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The distributed Bayesian vector parameter estimation problem based on low-resolution observations is 
investigated in a network, where each node represents an ensemble of estimates from a large number 
of sensors. A noise-enhanced Bayesian vector estimator that benefits from artificially added noise is 
proposed. For a network node composed of a sufficiently large number of identical low-resolution 
sensors, a lemma governing the weight coefficients is proven, and low-cost calculation expressions of the 
designed estimator and its Bayesian mean square error (MSE) are derived by avoiding costly computations 
due to high-dimensional matrix inversions. Experimental results show that by intentionally adding an 
appropriate amount of noise to networks of the low-resolution sensors, the MSE of the designed Bayesian 
vector estimator can be significantly reduced.
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1. Introduction

The widespread use of low-power and low-complexity sensors 
in wireless networks and digital communication systems offers an 
answer to the demanding requirements of cost constraints and 
bandwidth limitations [1–4], but poses the challenge of achiev-
ing efficient processing from low-resolution observations of many 
sensors [5–7]. In recent years, increasing interest has focused on 
studying efficient parameter estimation based on low-resolution 
observations. In order to reduce the signal distortion and improve 
the accuracy of parameter estimation, the operation of adding op-
timal noise before sensors is often employed in practical applica-
tions such as audio coding [8], image compression [9], distributed 
estimation [2–4,10,11], direction-of-arrival [12], and multiple-input 
multiple-output communications [13], where it is also commonly 
referred to as dithering [1,5,7,14]. Dithering has been widely inves-
tigated for reducing the mean square error (MSE) of deterministic 
or random parameter estimation [7,10,13,15], or for minimizing 
the Cramér-Rao lower bound (CRLB) [3,5,6], by means of an op-
timal amount of added noise. Stochastic resonance [16,17] also 
represents a broader class of noise-aided phenomena, and has 
been exploited for noise-improved information processing for var-
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ious operations, including signal transmission [18–20], detection 
[21–24] and estimation [19,25,26].

In the field of signal estimation, Zeitler et al. [5] proved that, 
for a single-bit dithered quantizer and a Gaussian prior, any es-
timator using the quantizer output sequence is asymptotically at 
least 10 log(π/2) ≈ 1.97 dB worse than a minimum MSE (MMSE) 
estimator using unquantized observations. From quantized obser-
vations in multiplicative noise environments, the enhancements of 
the estimation accuracy by multiplicative noise were reported in 
[27,28]. For the linear MMSE (LMMSE) case, the optimal added 
noise for the initial rate of the noise benefit in binary quantizer 
arrays [29] and for minimizing the MSE of the nonlinear trans-
formation [30] were derived. Using quantized observations of an 
M-level quantizer, the optimal added noise is proven to be a con-
stant signal level in terms of minimizing the Bayesian CRLB [31]. 
Recently, an interesting approach to adding noise for signal esti-
mation has been proposed employing an ensemble of estimates 
from a sufficiently large number of sensors [32–34], whose in-
puts contain the same signal perturbed by mutually independent 
noise components but with low-resolution outputs. This ensemble 
integration method of sensor outputs is asymptotically equivalent 
to the expectation of estimates with respect to the intentionally 
added noise distribution [32]. Based on this deduction, these noise-
enhanced estimators [32,34] demonstrated effective improvement 
in the estimation accuracy of a random parameter and in exper-
iments with trained feedforward neural networks [33,35] thus il-
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Table 1
Summary of notation.

Symbol Notation Symbol Notation

x scalar measurement x observation vector
θ random parameter θ parameter vector
Eθ (θ) parameter mean vector C θθ covariance matrix of θ

h row vector of H H observation matrix
ξ background noise ξ background noise vector
g sensor transfer function w0 bias weight coefficient
η added noise η added noise vector
y sensor output y node output vector
ω weight coefficient for each sensor ω network weight vector
w weight coefficient for each node w network weight vector
z network output vector fη PDF of added noise η
C θ z correlation vector between θ and z C zz covariance matrix of z
θ̂i Bayesian estimator B θ̂i

Bayesian MSE of θ̂i

y average output of node y network output vector
M sensor number N network node number
g∗ convergence of y for M → ∞ g∗ network output vector for M → ∞
θ̂

M
Bayesian vector estimator with M identical sensors BM

NE Bayesian MSE matrix of θ̂
M

θ̂
∗
NE vector estimator of θ with infinite identical sensors B∗

NE Bayesian MSE matrix of θ̂
∗
NE

θ̂LMMSE LMMSE estimator on the measurement x BLMMSE Bayesian MSE matrix of θ̂LMMSE

Ex(·) expectation with respect to the PDF fx(x) Ex,y(·) expectation with respect to the joint PDF fx,y(x, y)

1M M × 1-dimensional unit vector σ 2 variance of the random variable
I N N × N-dimensional unit matrix γ quantizer threshold

Fig. 1. Block diagram representation of the noise-enhanced estimator θ̂i (i = 1, 2, . . . , p) with N network nodes, and each node composed of M sensors and M mutually 
independent added noise components ηnm for n = 1, 2, . . . , N and m = 1, 2, . . . , M .
lustrating the benefit of an optimal amount of added noise to the 
function approximation.

Most of studies of noise-enhanced parameter estimation fo-
cus on estimating a scalar parameter [5,27–30,32,34]. In many 
problems of interest we need to estimate a random vector of pa-
rameters, e.g., estimating a flow vector from the measurement of 
hydraulic fields [36–38], the impulse response of a linear system 
model [39] and target tracking [40]. Then, the noise-enhanced vec-
tor parameter or multiple-parameter estimator also triggered var-
ious studies [31,41,42] in an M-level or binary quantizer. Another 
practical vector parameter estimation problem arising from sen-
sor network applications is based on a set of spatially distributed 
sensors, i.e. distributed parameter estimation [2–4]. For this esti-
mation problem, there are two meaningful questions worthy to be 
answered: how to exploit the artificially added noise to design a 
vector estimator based on the spatially distributed low-resolution 
sensors, and to what extent the Bayesian MSE of the designed es-
timator can be improved by the optimal added noise.

