Generation of signals with long-range
correlations

F. Chapeau-Blondeau and A. Monir

The authors propose a model in the form of a first-order
recurrence which is capable of generating, over potentially
unlimited ranges, long-range correlations of power-law decay with
a controllable exponent.

Long-range correlations in random signals are identified by a slow
(slower than exponential) decay. Typically, these correlations
decay according to a power law, conferring statistical self-similar-
ity and a fractal character to the signals [1]. Such random signals
are experimentally observed in a wide variety of physical proc-
esses, including telecommunication or motorway traffic or noise in
semiconductors [1]. The theoretical modelling and practical syn-
thesis of such signals with long-range correlations remain impor-
tant issues, which have not been fully resolved. The few models
available, among which are fractional Brownian motions [1], are
in principle of infinite order. For practical synthesis, they have to
be truncated, which restricts the long-range correlations to limited
ranges. Other synthesis methods, such as Cholesky decomposition
or wavelet expansions [1], perform block synthesis instead of
recurrent synthesis. When a realisation of NV points is synthesised,
the subsequent addition of one more point with long-range corre-
lations usually requires a new synthesis of a complete block of
N + 1 points from scratch. In this Letter, we present a model, in
the form of a first-order recurrence, which is capable of perform-
ing on-line synthesis of long-range correlations over potentially
unlimited ranges. A simpler earlier version, with no control of the
exponent of the power-law correlations, was numerically investi-
gated in [2]; we extend the model here to provide this control and
also add theoretical elements.
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Fig. 1 Normalised autocorrelation function of y(k) numerically evalu-

ated (solid lines) with regression lines (dashed)
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The algorithm is shown below. x(k) is an input sequence of
independent and identically distributed random variables with
zero mean. y(k) is the output signal exhibiting power-law correla-
tions with exponent f. The parameter 4 of the nonstationary gain
g(k) of eqn. 1 will provide control over .

Algorithm generating y(k) with long-range correlations:

X0 =Y0)=0

k=1;k =0

Repeat
g9(k) = (k — ko) 1)
X (k)= X (k- 1) + g(k)z(k) 2
Y (k) = max[Y (k — 1), X (k)] 3)
y(k)y =Y (k) -Y(k-1) (4)
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If y(k) > 0 then ky < k End If
ke—k+1
Until stopping is requested
The above algorithm lends itself to a direct numerical imple-
mentation. It makes possible a numerical evaluation of the auto-
correlation function E[y(k)y(k + T1)], performed here by the
empirical average N'EN., p(k)y(k + 1) over one realisation and
with N = 107. The results of Fig. 1 reveal the power-law evolution
~t# with the lag 7.
An empirical law for controlling B from b is deduced in Fig. 2
from numerical evaluations of the autocorrelation function as in
Fig. 1.
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Fig. 2 Exponent B of power-law correlations against b of gain g
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Theoretical arguments can also be given for establishing the
power-law form of the correlations in y(k). The random signal
(k) represents the successive increments of the running maximum
Y(k) of the nonhomogeneous random walk X(k) having incre-
ments g(k)x(k). y(k) is formed by intervals where y(k) = 0 inter-
leaved with intervals where y(k) > 0, these intervals occurring over
all time scales. According to eqn. 3 of the above algorithm, y(k) >
0 at each time & where the walk X(k) realises a first passage. y(k)
also incorporates a renewal property, since according to.eqn. 3 of
the proposed algorithm, at each time & where y(k) > 0, one has
Y(k) = X(k), and for the subsequent evolution of the increment y
it is just as if the process had been reset to its initial condition ¥ =
X = 0. The dependence in the lag T of E[y(k)y(k + 71)] is conveyed
by the probability Pr{y(k + 1) > 0|y(k) > 0} = U(1), a function of
T only, due to the renewal property of y(k). U(t) can be expressed
as

U(r) = /0+°° u(h,7)dh (5)

where u(h, 7) is the probability density for a first passage in / at
time 7 of the walk X started at X = 0 at time 0.

Based on the asymptotic properties of nonhomogeneous ran-
dom walks [3], appropriate for the long-range behaviour in T, we
obtain

u(h,7) = A% 2h ex] (— w ) (6)
T V2ro3 P\72s 2

where A4 is a constant proportional to the variance of the input

x(k), and o, = V[24/(b + 1)]P>*12. Integration of eqn. 6 according

to eqn. 5 yields

Ur)=(1+ 1;)1/2\/27”—1/2 (7

This result thus predicts a power-law behaviour 112 of U(t) =
Pr{y(k + 1) > 0|y(k) > 0}. This will translate into a power-law
behaviour 8 of the autocorrelation E[y(k)y(k + )] with the same
exponent B = b + 1/2 only when the amplitude of y(k + 1) is not
dependent on . This will occur strictly when 5 = 0 in the nonsta-
tionary gain, yielding B = 1/2 as verified numerically by Fig. 2. At
b > 0, the increment y(k + 1) of the walk X between two successive
first passages of X separated by a time <, will grow as 7. This still
preserves the power-law form of the correlation as visible in Fig. 1
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at b > 0, but with an exponent B which gradually departs from -5
+ 1/2 as shown in Fig. 2 as b increases. Further, when b grows
above 1/2 we have observed numerically that the long-range corre-
lations are still preserved in y(k) but with a decay in T which is
even slower than a power law.

