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We consider the task fundamental to quantum communication and

coding which consists in detecting between two possible states of a

noisy qubit, with a performance assessed by the overall probability

of detection error. The detection process operates in the presence of

decoherence represented by a quantum thermal noise at an arbitrary

temperature. With uneven prior probabilities of the two states, as the

noise temperature is increased, nonmonotonic evolutions are reported

for the performance, which does not uniformly degrades. Regimes

are found where higher noise temperatures are more favorable to

detection, with relation to stochastic resonance effects where noise

reveals beneficial to information processing.

Qubit detection with noise: We address the common problem in quantum

communication or binary coding consisting in detecting or discriminating

between two noisy quantum states [1, 2]. We apply the approach to the

qubit, which stands as a fundamental reference for quantum information,

representing for instance situations with photons with their two states

of polarization, or electrons with their two states of spin, individually

serving as information carrier. A qubit with two-dimensional Hilbert

space H2 is considered in a quantum state represented by the density

operator ρ, which can be prepared as ρ= ρ0 or ρ= ρ1 respectively with

prior probability P0 or P1 = 1− P0, assuming P0 ≤ P1 without loss of

generality. The qubit states are parameterized in Bloch representation as

[3]

ρ=
1

2

(

I2 + ~r · ~σ
)

, (1)

with the real 3-dimensional Bloch vector ~r ∈R3 of Euclidean norm

‖~r ‖ ≤ 1, and ~σ a formal vector assembling the three 2× 2 Pauli matrices

[σx, σy, σz ] = ~σ, and I2 the identity of H2, with ~r= ~r0 or ~r1 respectively

for ρ0 or ρ1. The qubit is then altered by decoherence as a quantum

noise producing the noisy state ρ→ ρ′ =N (ρ). The noise is generally

represented by the completely positive trace-preserving superoperator

N (·) acting on the Bloch vectors according to the affine map [3, 2]

~r−→ ~r ′ =A~r + ~c , (2)

where A is a 3× 3 real matrix and ~c a real vector inR3. From a quantum

measurement on the noisy state ρ′, the detection problem is to decide

whether the preparation was ρ= ρ0 or ρ= ρ1. A relevant metric of

performance is the overall probability of detection error Per, which is

minimized by the following strategy [1, 2]. A two-outcome measurement

is performed on the noisy qubit by means of a positive operator-valued

measure with two elements {M0,M1}, standing as two positive operators

decomposing the identity of H2, i.e. M0 +M1 = I2. The test (Hermitian)

operator T= P1ρ1 − P0ρ0 is in Bloch representation

T=
1

2

[

(P1 − P0)I2 + ~τ ′ · ~σ
]

, (3)

characterized by the test vector ~τ = P1~r1 − P0~r0 = [τx, τy , τz ]⊤ of R3

after alteration by the noise of Eq. (2) yielding

~τ ′ =A~τ + (P1 − P0)~c= [τ ′x, τ
′

y , τ
′

z ]
⊤ . (4)

Then the optimal measurement operator is M
opt

1 standing as the projector

on the eigenspace of T associated with positive eigenvalues, while

M
opt

0 = I2 −M
opt

1 is the complementary projector in H2. So from

ρ′, when M
opt

1 is measured this detects the preparation ρ= ρ1, while

M
opt
0 detects ρ= ρ0. This is the optimal detection strategy where

Per =Pr{M1|ρ0}P0 + Pr{M0|ρ1}P1, with Pr{Mk|ρj}= tr(Mkρj)
for j, k= 0, 1, reaches the minimum

Per =
1

2

(

1− ‖~τ ′‖
)

, when ‖~τ ′‖ ≥ P1 − P0, (5)

Per = P0, when ‖~τ ′‖<P1 − P0. (6)

We note that our general condition P0 ≤P1 implies 0≤P1 − P0 ≤ 1,

and that ~τ =P1~r1 − P0~r0 is a vector of R3 which can be anywhere in

the Bloch ball satisfying ‖~τ ‖ ≤ 1. We now want to study the impact of

a specific quantum noise of great relevance to the qubit, which is the

generalized amplitude damping noise or quantum thermal noise [3, 2]. It

is defined in Eq. (2) by

A~r + ~c=





√
1− γ 0 0
0

√
1− γ 0

0 0 1− γ



~r +





0
0

(2p − 1)γ



 . (7)