In this paper, we design a Bayesian vector parameter estimator, 
as represented in Fig. 1, to exploit mutually independent added 
noise components in the low-resolution network for improving 
estimation accuracy effectively. We first prove that, for any two 
identical sensors in a network node, the optimum weight coeffi-
cients assigned to two sensors are equal to each other. Then, when 
each network node is composed of a sufficiently large number 
of identical sensors, this property leads to significantly simplified 
representations of the estimator and its Bayesian MSE matrix by 
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avoiding the costly computation of high-dimensional matrix in-
versions. For a prior Gaussian joint probability distribution of the 
random parameters and background noise, the optimal probability 
density function (PDF) of added noise that minimizes the trace of 
the Bayesian MSE matrix is theoretically characterized by an ap-
proximate expression. When the joint probability distribution is 
non-Gaussian, the improvement of the designed estimator by the 
added Gaussian noise is numerically evaluated by simulated real-
izations of the time averaging algorithm. Theoretical and numerical 
analyses show that, for an optimal added noise level or optimal 
added noise type, the Bayesian MSE of the designed estimator is 
very close to that obtained by the MMSE (or LMMSE) Bayesian es-
timator on the original measurements over a wide range of the 
input signal-to-noise ratio (SNR). The main contributions of this 
paper include: proposing a distributed Bayesian vector estimator 
based on a low-complexity sensor network and confirming the 
extent to which intentionally artificially added noise reduces the 
Bayesian MSE of the proposed estimator. List of symbols in this 
paper is shown in Table 1.

2. Model and formulation

Consider a sensor network, as shown in Fig. 1, where each net-
work node receives a scalar measurement sequence

xn = hnθ + ξn, n = 1,2, . . . , N. (1)
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Here, hn is the 1 × p row vector of the N × p (N > p) known 
deterministic observation matrix H = [h�

1 , h�
2 , · · · , h�

N ]� , θ =
[θ1, θ2, · · · , θp]� is a p × 1 unknown random vector parame-
ter with mean Eθ (θ) and covariance matrix C θθ , and the zero-
mean background noise variable ξn is uncorrelated with θ . Let 
x = [x1, x2, · · · , xN ]� and ξ = [ξ1, ξ2, · · · , ξN ]� , we get the linear 
vector measurement model x = Hθ + ξ [39,40].

As illustrated in Fig. 1, the n-th network node has a common 
input xn , but consists of an ensemble of M sensors with low-
resolution outputs

ynm = gnm(xn + ηnm), m = 1,2, . . . , M, (2)

where gnm is the transfer function (e.g. quantizer in Eq. (21)
or hard-limiter in Eq. (22)) of the m-th sensor in the node n, 
and M mutually independent added noise components ηnm are 
with a common PDF fη , which is assumed to be designable. 
Then, we consider the problem of estimating the unknown ran-
dom vector parameter θ from sensor observation vectors yn =
[yn1, yn2, · · · , ynM ]� for n = 1, 2, . . . , N .

First, as indicated in Fig. 1, we assign an adjustable weight ωnm

to each sensor output ynm and denote the weight vector as ωn =
[ωn1, ωn2, . . . , ωnM ]� , and then the n-th network output is given 
by ω�

n yn . An intermediate linear estimator is designed as

θ̂i = w0 + ω�z (3)

to estimate the i-th parameter θi (i = 1, 2, . . . , p), where w0 is the 
biasing weight, the MN × 1 weight vector ω = [ω�

1 , ω�
2 , . . . , ω�

N ]�
and the MN × 1 network output vector z = [y�

1 , y�
2 , . . . , y�

N ]� . 
Then, the error εi = θi − θ̂i and the Bayesian MSE of the inter-
mediate estimate θ̂i becomes

Ex,η(ε2
i ) = Ex,η

[
(θi − w0 − ω�z)2]. (4)

Setting the derivative ∂Ex,η(ε2)/∂ w0 = 0, we find the optimum bi-

asing weight as wopt
0 = Eθi (θi) − ω�Ex,η(z). Then, Eq. (3) can be 

rewritten as θ̂i = Eθi (θi) +ω�[z − Ex,η(z)] and the Bayesian MSE of 
θ̂i in Eq. (4) is obtained as

Ex,η(ε2
i ) = Ex,η

[(
θi − Eθi (θi) − ω�[z − Ex,η(z)]

)2]
= Cθi − 2ω�C zθi + ω�C zzω, (5)

where the variance of the parameter θi is Cθi = Eθi [(θi − Eθi (θi))
2], 

the covariance matrix C zz = Ex,η{[z − Ex,η(z)][z − Ex,η(z)]�} and 
the correlation vector C zθi = Ex,η{[z − Ex,η(z)][θi − Eθi (θi)]}. It 
is clear from this expression that the Bayesian MSE Ex,η(ε2

i ) is 
precisely a quadratic function of the weight vector ω when the 
vector parameter θ , the background vector noise ξ and sen-
sor noise components ηnm are stationary stochastic variables. 
Thus, to obtain the minimum Ex,η(ε2

i ) with respect to ω, we set 
∂Ex,η(ε2)/∂ω = −2C zθi + 2C zzω = 0 and find the optimum weight 
vector, i.e. Wiener weight vector ωopt = C−1

zz C zθi . Substituting ωopt

into Eq. (3) and noting C θi z = C�
zθi

, we can re-express the estimator 
θ̂i in Eq. (3) as

θ̂i = Eθi (θi) + C θi z C−1
zz [z − Ex,η(z)]. (6)

The corresponding Bayesian MSE of θ̂i is given by B θ̂i
= Ex,η[(θi −

θ̂i)
2] = Cθi − C θi z C−1

zz C zθi . It is seen that, when the sensor num-
ber M is large, the performance evaluation of the estimator θ̂i in 
Eq. (6) requires the costly computations of the MN × 1 correla-
tion vector C θi z and the MN × MN inverse matrix C−1

zz . In order 
to reduce the calculation cost, we will show that, for a number of 
identical sensors in each network node, simplifications of the de-
signed estimator θ̂i and its performance can be devised.
3

Fig. 2. Block diagram representation of the n-th network nodes with M identical 
sensors gnm(·) = gn(·) and M mutually independent added noise components ηnm

for m = 1, 2, . . . , M . Only one weight coefficient wn is assigned to the average node 
output yn .

Theorem 1. For M identical transfer functions gnm(·) = gn(·) of sensors 
in the n-th network node, the M × 1 optimum weight vector ωopt

n of the 
network node has M equivalent weight coefficients.

Proof of Theorem 1 is presented in Appendix A. Based on The-
orem 1, when the transfer functions gnm(·) of sensors are identical 
in the n-th network node, M weight coefficients wnm are reduced 
to only one weight coefficient wopt

n indicated in Eq. (A.10). Thus, 
the estimator θ̂i in Eq. (6) and its performance evaluation of B θ̂i
can be calculated with low computational complexities as follows.

