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Noise-aided nonlinear Bayesian estimation
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Estimation on a noisy signal observed by a nonlinear sensor taking the form of a threshold quantizer is
considered. The optimal Bayesian estimator with minimal error is derived in this nonlinear setting. The
existence of conditions where the performance of this estimator can be improved by raising the level of noise
is established, both theoretically and numerically. These results constitute a different instance of the nonlinear
phenomenon of stochastic resonance for signal enhancement by noise.
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I. INTRODUCTION Error £ of Eq. (1) can equivalently be expressed as
 Stochastic resonance is a nonlinear phenomenon of noise- E=[v—E(vly)]*+var(v]y), )
LS eTisen Sy e A iy el fptigty vl

_ 2
ported to occur, under various forms, in a variety of E(v]y)] p(V|Y)‘?'V-E - . dind d
nonlinear systems, including electronic circuigs-4], opti- Since vargly) in Eq. (2) is non-negative and independent

cal device§5—8], and neuron$9—11]. Nonlinear transmis- of v, the optimal Bayesian estimator that minimizes egor

sion of periodic signals has been quantified by signal-toSOMes outas

noise ratios improvable by addition of noi$&2,13. For

nonlinear transmission of aperiodic or random signals, cor- 9B=E(V|y)=f vp(v]y)dw, (3)

relation measure$14]| or information-theoretic quantities

[15-17 have been shown to be improvable by noise. Signal it performance is measured by the minimal error

detection performances enhanced by noise have been re-

ported in Refs.[18—-2(. Estimation performances, essen-

tially for estimating the value of a deterministic constant 5B=Vaf(V|Y)=f [v—E(v]y)1°p(v|y)dv. (4)

signal, and quantified through the Fisher information or the

Crame-Rao bound, have been shown improvable by noise A model of how the observatiopis produced in relation

[21-23. to the parameter and to the noise spoiling the observation,
Here, we extend the conditions under which a form ofgllows one to define the Pmﬁ(yl v) of observingy given v.

stochastic resonance can be obtained. We consider an estimgith the prior information summarized hy,(»), the Bayes

tion task in a Bayesian framework. We seek to estimate aule then provides access to the posterior PDF under the
random parametefamplitude, frequency, phase,.belong-  form
ing to an information signal corrupted by noise and observed

through a nonlinear sensor. We derive the optimal Bayesian p(ylv)p,(v)

estimator with minimal error in this nonlinear setting, and D(V|Y):W, ®)
demonstrate the possibility of improving its performance by

raising the level of noise. with the PDFp(y)=[p(y|v)p,(v)dv.

For any given observatioy) the optimal Bayesian estima-
tor vz of Eq. (3) achieves the minimurfig of Eq. (4) of the
error £ of Eq. (1). Consequentlypg also achieves the mini-

An unknown parametep is attached to a signad,(t) mum &g of error £ averaged over every possible observation
corrupted by a noisg(t). An observable signal(t), related . i.e.,
to the signal-noise mixture, is available for measurement,
with the aim of estimating from y(t). In a Bayesian frame- r
work [24], the possible vg}Iues fo{r(aﬁe distribux':ed according £e= f vartvly)p(y)dy, ©
to the prior probability density functiofPDPF p,(v). Obser- ) ) ,
vation of y(t) at N distinct timest; providesN data points ~Where J-dy stands for theN-dimensional integralf- -/
yj=Y(t;), for j=1 toN. Oncey=(y;,...,yn) is observed, a ~dyy--dyy. . o
posterior PDFp(v|y) for the parameter can be defined. A We shall now address a specific estimation problem ame-

mean square error in the estimation follows as the expectd@ble to this general Bayesian estimation procedure. We shall
tion (conditioned by observatioy) consider nonlinear conditions of observation of the signal-

noise mixture. In such case, we shall show that the optimal
estimator of Eq(3) displays a performance, measured by Eq.

A N 4) or Eg. (6), that can be improved by raising the level of
e=E(-»= [ o-plydr. @ O EE® proved by raising

Il. BAYESIAN ESTIMATION
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FIG. 1. rms estimation errcfg2 from N=4 data pointg/; as a FIG. 2. rms estimation errofé’2 of Eq. (6) from N=7 data

function of the rms amplituder,, of the noisez(t) chosen zero- pointsy; as a function of the rms amplitude,, of the noisez(t)
mean Gaussian. The signal ss(t)=v, with p,(») uniform of  chosen zero-mean Gaussian. The signa,ig)=v, with p,(v)
mean 1 and standard deviation 0.25. The solid lines are the theo@aussian of mean 1 and standard deviation 0.25. For the solid lines,
from Eq. (6). The discrete points are from Monte Carlo estimation from top to bottom:¢=0, 0.25, 0.5, 0.75, 1. The dashed line is for
by Eq. (3) with (*) 8=0, (O) #=0.5,(A) 6=1. the linear optimal estimator operating directly on the signal-plus-
noise mixture instead of its quantized version.
Ill. NOISE-AIDED ESTIMATION
Eq. (3) have been generated and the average estimation error
&g has been evaluated as an empirical average. In Fig. 1, the
noise-aided estimation is confirmed by both the theory and
_ the simulation.
YO=0(E0+ 7(L). @) The conditions of Fig. 1 are merely illustrative. Noise-

Various forms of the nonlinearitg(-) could lead to the aided estimation is preserved in other conditions, as further
possibility of a noise-enhanced performance in the estimagxemplified by Fig. 2, which shows the nonmonotonic evo-
tion, for instance, multilevel quantizers. For a simple illus- lution of the estimation error with Gaussian noigét) and a
tration of this possibility, we take the nonlinearigy-) as a  Gaussian prior PDF fov.

