θ), (5)

and Pr{yj = 1} = 1 − Pr{yj = 0} = 1 − Fx(θ), where Fx(u) = ∫ u

−∞ fx(v)dv is the cumulative distribution function
of the random signal x(t). In general for a zero-mean signal x(t) with power σ 2, one always has for the density
fx(u) = fstand(u/σ)/σ and for the cumulative distribution Fx(u) = Fstand(u/σ) with the σ -independent standardized
functions fstand(u) and Fstand(u) of zero mean and unit power. This allows one to express the derivative

∂

∂σ 2
Fx(u) = − u

2σ 2
fx(u), (6)

leading for Eq. (4), via Eq. (5), to

J
(
yj , σ

2) = f 2
x (θ)

[1 − Fx(θ)]Fx(θ)

θ2

4σ 4
. (7)

Equation (7) conveys important properties on the possibility of estimating σ 2 from the yj ’s. In particular, from
Eq. (7) one finds that in general J (yj , σ

2) = 0 when θ = 0. This means that there is no possibility of estimating
the power σ 2 when the zero-mean signal x(t) is quantized at the threshold θ = 0. In many situations, θ = 0 is the
optimal threshold for the quantization of a zero-mean signal x(t), allowing for instance to minimize the mean-squared
distortion between x(t) and its quantized version y(t). Yet, for power estimation, θ = 0 is a completely inefficient
setting of the quantizer, making the quantized signal y(t) flip between 0 and 1 in a way completely independent of
the power σ 2.

In addition Fisher information J (yj , σ
2) of Eq. (7) can also be expressed as

J
(
yj , σ

2) = 1

4σ 4

f 2
stand(θ/σ )

[1 − Fstand(θ/σ )]Fstand(θ/σ )

(
θ

σ

)2

= 1

σ 4
ρ(θ/σ ). (8)

Beyond the case J (yj , σ
2) = 0 at θ = 0, function ρ(θ/σ ) defined by Eq. (8) expresses that the dependence of

J (yj , σ
2) with θ is universal in θ/σ , materializing a scale invariance of the process with respect to signal ampli-

tudes, which is conveyed to the performance in estimation. When the quantization threshold θ varies in ] − ∞,∞[,
in Eq. (8) function ρ(θ/σ ) remains positive, and for any σ > 0 in general ρ(θ = 0) = 0 and ρ(θ → ∞) = 0. Then,
depending on the specific shape of the probability density of x(t), ρ(θ/σ ) is expected to reach a maximum ρmax > 0
at a universal reduced threshold uopt = θopt/σ , with ρmax and uopt independent of σ , in such a way that at any given σ ,
Fisher information J (yj , σ

2) is maximized for a quantization threshold θopt = uoptσ where it culminates at ρmax/σ
4.

This establishes the optimal setting of the quantization threshold θ to maximize the performance in the power estima-
tion.

For illustration, Fig. 1 presents the evolution of Fisher information J (yj , σ
2) from Eq. (8), as a function of the

quantization threshold θ , in two cases, when x(t) is Gaussian with density

fx(u) = 1

σ
√

2π
exp

(
− u2

2σ 2

)
(9)

and cumulative distribution

Fx(u) = 1

2

[
1 + erf

(
u√
2σ

)]
, (10)

and when x(t) is Laplacian with density

fx(u) = 1

σ
√

2
exp

(
−√

2
|u|
σ

)
(11)

and cumulative distribution

Fx(u) =

⎧⎪⎪⎨
⎪⎪⎩

1

2
exp

(
−√

2
|u|
σ

)
for u � 0,

1 − 1
exp

(
−√

2
|u|)

for u � 0.

(12)
2 σ
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Fig. 1. Reduced Fisher information J (yj , σ 2) × σ 4 = ρ(θ/σ) from Eq. (8), as a function of the reduced quantization threshold u = θ/σ , when the
random signal x(t) is Gaussian (solid line), or Laplacian (dashed line).

The evolutions of Fig. 1 show, as announced, that Fisher information J (yj , σ
2) is always zero when the quantiza-

tion threshold is θ = 0, and that J (yj , σ
2) culminates at a maximum ρmax/σ

4 at an optimal threshold θopt = uoptσ . For
the Gaussian case one finds (uopt, ρmax) ≈ (1.575,0.1521), and for the Laplacian case (uopt, ρmax) ≈ (1.302,0.0730).
The superior value of the Fisher information means that estimation of the power σ 2 from the quantized signal y(t)

will be more efficient (more accurate for a fixed number of data points) for a Gaussian signal x(t) than for a Laplacian
signal x(t).