Corollary 1. When the transfer functions gnm(·) = gn(·) of sensors are 
identical in the n-th network node, each network node model can be 
simplified as Fig. 2 with only one weight coefficient wn assigned to the 
average node output

yn = 1

M

M∑
m=1

gn(xn + ηnm) (7)

for n = 1, 2, . . . , N. Letting the weight vector w = [w1, w2, . . . , w N ]�
and the network output vector y = [y1, y2, . . . , yN ]� , the designed es-
timator ̂θi in Eq. (6) can be simplified as

θ̂ M
i = Eθi (θi) + C θi y C−1

y y [y − Ex,η(y)] (8)

with its Bayesian MSE

B θ̂ M
i

= Ex,θi [(θi − θ̂ M
i )2] = Cθi − C θi y C−1

y y C yθi
, (9)

where the 1 × N correlation vector C θi y = Ex,η{[θi − Eθi (θi)][y −
Ex,η(y)]�} and the N×N covariance matrix C y y = Ex,η{[y−Ex,η(y)]×
[y−Ex,η(y)]�}. The p designed estimator ̂θ M

i in Eq. (8) can be combined 
into a vector estimator as

θ̂
M
NE = [θ̂ M

1 , θ̂ M
2 , . . . , θ̂ M

p ]� = Eθ (θ) + C θ y C−1
y y [y − Ex,η(y)], (10)

where the p × N correlation matrix C θ y = C�
yθ

= [C�
θ1 y, C

�
θ2 y, . . . ,

C�
θp y]� . The Bayesian matrix of the vector estimator ̂θM

NE is given by

BM
NE = Ex,η[(θ − θ̂

M
NE)(θ − θ̂

M
NE)

�] = C θθ − C θ y C−1
y y C yθ , (11)

whose diagonal element [BM
NE]ii = B θ̂ M

i
for i = 1, 2, . . . , p.

Proof of Corollary 1 is presented in Appendix B. It is seen that 
the computation cost of the solution involving matrix inversion is 
much reduced with the N × N matrix C−1

y y of Eqs. (8) and (9) in 
comparison with the MN × MN matrix C−1

zz in Eq. (6).
From Eqs. (B.1)–(B.4), it is interesting to note that the node out-

puts yn and the calculations of N diagonal elements of C y y involve 
the sensor number M . However, the correlation matrix C θ y and 
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the N(N − 1) non-diagonal elements of C y y are unrelated to the 
sensor number M . In the following, it will be seen that the de-

signed vector estimator ̂θ M
NE in Eq. (10) can be further simplified.

Corollary 2. For a sufficiently large number M of identical transfer func-
tions gn(·) in each network node, the designed estimator ̂θ M

i of Eq. (8)
has an explicit form

θ̂∗
i = Eθi (θi) + C θi g∗ C−1

g∗ g∗ {g∗(x) − Ex[g∗(x)]}, (12)

where the network output vector g∗(x) = [g∗
1(x1), g∗

2(x2), . . . ,
g∗

N(xN )]� and g∗
n(xn) = Eη[gn(xn + η)] for n = 1, 2, . . . , N. The 

Bayesian MSE of the estimator ̂θ∗
i of Eq. (12) can be also computed as

B θ̂∗
i

= Cθi − C θi g∗ C−1
g∗ g∗ C g∗θi , (13)

where the 1 × N correlation vector C θi g∗ = Ex{[θi − Eθi (θi)](g∗(x) −
Ex[g∗(x)])�} and the N × N covariance matrix C g∗ g∗ = Ex{(g∗(x) −
Ex[g∗(x)])(g∗(x) − Ex[g∗(x)])�}. The vector estimator is given by

θ̂
∗
NE = [θ̂∗

1 , θ̂∗
2 , . . . , θ̂∗

p ]�
= Eθ (θ) + C θ g∗ C−1

g∗ g∗ {g∗(x) − Ex[g∗(x)]}, (14)

where the p × N correlation matrix C θ g∗ = C�
g∗θ = [C�

θ1 g∗ , C�
θ2 g∗ , . . . ,

C�
θp g∗ ]� . The Bayesian matrix of the vector estimator ̂θ∗

NE is given by

B∗
NE = Ex[(θ − θ̂

∗
NE)(θ − θ̂

∗
NE)

�] = C θθ − C θ g∗ C−1
g∗ g∗ C g∗θ (15)

whose diagonal element [B∗
NE]ii = B θ̂∗

i
for i = 1, 2, . . . , p.

Proof of Corollary 2 is presented in Appendix C. It will be seen 
in Fig. 7 that, for given background noise and added noise, the de-
signed vector estimator θ̂∗

NE in Eq. (14) can achieve the minimum 
Bayesian MSE that sets the lower MSE bound for ̂θ M

NE in Eq. (8).

Furthermore, in order to improve the performance of θ̂ M
NE in-

cluding θ̂∗
NE for M → ∞ by optimally tuning and exploiting the 

added noise, we face the minimization problem of the trace of the 
Bayesian matrix, i.e.

f o
η (η) = arg min

fη
tr(BM

NE), (16)

to find the optimal added noise PDF f o
η (η). This functional opti-

mization problem of Eq. (16) is usually analytically intractable. For 
a numerical resolution, we use a kernel method [32,34] to find an 
approximate optimal solution as

f̃ o
η (η) =

K∑
k=1

λkφ (η,μk,σk) , (17)

where the normalization coefficients λk ≥ 0 satisfy the constraint ∑K
k=1 λk = 1, and the Gaussian kernel function φ(μ) = exp[−(μ −

μk)
2/2σ 2

k ]/
√

2πσ 2
k with parameters μk and σk ≥ 0. Moreover, 

it has been theoretically proved that, as the number of kernel 
functions K increases in Eq. (17), the approximate optimal noise 
PDF f̃ opt

η can converge to the optimal noise PDF f opt
η if it ex-

ists [32,43,44]. Thus, for a given kernel function number K , the 
minimization problem of Eq. (16) reduces to a finite-dimensional 
nonlinear constrained optimization

min
λk,μk,σk

tr(BM
NE)

s.t. λk ≥ 0,

K∑
λk = 1, σk ≥ 0, (18)
k=1

4

with respect to parameters λk , μk and σk for k = 1, 2, . . . , K . 
The sequential quadratic programming method [44] has been im-
plemented to solve this nonlinear constrained optimization of 
Eq. (18). At each major iteration, an approximation is made of the 
Hessian of the Lagrangian function using a quasi-Newton (BFGS) 
updating method [44]. This is then used to generate a quadratic 
programming subproblem whose solution is used to form a search 
direction for a line search procedure [44].