This noise model describes the interaction of the qubit with an

uncontrolled environment represented as a thermal bath at temperature

T . The parameter γ ∈ [0, 1] is a damping factor which often can be

expressed [3] as a function of the interaction time t of the qubit with the

bath as γ = 1− e−t/T1 , where T1 is a time constant for the interaction

(such as the relaxation time T1 of a spin in magnetic resonance). At

long interaction time t→∞, then γ → 1 and the qubit relaxes to the

equilibrium mixed state ρ∞ = p |0〉 〈0|+ (1 − p) |1〉 〈1| of Bloch vector

~r∞ =~c. At equilibrium, the qubit has probabilities p of being measured in

the ground state |0〉 and 1− p of being measured in the excited state |1〉.
With the energies E0 and E1 >E0 respectively for the states |0〉 and |1〉,
the equilibrium probabilities are governed by the Boltzmann distribution

p=
1

1 + exp[−(E1 −E0)/(kBT )]
. (8)

In this way, in the quantum thermal noise of Eq. (7), the probability p is

determined by the temperature T of the bath via Eq. (8). From Eq. (8), the

probability p is a decreasing function of the temperature T . At T = 0 the

probability is p= 1 for the ground state |0〉, while at T →∞ the ground

state |0〉 and excited state |1〉 are equiprobable with p=1/2. Therefore,

from Eq. (8), when the temperature T monotonically increases from 0
to ∞, the probability p monotonically decreases from 1 to 1/2. The

remarkable feature we will demonstrate in the sequel is that, as the noise

temperature T rises from 0 to ∞, the performance Per of the detection in

Eqs. (5)–(6) does not necessarily degrade uniformly, but on the contrary

can experience nonmonotonic evolution.

The evolution of Per in Eqs. (5)–(6) with the temperature T is

essentially controlled by the norm ‖~τ ′‖ of the noisy test vector ~τ ′ of

Eq. (4), or equivalently its squared norm expressible as

‖~τ ′‖2 = (1− γ)(τ2x + τ2y ) + τ ′2z (9)

for the thermal noise of Eq. (7), where the influence of the noise

temperature T , via p, is conveyed only through the squared z-component

τ ′2z =
[

(1 − γ)τz + (P1 − P0)(2p − 1)γ
]2

. (10)

This term τ ′2z is a ∪-shaped parabola in the variable p, however limited

by the allowed range p ∈ [1/2, 1]. The minimum of the parabola is zero

and occurs when (1 − γ)τz =−(P1 − P0)(2p − 1)γ, corresponding for

the variable p to the critical value

pc =
1

2
−

1

2
αc , (11)

with the scalar parameter

αc =
1

P1 − P0

1− γ

γ
τz . (12)

For uneven prior probabilities P0 6=P1, as the temperature T rises from

0 to ∞, inducing p to decrease from 1 to 1/2, it results that three regimes

of evolution of τ ′2z in Eq. (10), and subsequently of Per in Eqs. (5)–(6),

are accessible, depending on the situation of pc of Eq. (11) in relation

to the allowed interval [1/2, 1] ∋ p. These evolutions will take place

between the two extreme values, at T =0 (i.e. at p= 1) determined in

Eq. (10) by τ ′2z (T =0) = [(1− γ)τz + (P1 − P0)γ]2 fixing Per(T = 0)
in Eqs. (5)–(6), and at T =∞ (i.e. at p=1/2) determined by τ ′2z (T =
∞) = [(1− γ)τz ]2 fixing Per(T =∞). Especially, depending on the

conditions, one can have Per(T = 0)<Per(T =∞), which is the natural

condition of an error in detection which worsens as the noise temperature

increases. But the opposite Per(T = 0)>Per(T =∞) can also be found,

as we shall see, as a counterintuitive manifestation of a beneficial role

of decoherence. Between these two extremes at T =0 and T =∞, as

indicated, three regimes of evolution are accessible for the performance

Per, which we now analyze.
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Increasing Per: In Eq. (12), the condition αc ≥ 0 is obtained by τz ≥
0, and produces in Eq. (11) a pc ≤ 1/2 occurring before the interval

[1/2, 1] ∋ p. In such configurations, the ∪-shaped parabola of τ ′2z in

Eq. (10) increases as p increases in [1/2, 1]. This is equivalent in

Eqs. (5)–(6) to a probability of detection error Per which increases as

the temperature T rises from 0 to ∞. This is somehow the expected

natural behavior: as the temperature T of the thermal noise increases, the

performance in detection steadily degrades. Such a regime of increasing

Per is obtained in conditions with αc ≥ 0 in Eq. (12), which is ensured

by any τz ≥ 0. Some illustrative conditions of this type are presented in

Fig. 1. The illustrations of Fig. 1, and also of Figs. 2–3, are obtained with

~r1 = ~n and ~r0 =−~n, with ~n an arbitrary unit vector of R3, yielding a

test vector ~τ = ~n with τz ∈ [−1, 1] for any P1. Two such antipodal unit

Bloch vectors ~r0 and ~r1 in R3 represent two initial signaling states ρ0
and ρ1 which are two orthogonal pure states of H2, which, were not the

degradation by the quantum noise, could be distinguished with no error.