This analysis of Fisher information J (yj , σ
2) reveals a practical difficulty that the optimal quantization threshold

θopt = uoptσ for estimation is dependent upon the unknown parameter σ one is seeking to estimate. This difficulty
can be resolved if one is able to a priori specify an initial range over which the power σ 2 or standard deviation σ can
possibly take its value. In a Bayesian framework, one introduces a prior probability density p0(u) describing these
possible values. One can then consider the average Fisher information over the prior p0(u), i.e.

J̄ (yj ) =
∞∫

0

J
(
yj , σ

2)p0(σ )dσ. (13)

Then selecting θ that maximizes J̄ (yj ) from Eqs. (13) and (8) will ensure good performance on average, with a fixed
quantizer for estimating many power values drawn from the prior p0(u). The performance of this fixed quantizer
will certainly be made strictly larger than that of the inoperative quantizer tuned at θ = 0. At the same time, the
performance of Eq. (13), as an average value, will be somewhat less than the maximum performance deduced from
Eq. (8), depending on the prior density. For illustration, Fig. 2 shows the average Fisher information J̄ (yj ) from
Eq. (13), for estimation of the power σ 2 on a Gaussian and on a Laplacian signal x(t), with a prior p0(σ ) uniform
over [0.5,1.5]. Fisher information J̄ (yj ) in Fig. 2, from the location of its maximum, suggests to place the quantization
threshold at θ = 0.97 for Gaussian signals, and at θ = 0.83 for Laplacian signals, for optimal average performance in
power estimation.

2.2. Input–output efficacy of Fisher information

For further appreciation of the efficacy of estimation from the quantized signal y(t), a useful reference is to compare
J (yj , σ

2) to J (xj , σ
2), where J (xj , σ

2) is the Fisher information about the power σ 2 contained in a sample xj =
x(tj ) which would be directly observed from the analog signal x(t) instead of its quantized version y(t). This Fisher
information J (xj , σ

2) is computable as [21]

J
(
xj , σ

2) =
∞∫

1

fx(u)

[
∂

∂σ 2
fx(u)

]2

du, (14)
−∞
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Fig. 2. Average Fisher information J̄ (yj ) from Eq. (13), as a function of the quantization threshold θ , when the random signal x(t) is Gaussian
(solid line), or Laplacian (dashed line), with a prior p0(σ ) uniform over [0.5,1.5].

or equivalently

J
(
xj , σ

2) = 1

4σ 4

∞∫
−∞

1

fstand(u)

[
fstand(u) + uf ′

stand(u)
]2 du = 1

σ 4
ρin, (15)

where ρin defined by Eq. (15) is a constant, independent of the power σ 2, and only function of the standardized shape
of the probability density of input signal x(t).

With a Gaussian x(t), from Eq. (9) one finds J (xj , σ
2) = 1/(2σ 4) = 0.5/σ 4 to be compared with J (yj , σ

2) ≈
0.1521/σ 4 after quantization at the optimal threshold θopt. And with a Laplacian x(t), from Eq. (11) one finds
J (xj , σ

2) = 1/(4σ 4) = 0.25/σ 4 to be compared with J (yj , σ
2) ≈ 0.0730/σ 4 after quantization at the optimal

threshold. The superior value of J (xj , σ
2) shows that power estimation directly from the analog signal x(t) (with

a fixed number of data points) is also more efficient for a Gaussian x(t) than for a Laplacian x(t). The ratio
J (yj , σ

2)/J (xj , σ
2) provides a measure of the loss of efficiency entailed by the use of the quantized signal y(t)

in place of the analog signal x(t) for estimation of the power σ 2. The most favorable condition is at quantization with
the optimal threshold, which sets the maximum value of this ratio at ρmax(uopt)/ρin. This maximum ratio is indepen-
dent of the power σ 2, and only function of the standardized shape of the probability density of input signal x(t). One
finds for the Gaussian case ρmax(uopt)/ρin ≈ 0.304, and for the Laplacian case ρmax(uopt)/ρin ≈ 0.292. The slightly
superior value of the ratio means that there will also be less loss of efficacy for power estimation on a Gaussian signal
x(t) than on a Laplacian signal x(t).