In the following parts, we will present some illustrative exam-

ples to show improvement of the designed estimator θ̂ M
NE by the 

purposeful addition of artificial noise. For reference, we consider 
the case where the parameter vector θ is directly estimated based 
on the measurement vector x, by the LMMSE unbiased estimator 
given by [39,40]

θ̂LMMSE = Eθ (θ) + C θxC−1
x [x − Ex(x)], (19)

with its Bayesian MSE matrix [39,40]

BLMMSE = Ex[(θ − θ̂LMMSE)(θ − θ̂LMMSE)
�]

= C θθ − C θxC−1
xx C�

θx, (20)

where the vector mean Ex(x) = HEθ (θ), the cross-covariance ma-
trix C θx = C θθ H� , the covariance matrix C xx = H C θθ H� +C ξξ and 
the covariance matrix C ξξ of the background noise vector ξ are 
given a priori. Note that the LMMSE estimator ̂θLMMSE in Eq. (19) is 
identical in form to the MMSE estimator for jointly Gaussian dis-
tribution of parameters and background noise [39,40].

3. Results

We will first discuss some illustrative examples to show the im-
provement of ̂θ∗

NE of Eq. (14) by the purposeful addition of optimal 
noise ηnm , wherein the measurement vector x has a joint Gaussian 
distribution.

Example 1. Consider a random vector parameter θ = [θ1, θ2]� in 
the linear vector model. Parameters θ1 and θ2 are independent and 
follow the Gaussian PDF fθi (θi) = exp[−(θi − uθi )

2/2σ 2
θi
]/
√

2πσ 2
θi

with variance σ 2
θi

for i = 1, 2, respectively. Assume that the 
vector mean Eθ (θ) = [0, 0]T and the covariance matrix C θθ =
[0.5, 0; 0, 0.1], where the semicolon denotes the end of a row of 
matrix. The zero-mean Gaussian background vector noise ξ is with 
the covariance matrix C ξξ = 0.1I N and the known N × 2 observa-
tion matrix

H =

⎡⎢⎢⎢⎣
1 0

cos( 2π
N ) sin( 2π

N )
...

...

cos( 2π(N−1)
N ) sin(

2π(N−1)
N )

⎤⎥⎥⎥⎦ .

Consider all network nodes have the identical sensor transfer func-
tion

g(u) =
{

1, u > γ ,

0, u ≤ γ ,
(21)

which is also known as a binary quantizer with the threshold γ
[7,18,19,29,39].

Without the added noise ηnm , the node output of M identi-
cal binary quantizers in each node equals to an arbitrary quantizer 
output g(xn). Thus, the MSE matrix B∗

NE in Eq. (15) of the designed 
estimator θ̂∗

NE of Eq. (14) can only be optimized by the quantizer 
threshold γ . It is shown in Fig. 3 that, at the optimal thresh-
old γ = 0 and without the added noise (ση = 0), the Bayesian 
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Fig. 3. Bayesian MSEs [B∗
NE]11 and [B∗

NE]22 of the designed estimator θ̂
∗
NE =

[θ̂∗
1,NE, ̂θ∗

2,NE]� in Eq. (14) versus the quantizer threshold γ without the added noise. 
The number of measurements xn is N = 3. For comparison, the Bayesian MSEs 
[BLMMSE]11 = 0.0588 and [BLMMSE]22 = 0.0400 of the LMMSE estimator θ̂LMMSE =
[θ̂1,LMMSE, ̂θ2,LMMSE]� in Eq. (19) are also plotted by lines. (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 4. Approximate optimal PDF f̃ o
η (η) of the added noise for the noise-enhanced 

estimator ̂θ∗
NE with the kernel window number K = 10 in Eq. (17). The other pa-

rameters are the same as in Fig. 3.

MSEs of the estimator θ̂
∗
NE = [θ̂∗

1,NE, ̂θ
∗
2,NE]� are minimized as 

[B∗
NE]11 = 0.1715 ( ) and [B∗

NE]22 = 0.0644 (�), respectively. Here, 
the number of measurements xn is N = 3. For comparison, using 
Eq. (20), the Bayesian MSE matrix BLMMSE = [0.0588, 0; 0, 0.0400]
of the LMMSE estimator θ̂LMMSE = [θ̂1,LMMSE, ̂θ2,LMMSE]� can be 
calculated, and the corresponding Bayesian MSEs [BLMMSE]11 and 
[BLMMSE]22 are also plotted in Fig. 3 by lines. It is seen in Fig. 3
that, without the help of added noise, the performance of θ̂∗

NE is 
significantly worse than that of θ̂ LMMSE, even when the threshold 
γ is optimized.

However, with the help of the optimal added noise, the much 
lower Bayesian MSE of the designed estimator can be expected. 
For a given window number K = 10, we use the sequential 
quadratic programming algorithm [44] to numerically solve the 
nonlinear constrained optimization problem in Eq. (18), and ob-
tain the optimized parameters λk , μk and σk for k = 1, 2, . . . , K . 
Substituting these parameters into Eq. (17), the approximate op-
timal noise PDF f̃ o

η can be established as illustrated in Fig. 4. 
Using this approximate optimal PDF f̃ o

η , we can calculate the cor-
responding Bayesian MSE matrix as B∗

NE = [0.0589, 0; 0, 0.0400], 
which is almost equal to the minimum MSE matrix BLMMSE =
[0.0588, 0; 0, 0.0400] obtained by the estimator θ̂LMMSE and far 
better than the Bayesian MSE matrix B∗

NE = [0.1715, 0; 0, 0.0644]
obtained without the added noise. The distribution of noise com-
5

ponents ηnm according to the approximate optimal PDF f̃ o
η (η) of 

Fig. 4 is nontrivial, and its beneficial role in the sensor network for 
vector parameter estimation is clearly manifested through greatly 
reducing the Bayesian MSEs of the designed estimator.