The process y(k) provides long-range correlations over poten-
tially unlimited ranges by means of a simple first-order recurrent
algorithm. Further, y(k) can be used to trigger or modulate auxil-
iary random processes in many different ways, so as to add varia-
bility to the generated signals while preserving long-range
correlations. Interesting applications can be found for simulation
and performance evaluation in telecommunication networks and
other fields.
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Stochastic rate and temporal codes with
asymmetric bit errors

H.C. Card

The relative precision in estimating average pulse rates using
stochastic temporal and rate codes is compared. In most
situations, temporal codes exhibit less uncertainty than rate codes
at low Bernoulli probabilities and vice versa. The balance is also
affected by asymmetric 0 — 1 and 1 — 0 bit error probabilities.

Introduction: Stochastic signal processing [1] is one method of
reducing both the power dissipation and the silicon area in circuit
implementations of digital signal processors and artificial neural
networks, while improving the fault tolerance and enabling varia-
ble-precision computations in fixed hardware [2 — 4]. Stochastic
arithmetic and nonlinear operations employ simple logic gates and
finite state machines [3, 4]. Hardware-efficient parallel pseudoran-
dom number generators required for these implementations
exploit cellular automata [5]. Limitations arise however from the
statistical uncertainties in determining average pulse rates which
represent the information [6]. In this Letter, we compare two
approaches to stochastic signal processing.

Rate codes based on Bernoulli processes: When stochastic rate
codes are adopted to represent information in a digital signal
processing system, the pulse rate or signal value is deterniined by
the number of counts or pulses k in a count interval of »n clock
cycles. In each clock cycle, the signals are governed by the Ber-
noulli probability p,. This is a memoryless process. The probabili-
ties of receiving a 1 or a 0 in any given clock cycle are

p()=po  p(0)=1-po (1)
The probability of receiving k pulses in a count interval of n clock
cycles is given by the binomial distribution [7]

p(k) = C(n, k)p§(1 — po)~* )

for 0 < k < n, and zero otherwise, where the binomial coefficients
Cn, k) = nl/(k!-(n — k)!), which applies for an arbitrary value of
Bernoulli probability 0 < p, < 1. The mean and variance of this
distribution are npy and npy(1 — py), respectively. To employ these
codes, one must count pulses over an extended interval of time 7.
The coefficient of variation in the estimate of the mean rate
decreases as n12,
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In the presence of bit errors due to noise and other mechanisms,
the Bernoulli probability p, is modified. Let us assume that the
probability of recording a 0 when a pulse is actually present is
given by n and the probability of receiving a 1 when no pulse is
present is given by y. Then the modified Bernoulli probability is

pE =po(1=n) + (1 - po)y (3)

Fig. 1 shows an example of the probability distributions p(k)
for rate codes, for various error conditions, when the error-free
Bernoulli probability is py = 0.4. Note that for case (i) in this Fig-
ure pr = po. The abscissa corresponds to &k counts in interval of »
= 16 clock cycles. When m > vy one experiences a reduced expected
count, whereas for y > m the expected count increases. Note that
the case of symmetrical error probabilities 1 = y = 0.2 also results
in a greater expected count than the error-free case. This is
because py < 0.5 so 0 — 1 errors slightly dominate over 1 — 0
errors. For py > 0.5 there are on average more 1s than 0s and the
reverse is true. We thus find that the nature of the error mecha-
nisms can have a significant effect on the estimates of the true
pulse rates.
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Fig. 1 Modified binomial distributions of pulse counts for rate codes
with asymmetrical bit errors
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Fig. 2 Modified negative binomial distributions of pulse counts for tem-
poral codes (r = 3) with asymmetrical bit errors
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Temporal codes: Temporal codes have often been suggested as a
means of expediting the determination of the pulse rate. In this
approach, one determines the time to the first (in general the rth)
pulse. This allows for a more rapid estimate of the mean rate than
with the rate codes above, at the expense of increased variance in
the estimate. The probability of the rth pulse arriving on the mth
clock cycle is given by the negative binomial distribution [7]

p(m) = C(m —1,r = 1)p5(1 — po)™" 4)
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