3. Estimation from an array of quantizers

3.1. Array Fisher information

We now investigate for power estimation, the capabilities of parallel arrays of one-bit quantizers in the framework
of stochastic resonance. We consider N identical quantizers as in Eq. (1) with a common quantization threshold θ ,
assembled into an uncoupled parallel array as in [11,15]. Each quantizer i receives the same input signal x(t) with
in addition the possibility of an independent noise input ηi(t). So quantizer i delivers the output binary signal yi(t)

according to

yi(t) = Γ
[
x(t) + ηi(t) − θ

] = 0 or 1, (16)
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for i = 1 to N . The N added noises ηi(t) are white, independent of x(t), mutually independent and identically
distributed with cumulative distribution function Fη(u) and probability density function fη(u) = dFη(u)/du. The N

output signals yi(t) are then averaged to produce the array output Y(t) as

Y(t) = 1

N

N∑
i=1

yi(t). (17)

As before, at M distinct times tj one collects M observations Y(tj ) = Yj , and from the data (Y1, . . . , YM) = Y one
seeks to estimate the power σ 2 of input signal x(t). Estimation efficacy is assessed by the Fisher information J (Y , σ 2)

contained in the data Y about the unknown power σ 2. Since the observations Yj are independent, one has J (Y , σ 2) =∑M
j=1 J (Yj , σ

2). Any given observation Yj can assume N +1 distinct values, namely Yj = 0/N,1/N,2/N, . . . ,N/N

since
∑N

i=1 yi(tj ) in Eq. (17) counts the number of quantizer outputs at 1, ranging from 0 to N . It results that the Fisher
information J (Yj , σ

2) contained in one measurement Yj is

J
(
Yj , σ

2) =
N∑

n=0

1

Pr{Yj = n/N}
[

∂

∂σ 2
Pr

{
Yj = n

N

}]2

. (18)

For any given binary output yi(t), at a fixed value x for the input signal x(t), one has from Eq. (16) the conditional
probability

Pr
{
yi(t) = 0|x} = Pr

{
x + ηi(t) � θ

} = Fη(θ − x), (19)

and Pr{yi(t) = 1|x} = 1 − Pr{yi(t) = 0|x} = 1 − Fη(θ − x). From the binomial distribution [22], we deduce for the
array output Yj the conditional probability

Pr{Yj = n/N |x} = CN
n

[
1 − Fη(θ − x)

]n
Fη(θ − x)N−n, (20)

where CN
n is the binomial coefficient. Since x is distributed according to the density fx(x), we obtain the total

probability

Pr

{
Yj = n

N

}
=

∞∫
−∞

CN
n

[
1 − Fη(θ − x)

]n
Fη(θ − x)N−nfx(x)dx, (21)

as also found in [15] for estimation on a deterministic input signal with similar arrays of quantizers. By contrast to
[15], we seek here to estimate the power σ 2 of the random signal x(t) with no deterministic component at the input,
and so we now need to evaluate the derivative ∂Pr{Yj = n/N}/∂σ 2. Through the use of the standardized density
fstand(·), one deduces that

∂

∂σ 2
fx(x) = − 1

2σ 2

[
fx(x) + xf ′

x(x)
]
, (22)

with f ′
x(x) = dfx(x)/dx, so that

∂

∂σ 2
Pr

{
Yj = n

N

}
= −CN

n

2σ 2

∞∫
−∞

[
1 − Fη(θ − x)

]n
Fη(θ − x)N−n

[
fx(x) + xf ′

x(x)
]

dx. (23)

Equations (21) and (23) now provide access, possibly through numerical integration, to Fisher information J (Yj , σ
2)

of Eq. (18).
For estimation with the array of quantizers, we can now study the impact of the added noises ηi(t) in the framework

of stochastic resonance. Figure 3 presents evolutions of Fisher information J (Yj , σ
2) of Eq. (18) in an array of fixed

size N = 15, as a function of the rms amplitude ση of the array noises ηi(t) chosen zero-mean Gaussian.
It is clearly visible in Fig. 3 that addition of the array noises ηi(t) leads to an improvement of the Fisher information.