Also in the illustrations, the conditions (not critical for the analysis) take

for Eq. (8) an energy difference E1 − E0 = 1 in units where kB = 1.
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Fig. 1 Increasing probability of detection error Per of Eqs. (5)–(6), as a

function of the noise temperature T , when τz = 1, with prior probability

P0 = 0.3, at various damping γ.

Resonant Per: In Eq. (12) an αc ∈ ]− 1, 0[ leads in Eq. (11) to a pc
occurring inside the interval [1/2, 1] ∋ p. In such configurations, as p
increases in [1/2, 1], the ∪-shaped parabola of τ ′2z in Eq. (10) passes

through its minimum of zero at p= pc. This is equivalent in Eqs. (5)–

(6) to a ∩-shaped resonant evolution of the probability of detection error

Per, as the temperature T rises from 0 to ∞. In particular, Per culminates

at a maximum corresponding to the zero τ ′2z , occurring at a critical

temperature Tc related to pc via Eq. (8). Such a regime of resonant

Per is obtained in conditions ensuring αc ∈ ]− 1, 0[ in Eq. (12), which

requires τz < 0 associated with appropriate tunings of the damping γ and

difference P1 − P0. Some illustrative realizations of such conditions are

shown in Fig. 2.
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Fig. 2 Resonant probability of detection error Per of Eqs. (5)–(6), as a

function of the noise temperature T , when τz =−0.2, with prior probability
P0 = 0.2, at various damping γ.

The resonant evolutions of Fig. 2 manifest a nontrivial action of the

quantum thermal noise. They reveal that there exists a finite range of

the temperature T around Tc where the quantum noise is specifically

detrimental to the detection task, and that smaller but also larger noise

temperatures can be more favorable for detection.

Decreasing Per: In Eq. (12) an αc ≤−1 leads in Eq. (11) to a pc
occurring after the interval [1/2, 1] ∋ p. In such configurations, the ∪-

shaped parabola of τ ′2z in Eq. (10) decreases as p increases in [1/2, 1].
This is equivalent in Eqs. (5)–(6) to a probability of detection error

Per which decreases as the temperature T rises from 0 to ∞. This is

also an unusual behavior where raising the noise temperature is always

beneficial to the detection efficacy. In practice, however, the temperature

will have to be limited before it can cause damage to the quantum system.

Such a regime of decreasing Per is obtained in conditions with αc ≤−1,

realizable with τz < 0 and adapted damping γ and difference P1 − P0.

Some illustrative conditions of this type are shown in Fig. 3.

0 1 2 3 4 5

0.1

0.15

0.2

0.25

0.3

noise temperature T

P
ro

b
a

b
ili

ty
 o

f 
d

e
te

c
ti
o

n
 e

rr
o

r 
P

e
r

γ =0.2

γ =0.4

γ =0.5

γ =0.6

γ =0.3

Fig. 3 Decreasing probability of detection error Per of Eqs. (5)–(6), as a
function of the noise temperature T , when τz =−1, with prior probability

P0 =0.3, at various damping γ.

Discussion: The nonmonotonic evolutions of the probability of detection

error Per with the temperature T of the thermal noise reveal

the possibility of sophisticated behaviors of decoherence, which is

not necessarily uniformly more detrimental as its amount increases.

Configurations with higher noise temperatures can be more efficient for

quantum detection from noisy qubit states. Such useful-noise effects are

reminiscent of stochastic resonance phenomena where enhancement in

the level of noise can reveal beneficial to various information processing

tasks. Stochastic resonance effects have mainly been reported in the

classical domain. For the quantum domain, stochastic resonance has been

reported for informational tasks such as the transmission of information

over noisy channels [4, 5], or for parametric estimation [6]. To our

knowledge, it is reported here for the first time for a task of quantum

detection from noisy qubit states affected by quantum thermal noise.

Various extensions can be envisaged in different directions, to investigate

the possibility of useful-noise effects, with other noise models or in other

information processing tasks, for a better understanding and mastering of

quantum decoherence and its nontrivial behaviors, which is fundamental

to quantum information.
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