An interesting result is that the optimization of the Bayesian 
MSE matrix B∗

NE by the optimal noise is independent of the thresh-
old value of γ . Whatever the quantizer threshold γ = 1 or 0, the 
same minimum Bayesian MSE matrix B∗

NE = [0.0589, 0; 0, 0.0400]
can be achieved by the corresponding optimal PDF solutions of 
f̃ o
η (η). The reason is that the optimal PDF f̃ o

η (η) contains the ad-
justable mean parameters μk that can eliminate the influence of 
the quantizer threshold on the parameter vector estimation, so 
that the performance of the designed estimator θ̂∗

NE can be main-
tained at a stable and high level.

Another interesting problem is whether or not the designed es-
timator θ̂∗

NE of Eq. (14) based on the binary data approaches the
LMMSE estimator ̂θLMMSE of Eq. (19) that uses the complete analog 
data x, no matter how the background noise intensity σξ varies. In 
Fig. 5, we illustratively show the Bayesian MSEs of the estimator 
θ̂

∗
NE versus the background noise intensity σξ ∈ [0.1, 4] (the input 

SNR σ 2
θ /σ 2

ξ ). It is seen in Fig. 5 (a) and (b) that, for a wide range 
of input SNRs, the estimator θ̂∗

NE in Eq. (14) improved by the op-
timal added noise has a better estimation performance than the 
case without added noise. Especially, it is well known that, for the 
jointly Gaussian vector parameter θ and background noise ξ , the 
LMMSE estimator ̂θLMMSE is just the MMSE estimator [39]. As illus-
trated in Fig. 5, for both parameters θ1 and θ2, the Bayesian MSEs 
of θ̂∗

NE are very close to the minimum Bayesian MSEs achieved by 
θ̂LMMSE over the considered range of input SNRs.

Example 2. As the observation number N of xn increases, the 
Bayesian MSEs of the noise-enhanced estimator θ̂∗

NE of Eq. (14) is 
illustrated in Fig. 6. With the help of the optimal added noise, the 
Bayesian MSEs of θ̂∗

NE all nearly approach the minimum Bayesian 
MSEs achieved by ̂θLMMSE for different observation numbers.

It is noted that, based on the M-level uniformly quantized data, 
the trace of the Bayesian MSE matrix of the LMMSE estimator is 
much higher than that of the BCRLB matrix at the low power 
allocation [3]. It is known that the BCRLB is just the Bayesian 
MSE achieved by the LMMSE estimator θ̂LMMSE in the circum-
stance of the joint Gaussian distribution of parameters and back-
ground noise. In Figs. 5 and 6, based on binary quantized data, the 
Bayesian MSE of the designed estimator θ̂∗

NE in Eq. (14) improved 
by the optimal added noise is very close to the BCRLB indicated 
by the primary data x. Therefore, compared with the LMMSE es-
timator [3,45] without exploiting the added noise, the designed 
estimator ̂θ∗

NE in Eq. (14) has improved performance when the ar-
tificially added noise is optimized.

Example 3. In Example 1, the sensor number M in each sensor 
network node is assumed to be sufficiently large. However, large 
sensor number M may not be practical to implement. An impor-
tant question is how sufficiently large the sensor number M in 
each node needs to be as the performance of the designed estima-

tor ̂θ M
NE of Eq. (8) approaches that of the LMMSE estimator ̂θLMMSE

of Eq. (19).
In Fig. 7, it is seen that the Bayesian MSEs of the designed 

estimator θ̂
M
NE in Eq. (8) monotonically decrease as the sensor 

number M increases. When the sensor number M ≥ 3000, it is 
shown in Fig. 7 that the designed estimator ̂θ M

NE in Eq. (8), assisted 
by the optimal added noise, has the corresponding minimum 
Bayesian MSEs given by diagonal elements [B M

NE]11 = 0.0598 and 
[BM

NE]22 = 0.0403, which is very close to the minimum Bayesian 
MSEs [BLMMSE]11 = 0.0588 and [BLMMSE]22 = 0.0400 of the LMMSE 
estimator θ̂LMMSE. For different background noise intensities σξ ∈
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Fig. 5. Bayesian MSEs of the noise-enhanced estimator ̂θ∗
NE in Eq. (14) with the optimal added noise, ̂θ∗

NE without added noise and the LMMSE estimator ̂θLMMSE in Eq. (19) as 
a function of the input SNR σ 2

θ /σ 2
ξ for estimating (a) the parameter θ1 and (b) the parameter θ2. Here, the parameters θ1 and θ2 are Gaussian distributed with the variances 

σ 2
θ1

= 0.5 and σ 2
θ1

= 0.1, respectively.
Fig. 6. Bayesian MSEs of the noise-enhanced estimator θ̂∗
NE in Eq. (14) with the 

approximate optimal PDF f̃ opt
η (η) versus the number N of the measurements xn . 

The other parameters are the same as in Fig. 4.

Fig. 7. Bayesian MSEs of the noise-enhanced estimator ̂θ M
NE in Eq. (8) with the ap-

proximate optimal PDF ̃ f opt
η (η) versus the sensor number M in each network node. 

The other parameters are the same as in Fig. 4.

[0.1, 4], the Bayesian MSEs of the designed estimator θ̂ M
NE are also 

observed to be comparable with that of θ̂ LMMSE for a finite sensor 
number M = 3000 (not shown here).

It was proven [5] that, for a single-bit dithered quantizer and 
a Gaussian prior, any estimator using the binary quantizer out-
put sequence is asymptotically at least 10 log(π/2) ≈ 1.97 dB 
worse than MMSE estimator using unquantized observations. In 
Fig. 7, it is seen that, for M = 1 (i.e. the single-bit dithered 
6

quantizer), the Bayesian MSEs [B M
NE]11/[BLMMSE]11 > 1.57 and 

[BM
NE]22/[BLMMSE]22 ≈ 1.57 also accord with the conclusion in [5]. 

However, upon the increasing the quantizer number M in each 
network node, it is shown in Fig. 7 that the designed estimator 
θ̂

M
NE can break through this restriction of 10 log(π/2) ≈ 1.97 dB 

with the cost of establishing a large scale network. The reason 
is that, in the presence of the optimal added noise, a number of 
identical quantizers is demonstrated to be equivalent to an M-level 
quantizer [18,19].