With no added array noises ηi(t), i.e. at ση = 0 in Fig. 3, all the quantizers switch in unison as a single one, and Fisher
information J (Yj , σ

2) is at the level corresponding to a single quantizer as shown in Fig. 1. Then, as the level ση

of the array noises grows above zero in Fig. 3, Fisher information J (Yj , σ
2) starts to increase, to culminate at a
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Fig. 3. Fisher information J (Yj , σ 2) of Eq. (18) in an array of size N = 15, as a function of the rms amplitude ση of the array noises ηi(t) chosen
zero-mean Gaussian, and for different values of the quantization threshold θ . The input signal x(t) is Gaussian with rms amplitude σ = 1.

Fig. 4. Fisher information J (Yj , σ 2) of Eq. (18), as a function of the rms amplitude ση of the array noises ηi(t) chosen zero-mean Gaussian, for
different array sizes N , with quantization threshold θ = 0. The input signal x(t) is Gaussian with rms amplitude σ = 1.

maximum level for a nonzero value of ση. Moreover, the highest maximum in Fig. 3 is obtained with the quantization
threshold θ = 0. This is in contrast to the case of the single quantizer, as in Fig. 1, where Fisher information J (yj , σ

2)

is strictly zero at θ = 0, and maximization of J (yj , σ
2) requires a specific tuning of the quantization threshold θ . For

the Gaussian signal, the optimal threshold θopt = 1.575 deduced from Fig. 1 for an isolated quantizer, is also tested for
the array in Fig. 3. It is visible in Fig. 3 that θ = 1.575 is no longer the optimal threshold for the array, where θ = 0
is the best threshold. In the array, for any θ , an improvement of the Fisher information is always possible thanks to
the added noises ηi(t) compared to the situation with no added noises ηi(t), and the best improvement is achieved at
threshold θ = 0.

Another point of view on the improvement by noise in the array is provided by Fig. 4, which presents Fisher
information J (Yj , σ

2) at the quantization threshold θ = 0 deduced from Fig. 3, and for various values of the array
size N .

Figure 4 shows that enhancement by noise of Fisher information J (Yj , σ
2) gets more and more pronounced as the

size N of the array increases. For each array size N > 1 in Fig. 4, there is an optimal level of the array noises ηi(t)

where Fisher information J (Yj , σ
2) is maximized. Also, the array structure, through the use of moderate array sizes

N sufficiently above 1, always offers the possibility of achieving thanks to the added noises, a maximum J (Yj , σ
2)

superior to the largest Fisher information J (yj , σ
2) achievable by a single quantizer tuned at its optimal threshold
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Fig. 5. Average Fisher information J̄ (Yj ) from Eq. (24) in an array of size N = 15 and quantization threshold θ = 0, as a function of the rms
amplitude ση of the array noises ηi (t) chosen zero-mean Gaussian. Random signal x(t) is Gaussian (solid line), or Laplacian (dashed line), with a
prior p0(σ ) uniform over [0.5,1.5].

θopt 	= 0. Therefore, compared to isolated quantizers, arrays with added noises bring two benefits: (i) no specific
tuning other than θ = 0 is needed for the quantization threshold; (ii) the maximum achievable Fisher information can
always be enhanced. For a given configuration of the array, benefit (ii) is maximized with an optimal level of the
added noises ηi(t), as seen in Fig. 4. This optimal noise level, like the optimal threshold θopt of the isolated quantizer,
is usually dependent upon the unknown parameter σ one is seeking to estimate. This difficulty is resolved, as before,
in a Bayesian context where one specifies the feasible range for σ with a prior probability density p0(u). The level ση

of the added array noises ηi(t), can then be tuned to maximize the average array Fisher information

J̄ (Yj ) =
∞∫

0

J
(
Yj , σ

2)p0(σ )dσ, (24)

to ensure good estimation performance on average. An illustration is presented in Fig. 5 for the array, which parallels
the illustration of Fig. 2 for the isolated quantizer. Figure 5 shows the average Fisher information J̄ (Yj ) from Eq. (24),
for estimation of the power σ 2 on a Gaussian and on a Laplacian signal x(t), with a prior p0(σ ) uniform over
[0.5,1.5].

Fisher information J̄ (Yj ) in Fig. 5, from the location of its maximum, suggests to adjust the rms amplitude of the
added array noises at ση = 0.66 for Gaussian signals, and at ση = 0.59 for Laplacian signals, for optimal average
performance in power estimation.

