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Noise-aided nonlinear Bayesian estimation
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Estimation on a noisy signal observed by a nonlinear sensor taking the form of a threshold quantizer is
considered. The optimal Bayesian estimator with minimal error is derived in this nonlinear setting. The
existence of conditions where the performance of this estimator can be improved by raising the level of noise
is established, both theoretically and numerically. These results constitute a different instance of the nonlinear
phenomenon of stochastic resonance for signal enhancement by noise.
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I. INTRODUCTION

Stochastic resonance is a nonlinear phenomenon of no
aided signal transmission displaying very attractive pote
alities for nonlinear signal processing@1#. It has been re-
ported to occur, under various forms, in a variety
nonlinear systems, including electronic circuits@2–4#, opti-
cal devices@5–8#, and neurons@9–11#. Nonlinear transmis-
sion of periodic signals has been quantified by signal
noise ratios improvable by addition of noise@12,13#. For
nonlinear transmission of aperiodic or random signals, c
relation measures@14# or information-theoretic quantitie
@15–17# have been shown to be improvable by noise. Sig
detection performances enhanced by noise have been
ported in Refs.@18–20#. Estimation performances, esse
tially for estimating the value of a deterministic consta
signal, and quantified through the Fisher information or
Cramér-Rao bound, have been shown improvable by no
@21–23#.

Here, we extend the conditions under which a form
stochastic resonance can be obtained. We consider an es
tion task in a Bayesian framework. We seek to estimat
random parameter~amplitude, frequency, phase,...! belong-
ing to an information signal corrupted by noise and obser
through a nonlinear sensor. We derive the optimal Bayes
estimator with minimal error in this nonlinear setting, a
demonstrate the possibility of improving its performance
raising the level of noise.

II. BAYESIAN ESTIMATION

An unknown parametern is attached to a signalsn(t)
corrupted by a noiseh(t). An observable signaly(t), related
to the signal-noise mixture, is available for measureme
with the aim of estimatingn from y(t). In a Bayesian frame-
work @24#, the possible values forn are distributed according
to the prior probability density function~PDF! pn(n). Obser-
vation of y(t) at N distinct timest j providesN data points
yj5y(t j ), for j 51 to N. Oncey5(y1 ,...,yN) is observed, a
posterior PDFp(nuy) for the parametern can be defined. A
mean square error in the estimation follows as the expe
tion ~conditioned by observationy!

E5E„~n2 n̂ !2uy…5E ~n2 n̂ !2p~nuy!dn. ~1!
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Error E of Eq. ~1! can equivalently be expressed as

E5@ n̂2E~nuy!#21var~nuy!, ~2!

with E(nuy)5*np(nuy)dn and var(nuy)5*@n
2E(nuy)#2p(nuy)dn.

Since var(nuy) in Eq. ~2! is non-negative and independe
of n̂, the optimal Bayesian estimator that minimizes erroE
comes out as

n̂B5E~nuy!5E np~nuy!dn, ~3!

and its performance is measured by the minimal error

EB5var~nuy!5E @n2E~nuy!#2p~nuy!dn. ~4!

A model of how the observationy is produced in relation
to the parametern and to the noise spoiling the observatio
allows one to define the PDFp(yun) of observingy givenn.
With the prior information summarized bypn(n), the Bayes
rule then provides access to the posterior PDF under
form

p~nuy!5
p~yun!pn~n!

p~y!
, ~5!

with the PDFp(y)5*p(yun)pn(n)dn.
For any given observationy, the optimal Bayesian estima

tor n̂B of Eq. ~3! achieves the minimumEB of Eq. ~4! of the
error E of Eq. ~1!. Consequently,n̂B also achieves the mini
mum ĒB of errorE averaged over every possible observati
y, i.e.,

ĒB5E var~nuy!p~y!dy, ~6!

where *•dy stands for theN-dimensional integral*¯*
•dy1¯dyN .

We shall now address a specific estimation problem a
nable to this general Bayesian estimation procedure. We s
consider nonlinear conditions of observation of the sign
noise mixture. In such case, we shall show that the opti
estimator of Eq.~3! displays a performance, measured by E
~4! or Eq. ~6!, that can be improved by raising the level
the noise.
©2002 The American Physical Society01-1
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III. NOISE-AIDED ESTIMATION

The observation of the signal-plus-noise mixturesn(t)
1h(t) is realized through a memoryless nonlinearity as

y~ t !5g„sn~ t !1h~ t !…. ~7!

Various forms of the nonlinearityg(•) could lead to the
possibility of a noise-enhanced performance in the esti
tion, for instance, multilevel quantizers. For a simple illu
tration of this possibility, we take the nonlinearityg(•) as a
two-level quantizer with thresholdu, giving

y~ t !5sgn@sn~ t !1h~ t !2u#561. ~8!

The noiseh(t) is assumed stationary, white, with cumulati
distribution functionFn(u). In this case, the conditional PD
factorizes asp(yun)5P j 51

N p(yj un), with the PDF

p~yj un!5Pr$yj521un%d~yj11!1Pr$yj51un%d~yj21!.
~9!

One has the probability Pr$yj521un%5Pr$sn(t j )1h(t j )
,u%, which amounts to Pr$yj521un%5Fh„u2sn(t j )…. In
the same way, Pr$yj51un%512Pr$yj521un%512Fh„u
2sn(t j )…. The above expressions enable, through Eq.~5!,
explicit calculation of the optimal estimatorn̂B of Eq. ~3! and
its performance of Eqs.~4! or ~6!.