Example 4. In Example 3, each network node has M identical 
sensors receiving the same weight coefficient. However, we may 
also investigate the impact of non-identical sensors which may 
arise in practice in a network. First, we consider N = 3 network 
nodes with quantizer thresholds γ = 0, 0.2, and 0.4, respectively. 
The other parameters are the same as in Example 1. Using the 
optimal added noise indicated by the solved PDF f̃ o

η , the cor-
responding Bayesian MSE matrix B∗

NE = [0.0589, 0; 0, 0.0401] can 
be achieved. Compared with the Bayesian MSEs obtained in Ex-
ample 1 with identical quantizers over all nodes, the designed 
estimator θ̂∗

NE with non-identical quantizers performs almost the 
same. Secondly, we settle M = 3000 binary quantizers in each 
network node, but 50 percent of the quantizers is with the thresh-
old γ = 0 and the other half is with γ = 0.5. With the injection 
of optimal added noise, the Bayesian MSE matrix is obtained as 
B M

NE = [0.0605, 0; 0, 0.0410]. Compared with the Bayesian MSEs 
[BM

NE]11 = 0.0598 and [BM
NE]22 = 0.0403 obtained by θ̂

M
NE with 

M = 3000 identical quantizers in Example 3, the 2% performance 
degradation of ̂θ M

NE with non-identical sensors is at tolerable cost.
In Examples 1–4, using the property of multivariate Gaussian 

PDF, the minimization problem of the trace of the Bayesian MSE 
matrix in Eq (18) by the optimal noise becomes possible. However, 
some parameters to be estimated may have a non-Gaussian dis-
tribution in practice. As a consequence, the characterization of the 
MSE via the second-order moments of Eqs. (B.2)–(B.4) cannot be 
performed analytically, and a numerical approach has to be imple-
mented. In the next example, we consider another practical vector 
parameter estimation via numerically computing the first two mo-
ments of the sensor outputs, where the added Gaussian noise level 
is numerically optimized to improve the performance of the de-

signed estimator ̂θ M
NE in Eq. (8).

Example 5. Let mutually independent random parameters θ1 and 
θ2 uniformly distribute in the intervals [0, 1] and [0, 2], respec-
tively. The sensor transfer function is a hard-limiting function
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Fig. 8. Plots of Bayesian MSEs of the noise-enhanced estimator θ̂M
NE as a function 

of the added Gaussian noise level ση . Here, the random parameters θ1 and θ2 uni-
formly distribute in the intervals [0, 1] and [0, 2], respectively. The sensor number 
M = 103 in each node, and the number of simulation trials is 105.

g(u) =

⎧⎪⎨⎪⎩
0, u < 0,

u, 0 ≤ u < 1,

1, u ≥ 1,

(22)

which is also the maximum a posteriori estimator for estimating a 
scalar uniform parameter buried in Gaussian noise [32,39,40] The 
size of the measurement vector x is N = 3, and the zero-mean 
background noise ξ has the covariance matrix C ξ = 0.1I 3. For a 
given added noise level ση , we add the zero-mean Gaussian noise 
components ηnm to network nodes. Using the Algorithm 1, the 
first-order and second-order moments of Eqs. (B.2)–(B.4) are nu-

merically calculated, and the designed estimator θ̂ M
NE in Eq. (10)

and its Bayesian MSE matrix B M
NE of Eq. (11) are also obtained.

Using the Algorithm 1 and without the added noise (ση =
0), the Bayesian MSE matrix of the designed estimator θ̂

M
NE is 

numerically computed as B M
NE = [0.0434, 0.0141; 0.0141, 0.1076]. 

Here, the sensor number M = 103 in each network node. There-
fore, as illustrated in Fig. 8, the Bayesian MSEs of [B M

NE]11 and 
[BM

NE]22 start from 0.0434 and 0.1076 at ση = 0, respectively. 
It is shown in Fig. 8 that, upon increasing the added noise 
level ση , the Bayesian MSE matrix can be minimized as B M

NE =
[0.0382, 0.0008; 0.0008, 0.0593] at the optimal added noise level 
σ

opt
η = 1.9. Compared to the case of no added noise (ση = 0), the 

MSE of θ̂ M
1,NE is reduced from 0.0434 (
) to 0.0382 ( ), and the 

MSE of θ̂ M
2,NE can be reduced from 0.1076 ( ) to 0.0593 ( ), as 

shown in Fig. 8. For comparison, the Bayesian MSEs of θ̂1,LMMSE
and θ̂2,LMMSE are also illustrated in Fig. 8 by lines, and the Bayesian 
MSE matrix is BLMMSE = [0.0370, 0; 0, 0.0556] achieved by the 
LMMSE estimator ̂θLMMSE based on the complete analog data x.

Furthermore, for different input SNRs of σ 2
θ /σ 2

ξ , the corre-
sponding Bayesian MSEs upon increasing the noise intensity σξ of 
the background noise ξ are also illustrated in Fig. 9. It is seen in 
Fig. 9 (a) and (b) that, for the considered range of the background 
noise intensity σξ , the designed estimator θ̂ M

NE aided by the op-
timal added Gaussian noise does outperform the one without the 
added noise, and is also very close to the LMMSE estimator ̂θ LMMSE

based on the complete analog data x at low input SNRs of σ 2
θ /σ 2

ξ . 
Note that there still is a visible difference between the MSEs of the 
noise-enhanced estimator ̂θ M

NE and the LMMSE estimator ̂θLMMSE at 
high input SNRs of σ 2

θ /σ 2
ξ , because the added noise type is re-

stricted to a given Gaussian distribution and the only parameter to 
be optimized is the noise level ση under the considered conditions 
in Example 5.
7

Input: Data number N , sensor number M in every node, sensor 
function g , parameter vectors θ t with known mean vector 
Eθ (θ), background noise vectors ξ t , measurement vectors 
xt = Hθ t + ξ t and the added noise vectors ηt

n with a given 
noise level ση of added Gaussian noise. t is the times of 
simulation and T is the total simulation number.

Output: θ̂
M
NE, BM

NE.
1 for n=1...N do
2 for t=1...T do
3 yt

n = 1
M

∑M
m=1 g(xt

n1M + ηt
n);

4 end

5 E(yn) ≈ 1
T

∑T
t=1 yt

n;
6 end
7 for t=1...T do
8 for n=1...N do
9 for i=1...p do

10 [C θ y]t
in = [θ t

i − Eθi (θi)][yt
n − E(yn)];

11 end
12 for �=n...N do
13 [C y y]t

n� = [yt
n − E(yn)][yt

� − E(y�)];
14 end
15 end

16 [C θ y]in = 1
T

∑T
t=1[C θ y]t

in;

17 [C y y]n� = 1
T

∑T
t=1[C y y]t

n�;

18 θ̂
M,t
NE ≈ Eθ (θ) + C θ y C y y

⎛⎜⎜⎜⎝
yt

1 − E(y1)

yt
2 − E(y2)

.