3.2. Input–output efficacy of array Fisher information

As seen in Section 2.2, for the Gaussian case of Fig. 4 the Fisher information contained in an analog measurement
xj at the input is J (xj , σ

2) = 1/(2σ 4) = 0.5/σ 4. As the array size N → ∞ in Fig. 4, the maximum Fisher information
J (Yj , σ

2) from the quantized data tends to the complete Fisher information J (xj , σ
2) contained in the analog data.

This is true not only for a Gaussian density of random signal x(t) as in Fig. 4, but for any density of x(t). The
reason is that as N → ∞, the array output of Eq. (17), by the law of large numbers, tends to exactly match the
statistical expectation Eη[yi(t)], with departure vanishing as 1/

√
N , where expectation Eη[·] is according to the

density fη(u) of the array noises ηi(t). At this limit N → ∞, the array with added noises ηi(t), is therefore turned
into a deterministic device with input–output characteristic Y(t) = Eη[yi(t)] = 1−Fη[θ −x(t)]. Since the cumulative
distribution Fη(u) is generally an increasing and consequently invertible function, the input–output characteristic
Y(t) = 1 −Fη[θ −x(t)] is in general a smooth invertible characteristic, replacing the hard noninvertible characteristic
y(t) = Γ [x(t) − θ ] of Eq. (1). An invertible transformation leaves unchanged the Fisher information, leading to
J (Yj , σ

2) → J (xj , σ
2) in large arrays as announced. The noninvertible threshold characteristic y(t) = Γ [x(t) − θ ]
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of an isolated quantizer entails a significant loss of information, as discussed in Section 2.2. Meanwhile, the invertible
characteristic Y(t) = 1 − Fη[θ − x(t)] realized by large arrays of quantizers with added noises, is able to recover the
complete Fisher information contained in the input analog data. This outcome carries over to the average output Fisher
J̄ (Yj ) of Eq. (24), which in large arrays will tend to the average input Fisher information J̄ (xj ) contained in the input
analog data xj .

4. Conclusion

We have addressed estimation of the power of a noise from measurements taken by one-bit quantizers offering a
useful condensed representation of the data. With an isolated quantizer, we have shown that there is usually a need
for a specific tuning of the quantization threshold, in order to allow an efficient estimation. There is also an inherent
reduction of efficacy when, for estimation, the quantized data are used in place of the original analog data. This was
measured here through the analysis of the Fisher information in the data. Next, we have shown that no specific tuning
of the quantization threshold is needed when the quantizers are assembled in parallel arrays. Efficient estimation can
be obtained, through a stochastic resonance effect, by injection of independent extra noises into the array. Maximum
estimation efficacy is obtained at a nonzero level of added array noises. Furthermore, for estimation, arrays with
added noises can always be made more efficient than isolated quantizers. Also, in large arrays of quantizers, the same
estimation efficacy that would be afforded by the analog data is recovered.

These results, in some sense, extend the scope of stochastic resonance for noise-aided signal processing. The
initial form of suprathreshold stochastic resonance in arrays similar to Eqs. (16)–(17), as introduced in [11,23], was
concerned with a random input signal with no input noise. The measure of performance in [11,23] was an input–output
mutual information assessing the similarity between the input information-carrying signal and the array output. For
estimation tasks, stochastic resonance effects have been reported only for estimation on deterministic signals, and
very often constant deterministic signals. By contrast here, stochastic resonance for estimation on a noise, with no
deterministic signal, is examined for the first time. An intrinsic statistical parameter of the noise, its power, is estimated
with enhanced efficacy when more noise is added. This demonstrates that enhancement by noise in estimation is a
general possibility, accessible for parametric estimation on noise as well as on deterministic signals.

The present results can bear significance for sensors and measurement, data acquisition and processing, with low-
cost devices such as quantizers, or smart arrays, or nanodevices with threshold all-or-nothing response. The results
can also carry significance for neural signal processing. Many previous forms of stochastic resonance have been
shown relevant in this area [24–29]. Threshold nonlinearities and parallel arrays with internal noise are common
features found in neural processes. In this context, the present findings suggest for instance that sensory neural systems
could constructively exploit their internal noise to improve estimation of the level of a background activity from the
environment. These form open perspectives to be further examined, for nonlinear signal and information processing
aided by noise.
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