We first consider the case of a constant signalsn(t)5n,
;t, to be estimated. In this case, Fig. 1 represents the
estimation errorĒB

1/2 computed from Eq.~6!, with Gaussian
noiseh(t), when the value ofn has a uniform prior PDF.
The results of Fig. 1 clearly reveal a possibility of reduci
the estimation error by increasing the noise level, down t
minimal error occurring for a non-zero optimal noise level
Monte Carlo simulation of the estimation scheme has a
been realized numerically. A large number of trials~103 for
each noise levelsh! of the optimal estimation throughn̂B of

FIG. 1. rms estimation errorĒB
1/2 from N54 data pointsyj as a

function of the rms amplitudesh of the noiseh(t) chosen zero-
mean Gaussian. The signal issn(t)[n, with pn(n) uniform of
mean 1 and standard deviation 0.25. The solid lines are the th
from Eq. ~6!. The discrete points are from Monte Carlo estimati
by Eq. ~3! with ~* ! u50, ~s! u50.5, ~n! u51.
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Eq. ~3! have been generated and the average estimation
ĒB has been evaluated as an empirical average. In Fig. 1
noise-aided estimation is confirmed by both the theory a
the simulation.

The conditions of Fig. 1 are merely illustrative. Nois
aided estimation is preserved in other conditions, as furt
exemplified by Fig. 2, which shows the nonmonotonic ev
lution of the estimation error with Gaussian noiseh(t) and a
Gaussian prior PDF forn.

For estimation of a constant signalsn(t)[n with a prior
PDF pn(n) symmetric about its prior meanE(n), it can be
verified that the estimation errorĒB remains unchanged whe
the thresholdu is changed fromE(n)1h to E(n)2h, for
anyh. As a consequence,ĒB viewed as a function ofu at any
fixed noise levelsh , has an extremum atu5E(n). This
extremum is the minimum occurring atu5E(n)51 in Figs.
1 and 2, which corresponds to the lowest curveĒB

1/2 as a
function of sh and associated withu5E(n)51. In such
conditions, for estimation of a constant signalsn(t)[n from
a quantized signal-plus-noise mixture, the optimal locat
of the quantization threshold is thusu5E(n), i.e., it is when
the quantization threshold is located at the prior mean
the estimation errorĒB is minimal. But, moreover, when this
optimal threshold is implemented, the results of Figs. 1 an
clearly show that further benefit can be obtained by rais
the level of the noisesh , over some ranges ofsh . In other
words, the optimal Bayesian estimator operating on
quantized signal-plus-noise mixture, can have a performa
improvable by addition of noise.

However, if the complete signal-plus-noise mixturesn(t)
1h(t) is available for estimation~instead of its quantized
version!, then, in general, the performance of the optim
‘‘linear’’ Bayesian estimator will be better than that of th
optimal ‘‘nonlinear’’ estimator after quantization, and th
performance will usually undergo a monotonic degradat

ry

FIG. 2. rms estimation errorĒB
1/2 of Eq. ~6! from N57 data

points yj as a function of the rms amplitudesh of the noiseh(t)
chosen zero-mean Gaussian. The signal issn(t)[n, with pn(n)
Gaussian of mean 1 and standard deviation 0.25. For the solid l
from top to bottom:u50, 0.25, 0.5, 0.75, 1. The dashed line is f
the linear optimal estimator operating directly on the signal-pl
noise mixture instead of its quantized version.
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as the noise levelsh is raised. This is exemplified in Fig.
with Gaussian noiseh(t) and a Gaussian priorpn(n). Nev-
ertheless, the linear estimator operates on a continuous~ana-
log! representation of the data, or with practical hardware,
a 16- or 12- or 8-bit representation. This is to be contras
with the much parsimonious one-bit representation per d
point used by the nonlinear estimator. If some measure
hardware requirement is included in the evaluation of
performance, the interest of the nonlinear estimator beco
manifest.

Noise-enhanced performance in Bayesian estimation f
quantized data is also possible for other types of signalsn(t).

FIG. 3. rms estimation errorĒB
1/2 of Eq. ~6! as a function of the

rms amplitudesh of the noiseh(t) chosen zero-mean Gaussia
The signal issn(t)5exp(2nt)cos(2pt/0.2), with pn(n) uniform of
mean 1 and standard deviation 0.25. TheN56 data samples are
equispaced with time step 0.1 fromt150 to t650.5. The quantiza-
tion threshold isu50 ~a!, u50.55 ~b!, u51.1 ~c!.
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For illustration, Fig. 3 considers the case of a damped s
soid sn(t)5exp(2nt)cos(2pt/0.2). Figure 3 represents th
rms error ĒB

1/2 for the optimal Bayesian estimation of th
damping factorn from data quantized through Eq.~8!. Con-
ditions demonstrating the possibility of a noise-improv
performance in the estimation are shown in Fig. 3.

IV. CONCLUSION

The present study has addressed the situation of para
ric Bayesian estimation based on data observed through
linear sensors, typically taking the form of threshold qua
tizers. Such conditions allowing parsimonious da
representation are specially relevant for a number of exis
and future multisensor networks or distributed intellige
systems. They make possible the optimization of speed
efficacy of processing with limited resources for data ha
dling, storage, communication or energy supply@22#. In as-
sociation with threshold adjustment at the quantizers,
have demonstrated that noise addition offers a complem
tary means that can be exploited to optimize the performa
in estimation. Especially, we have shown the possibility
conditions where the quantizer with optimal threshold can
further improved by addition of noise. In other situation
adaptation to the optimal threshold may not be accessi
with a ‘‘hard-wired’’ threshold imposed by the physics of th
sensor. This may be the case with neural systems that
use stochastic resonance to contribute to their high per
mances for information processing. In these conditions
limited flexibility of the sensors, the interest of considerin
noise addition to optimize the performance is even m
manifest. The present results contribute to enlarging the
tentialities of noise improvement by stochastic resonance
are useful to the progress in the understanding and contro
information processing by nonlinear systems.
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