.

.

yt
N − E(yN )

⎞⎟⎟⎟⎠ ;

19 end

20 BM
NE ≈ 1

T

∑T
t=1(θ t − θ̂

M,t
NE )(θ t − θ̂

M,t
NE )� .

Algorithm 1: Numerical calculations of θ̂ M
NE of Eq. (10) and 

B M
NE of Eq. (11).

4. Conclusion

In this paper, we design a noise-enhanced Bayesian vector esti-
mator based on low-resolution observations transmitted by sensor 
networks, where each network node is composed of a large num-
ber of low-complexity sensors. When the sensors in the network 
nodes are identical, we present a simplified calculation method for 
the design of the noise-enhanced estimator and its the Bayesian 
MSE matrix by reducing the dimensions of the weight vector and 
network output vector. For illustrative examples with a joint Gaus-
sian distribution of the vector parameter and background noise, we 
obtain a characterization of the optimal added noise that provides 
a Bayesian MSE comparable with that of the MMSE estimator built 
on the primary data. For a joint non-Gaussian case, we intention-
ally add an optimal amount of Gaussian noise into the designed 
estimator and also obtain much reduced Bayesian MSE by nu-
merical experiments. The derivations and examples illustrate the 
feasibility of exploiting added noise in low-complexity sensor net-
works to enhance the efficiency for information processing.

Some open questions still need to be addressed in future stud-
ies. For instance, when the joint PDF of the vector parameter and 
background noise is non-Gaussian, the theoretical solution of the 
optimal added noise remains unsolved. We set the type of added 
noise and only optimize the added noise level to minimize the 
Bayesian MSE of the designed estimator. Thus, the difference be-

tween the MSEs of the noise-enhanced estimator θ̂
M
NE and the 

LMMSE estimator θ̂LMMSE is evident at high input SNRs, as shown 
in Fig. 9. How to further reduce the MSE of the noise-enhanced es-

timator θ̂ M
NE in the considered case of the joint non-Gaussian PDF 

of vector parameter and background noise is an open question for 
future study. In addition, the evaluations of the designed estimator 
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Fig. 9. Bayesian MSEs of the designed noise-enhanced estimator ̂θ∗
NE in Eq. (11) with the optimal added Gaussian noise, ̂θM

NE without added noise and the LMMSE estimator 
θ̂LMMSE in Eq. (19) as a function of the input SNR σ 2

θ /σ 2
ξ for (a) the parameter θ1 and (b) the parameter θ2. The other parameters are the same as in Fig. 8.
and its Bayesian MSE still cannot avoid the matrix inversion, al-
though the matrix dimension is greatly reduced for each network 
node consisting of identical sensors. Alternatively, in other signal 
estimation problems the observed data may be on-going in that as 
time progresses, more data become available and need to be pro-
cessed sequentially in time [39]. Then, the sequential implementa-
tion of the noise-enhanced estimator with no matrix inversion will 
also be of great interest.

CRediT authorship contribution statement

Fabing Duan: Conceptualization, Methodology, Creation of mod-
els. Jia Liu: Data curation, Programming, Writing - Original draft 
preparation. François Chapeau-Blondeau and Derek Abbott: Inves-
tigation, Validation, Writing - Reviewing and Editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgments

This work is supported in part by the Taishan Scholar Project of 
Shandong Province of China (No. ts20190930) and Shandong Key 
Laboratory of Industrial Control Technology.

Appendix A. Proof of Theorem 1

Without loss of generality, we set M identical transfer func-
tions g1m(·) = g1(·) of sensors in the first network node. Let-
ting ω = [ω�

1 , ̃ω�] (ω̃ = [ω�
2 , ω�

3 , . . . , ω�
N ]�) and y = [y�

1 , ̃y�]
( ỹ = [y�

2 , y�
3 , . . . , y�

N ]�), the covariance matrix C zz can be par-
titioned as

C zz = Ex,η{[z − Ex,η(z)][z − Ex,η(z)]�} =
[

C y1 y1 C y1 ỹ
C ỹ y1

C ỹ ỹ

]
, (A.1)

where the partitioned matrices C y1 y1 = Ex1,η{[y1 −Ex1,η(y1)][y1 −
Ex1,η(y1)]�}, C y1 ỹ = C �̃

y y1
= Ex,η{[y1 − Ex1,η(y1)][ ỹ − Ex,η( ỹ)]�}

and C ỹ ỹ = Ex,η{[ ỹ − Ex,η( ỹ)][ ỹ − Ex,η( ỹ)]�}. Similarly, the correla-
tion vector C zθi can be partitioned as

C zθi = [C�
y1θi

, C �̃
yθi

]� (A.2)

with the partitioned correlation vector C y1θi = Ex1,η{[y1 −
Ex1,η(y1)][θi − Eθi (θi)]} and C ỹθ = Ex,η{[ ỹ − Ex,η( ỹ)][θi − Eθi (θi)]}. 
i

8

Since the optimum weight vector ωopt = C−1
zz C zθi can be rewritten 

as[
C y1 y1 C y1 ỹ
C ỹ y1

C ỹ ỹ

][
ω1
ω̃

]
=

[
C y1θi

C ỹθi

]
(A.3)

thus we find

C y1 y1ω1 + C y1 ỹω̃ = C y1θi . (A.4)

For M identical transfer functions g1m(·) = g1(·) in the first net-
work node and the identically distributed noise components η1m , 
the covariance matrix C y1 y1 has M equivalent diagonal elements

[C y1 y1 ]mm = Ex1,η[g2
1(x1 + η)]−E2

x1,η[g1(x1 + η)] (A.5)

and M(M − 1) equivalent non-diagonal elements

[C y1 y1 ]mj = Ex1{E2
η[g1(x1 + η)]} − E2

x1,η[g1(x1 + ηn)] (A.6)

for m, j = 1, 2, . . . , M (m 
= j). Its inverse matrix C−1
y1 y1

also has 
M equivalent diagonal elements [C−1

y1 y1
]mm and M(M − 1) equiv-

alent non-diagonal elements [C−1
y1 y1

]mj . Therefore, the equality 
1�

M C y1 y1 C−1
y1 y1

1M = 1�
M 1M = M yields

[C−1
y1 y1

]mm + (M − 1)[C−1
y1 y1

]mj

= ([C y1 y1 ]mm + (M − 1)[C y1 y1 ]mj]
)−1

. (A.7)

The correlation vector C y1θi also has M equivalent elements

[C y1θi ]m = Ex1,η(̃y1mθ̃i)

= Ex1{θiEη[g1(x1 + η)]} − Eθi (θi)Ex1{Eη[g1(x1 + η)]}.
(A.8)

Similarly, for M identical transfer functions g1m(·) = g1(·), the M ×
(N − 1)M partitioned matrix C y1 ỹ has M identical row vectors, 
which can be expressed as d = Ex,η{[g1(x1 + η) − Ex1,η(g1(x1 +
η))][ ỹ − Ex,η( ỹ)]�}. Therefore, the vector C y1 ỹω̃ in Eq. (A.4) can 
be written as α1M with α = dω̃.

