Nonlinear SNR amplification of harmonic
signal in noise

F. Chapeau-Blondeau and D. Rousseau

The SNR of a harmonic signal in additive white noise is computed
after transformation by an arbitrary memoryless nonlinearity. With a
simple saturating nonlinearity having direct electronic implementation,
an amplification of the SNR can be obtained, an outcome which is
inaccessible with linear devices.

Assessing the presence of a harmonic signal hidden in additive noise is a
very common problem in many areas of experimental sciences and
technologies. This type of signal-noise mixture has a very characteristic
signature in the frequency domain: its power spectrum is formed by a
sharp spectral line at the harmonic frequency v, emerging out of a
broadband background contributed by the noise. A signal-to-noise ratio
(SNR) R is conveniently defined as the ratio of the power contained in the
spectral line at v, divided by the power contained in the noise background
in a small reference frequency band AB around v,. This SNR quantifies
how well the spectral line at v, emerges out of the noise background.
A narrowband filter at v; used to extract the harmonic component, will
have an efficacy directly increasing with this SNR [1]. As a pre-
processing, it is known that no linear filter is able to improve (increase)
such an SNR R. This is because a linear filter multiplies both the spectral
line and the noise background at v, by the same factor (the squared
modulus of its transfer function at v,), and therefore leaves the SNR R
unchanged [1]. On the contrary, we will show that very simple nonlinear
devices can act as an SNR amplifier providing an enhancement of R.

We consider the signal-noise mixture x(7)=s(z)+ &(¢), with the
harmonic component s(f)=Acos2nvi+ ¢), and &(r) a stationary
white noise with probability density function fx(u). This signal x(¢) is
fed into a memoryless (nonlinear) system [2] with input-output
characteristic g(.) producing the output
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In this case, both x(7) and y(7) are cyclostationary random signals with
period 7, =1/v,, both showing a power spectrum with a sharp spectral
line at v, emerging out of a broadband noise background. The SNR, as
defined above, for the output y(7) can be expressed as [3]
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E[(1)] and var[y(#)] = E[y*(#)] — E*[»(1)) represent the expectation and
variance of y(7) at a fixed time #; and Af is the time resolution of the
measurement (i.e. the signal sampling period in a discrete time
implementation). The white noise assumption here models a broadband
physical noise with a correlation duration much shorther than the other
relevant time scales, i.e. 7, and A, and finite variance a% [3].

From (1), one has
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In a similar way, the SNR for the input x(7) is
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We then consider for g(.) a very simple nonlinearity, easily implemen-
table with an operational amplifier, the linear-limiting saturation
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with the ‘clipping’ parameter />0. With f:(x) a zero-mean Gaussian
density associated to the cumulative distribution function £:(u), (4) and
(5) give
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and
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In these conditions, we can analyse the behaviour of the input-ouput
SNR gain G=TR,,/Ri,. It turns out that there is a broad range of
values for 4, both >4 or <4 depending on the noise level 6z, where the
SNR gain G is above unity. Qualitatively, the clipping device (7) on the
signal-noise mixture x(7) =s(7) + &(7), is able to reduce the noise &(7)
more than the harmonic signal s(7), this resulting in an improved SNR.
Furthermore, at each noise level g, it is possible to find the optimal
clipping Aoy that maximises the SNR gain G, as presented in Fig. 1.
Fig. 1 shows that the optimal clipping A, is not necessarily at the
signal amplitude 4; depending on the noise level, 4, can be below or
above 4. Also, for any noise level g¢, at the optimal clipping Aoy, the
SNR gain G is always above unity, although it returns (from above) to
unity at large noise when Ao — 00 (linearity of g(.) is recovered as the
optimal processor).
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| Fig. 1 Optimal clipping ,,, in (7) and maximum input-ouput SNR gain
G rax Gt op, against function of RMS amplitude o (in units of A=1) of
zero-mean Gaussian noise (1)

The present analysis establishes that simple nonlinear devices can be
used as SNR amplifiers for a harmonic signal in noise, an outcome
which is inaccessible with linear devices. The present treatment is
general in g(.) (and also in the noise density f;); we have tested here the
simple g(.) of (7), the electronic implementation of which is easy; but
other nonlinearities g(.)-can be tested for an SNR amplification G> 1.
Power-law nonlinearities tested in [4] exhibit a similar property of G> 1
but with a more complex physical implementation. Additionally,
application of the present treatment shows that hard-threshold nonli-
nearities, like signum or Heaviside functions for g(.), do not allow G > 1
with Gaussian noise. Other common nonlinearities encountered, for
instance in semiconductor devices, could also be tested for SNR
amplification. Such simple nonlinear operators offer a useful comple-
ment to linear techniques for signal processing and sensors.

© IEE 2005 23 March 2005
Electronics Letters online no: 20051065
doi: 10.1049/e1:20051065

F. Chapeau-Blondeau and D. Rousseau (Laboratoire d’Ingénierie des
Systemes Automatises (LISA), Universite d’Angers, 62 avenue Notre
Dame du Lac, 49000 Angers, France)

E-mail: chapeau@univ-angers.fr

References

1 Davenport, W.B., and Root, W.L.: ‘An introduction to the theory of
random signals and noise’ (Wiley, New York, 1987)

2 Bendat, I.S.: ‘Nonlinear systems techniques and applications’ (Wiley,
New York, 1998)

3 Chapeau-Blondeau, E, and Godivier, X.: ‘“Theory of stochastic resonance
in signal transmission by static nonlinear systems’, Phys. Rev. E, 1997,
55, pp. 1478-1495

4 Chapeau-Blondeau, F.,, and Rousseau, D.: ‘Enhancement by noise in
parallel arrays of sensors with power-law characteristics’, Phys. Rev. E,
2004, 70, pp. 060101(R), 1-4

ELECTRONICS LETTERS 12th May 2005 Vol. 41 No. 10 619