The observation of the signal-plus-noise mixtiggt)
+ n(t) is realized through a memoryless nonlinearity as

two-level quantizer with thresholé, giving For estimation of a constant sigrg)(t)=» with a prior
PDF p,(v) symmetric about itiprior meaB(v), it can be
y(t)=sgris,(t)+ n(t)—0]==1. (8)  verified that the estimation errék remains unchanged when

the thresholds is changed fromE(v)+h to E(v) —h, for

anyh. As a consequencég viewed as a function of at any
fixed noise levelo,, has an extremum a@=E(v). This
extremum is the minimum occurring &&= E(v) =1 in Figs.
p(yj|v)=Pry;=—1|v}8(y;+ 1)+ Ply;= 1| v} 8(y; - 1). 1 anq 2, which corresponds to the lowest cu@é2 as a
(9)  function of o, and associated witlf=E(»)=1. In such
conditions, for estimation of a constant sigsa(t)= v from
One has the probability By;=—1|v}=Prs,(t))+n(t]) a quantized signal-plus-noise mixture, the optimal location
<6}, which amounts to Ry;=—1[v}=F , (6—s,(tj)). In  of the quantization threshold is thés- E(»), i.e., it is when
the same way, Ry;=1|v}=1-Prly;j=—1|v}=1-F,(# the quantization threshold is located at the prior mean that

—S,(t)). The above expressions enable, through &),  the estimation errofg is minimal. But, moreover, when this

explicit calculation of the optimal estimatdg of Eq.(3) and  gptimal threshold is implemented, the results of Figs. 1 and 2

its performance of Eqg4) or (6). _ clearly show that further benefit can be obtained by raising
We first consider the case of a constant Sig&t)=»,  the level of the noiser, , over some ranges af,,. In other

Vt, to be estimated. In this case, Fig. 1 represents the 'MRords, the optimal Bayesian estimator operating on the

estimation erro5? computed from Eq(6), with Gaussian quantized signal-plus-noise mixture, can have a performance

noise 7(t), when the value ofv has a uniform prior PDF. improvable by addition of noise.

The results of Fig. 1 clearly reveal a possibility of reducing However, if the complete signal-plus-noise mixtugt)

the estimation error by increasing the noise level, down to at 7(t) is available for estimatiorfinstead of its quantized

minimal error occurring for a non-zero optimal noise level. Aversion, then, in general, the performance of the optimal

Monte Carlo simulation of the estimation scheme has alsdlinear” Bayesian estimator will be better than that of the

been realized numerically. A large number of trigl€® for ~ optimal “nonlinear” estimator after quantization, and this

each noise levet,) of the optimal estimation throughg of  performance will usually undergo a monotonic degradation

The noisey(t) is assumed stationary, white, with cumulative
distribution functionF,(u). In this case, the conditional PDF
factorizes ap(y| v) =11} ;p(y;|v), with the PDF
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For illustration, Fig. 3 considers the case of a damped sinu-
soid s,(t) =exp(—t)cos(27t/0.2). Figure 3 represents the
rms error%’2 for the optimal Bayesian estimation of the
damping factorv from data quantized through E(B). Con-
ditions demonstrating the possibility of a noise-improved
performance in the estimation are shown in Fig. 3.

025}

0.24¢
IV. CONCLUSION

The present study has addressed the situation of paramet-
ric Bayesian estimation based on data observed through non-
linear sensors, typically taking the form of threshold quan-

tizers. Such conditions allowing parsimonious data

02303702 03 04 05 06 07 08 09 1 representation are specially relevant for_a rllumber.of e>§isting
noise rms amplitude and future multisensor networks or distributed intelligent

systems. They make possible the optimization of speed and

FIG. 3. rms estimation erraf%? of Eq. (6) as a function of the ~ efficacy of processing with limited resources for data han-
rms amplitudeo,, of the noisez(t) chosen zero-mean Gaussian. dling, storage, communication or energy supf®g]. In as-

The signal iss,(t) = exp(—1t)cos(2mt/0.2), with p,(») uniform of  sociation with threshold adjustment at the quantizers, we
mean 1 and standard deviation 0.25. The 6 data samples are have demonstrated that noise addition offers a complemen-
equispaced with time step 0.1 froip=0 totg=0.5. The quantiza- tary means that can be exploited to optimize the performance
tion threshold is¢=0 (a), #=0.55(b), #=1.1(c). in estimation. Especially, we have shown the possibility of
conditions where the quantizer with optimal threshold can be
as the noise lever, is raised. This is exemplified in Fig. 2 further improved by addition of noise. In other situations,
with Gaussian noisey(t) and a Gaussian prigr,(v). Nev-  adaptation to the optimal threshold may not be accessible,
ertheless, the linear estimator operates on a contin@ms  with a “hard-wired” threshold imposed by the physics of the
log) representation of the data, or with practical hardware, orsensor. This may be the case with neural systems that may
a 16- or 12- or 8-bit representation. This is to be contrastedise stochastic resonance to contribute to their high perfor-
with the much parsimonious one-bit representation per datemances for information processing. In these conditions of
point used by the nonlinear estimator. If some measure dimited flexibility of the sensors, the interest of considering
hardware requirement is included in the evaluation of thenoise addition to optimize the performance is even more
performance, the interest of the nonlinear estimator becomeaaanifest. The present results contribute to enlarging the po-

rms estimation error

manifest. tentialities of noise improvement by stochastic resonance and
Noise-enhanced performance in Bayesian estimation frorare useful to the progress in the understanding and control of
guantized data is also possible for other types of sigy@). information processing by nonlinear systems.
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