Thus, from Eq. (A.4), we find C y1 y1ω1 = C y1θi − C y1 ỹω̃ =
([C y1θi ]m − α)1M and the optimum weight vector ωopt

1

ωopt
1 = C−1

y1 y1
([C y1θi ]m − α)1M = wopt

1 1M , (A.9)

with

wopt
1 = [C y1θi ]m − α

[C y1 y1 ]mm +(M−1)[C y1 y1 ]mj
. (A.10)

For any of network node with M identical sensors, Eq. (A.10) holds.
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Appendix B. Proof of Corollary 1

For M identical transfer functions gnm(·) = gn(·) of sensors in 
the n-th network node, each node has a scalar output yn as shown 
in Fig. 2. Based on N outputs yn , the intermediate linear esti-
mator can be expressed as θ̂ M

i = w0 + w� y, where w0 is the 
biasing weight. In the same way, setting the derivatives ∂Ex,η[(θi −
θ̂ M

i )2]/∂ w0 = 0 and ∂Ex,η[(θi − θ̂ M
i )2]/∂ w = 0, we find the opti-

mum bias w0 = Eθi (θi) − w�Ex,η(y) and the optimal weight vector 
wopt = C−1

y y C yθ . Substituting w0 and wopt into θ̂ M
i = w0 + w� y, 

we find the designed estimator θ̂ M
i given by Eq. (8).

More specifically, the expectation of the node output yn in 
Eq. (7) can be computed as

Exn,η(yn) = 1

M

M∑
m=1

Exn,η[gn(xn + ηnm)]

= Exn {Eη[gn(xn + η)]}, (B.1)

because the added noise components ηnm have the common 
PDF fη . Therefore, the correlation vector C θi y = C�

yθi
= Ex,η{[θi −

Eθi (θi)][y − Ex,η(y)]�} has elements

[C yθi
]n = Exn,η{[θi − Eθi (θi)][yn − Exn,η(yn)]}

= Exn {θiEη[gn(xn + η)]} − Eθi (θi)Exn {Eη[gn(xn + η)]},
(B.2)

which is independent of the sensor number M . The covariance ma-
trix C y y has N diagonal elements

[C y y]nn = Exn,η(y2
n) − E2

xn,η(yn)

= Exn,η

[( 1

M

M∑
m=1

gn(xn + ηnm)
)2] − E2

xn,η[gn(xn + η)]

= 1

M2

{ M∑
m=1

Exn,η[g2
n(xn + ηnm)]

+Exn

( M∑
m=1

Eη[gn(xn + ηnm)]

×
M∑

j=1

Eη[gn(xn + ηnj)]
)}

(m 
= j)
}

− E2
xn,η[gn(xn + η)]

= 1

M
Exn {Eη[g2

n(xn + η)]} + M − 1

M
Exn {E2

η[gn(xn + η)]}
−E2

xn
{Eη[gn(xn + η)]}, (B.3)

and N(N − 1) non-diagonal elements

[C y y]n� = Exn,x�,η(yn y�) − Exn,η(yn)Ex�,η(y�)(n 
= �)

= 1

M2
Exn,x�

( M∑
m=1

Eη[gn(xn + ηnm)]
M∑

j=1

Eη[g�(x�+η� j)]
)}

−Exn,η[gn(xn + η)]Ex�,η[g�(x� + η)]
= Exn,x�

{Eη[gn(xn + η)]Eη[g�(x� + η)]}
−Exn {Eη[gn(xn + η)]}Ex�

{Eη[g�(x� + η)]}. (B.4)

It is noted that the N(N − 1) non-diagonal elements [C y y]n� are 
also independent of the sensor number M . With Eqs. (B.1)–(B.4), 
the p designed estimator θ̂ M

i in Eq. (8) and its Bayesian MSEs in 
Eq. (9) can be obtained.
9

Appendix C. Proof of Corollary 2

As the sensor number M → ∞ in N network nodes, the node 
output asymptotically converges to

lim
M→∞ yn = lim

M→∞
1

M

M∑
m=1

gn(xn + ηnm) = Eη[gn(xn + η)]

= g∗
n(xn), (C.1)

and the diagonal elements [C y y]nn in Eq. (B.3) of C y y converge to

lim
M→∞[C y y]nn = Exn {E2

η[gn(xn + η)]} − E2
xn

{Eη[gn(xn + η)]}
= Exn [g∗

n
2
(xn)] − E2

xn
[g∗

n(xn)]
= [C g∗ g∗ ]nn, (C.2)

because the term Exn {Eη[g2
n(xn + η)]} < ∞ in Eq. (B.3). It is also 

noted that, using Eq. (C.1), Eq. (B.2) and Eq. (B.4), we find that 
the elements [C θi y]n = Exn [θi g∗

n(xn)] − Eθi (θi)Exn [g∗
n(xn)] = [C θ g∗ ]n

and the non-diagonal elements [C y y]n� = Exn,x�
[g∗

n(xn)g∗
� (x�)] −

Exn [g∗
n(xn)]Ex�

[g∗
� (x�)] = [C g∗ g∗ ]n� .

Substituting Eqs. (C.1) and (C.2) into Eq. (8), we have the ex-
plicit form of the estimator θ̂∗

i in Eq. (12) and its Bayesian MSE 
B θ̂∗

i
in Eq. (13). Combining p estimators of θ̂∗

i in Eq. (12), we have 

the vector estimator θ̂∗
NE in Eq. (14) and its Bayesian MSE matrix 

B∗
NE in Eq. (15).
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