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Noise-enhanced transmission of spike trains in the neuron
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2 Boulevard Lavoisier, 49000 Angers, France

(received 9 January 1996; accepted in final form 1 July 1996)

PACS. 87.22Jb – Muscle contraction, nerve conduction, synaptic transmission, memorization,
and other neurophysiological processes (excluding perception processes and
speech).

PACS. 87.10+e – General, theoretical, and mathematical biophysics (including logic of biosys-
tems, quantum biology, and relevant aspects of thermodynamics, information
theory, cybernetics, and bionics).

PACS. 05.40+j – Fluctuation phenomena, random processes, and Brownian motion.

Abstract. – We consider the transmission of spike trains in a conductance-based neuron model.
A superposition of periodic coherent trains impinge on the neuron, but in a number that is too
small to trigger an output response. We then show that addition of incoherent noise trains
on the input allows a neuron response exhibiting correlation with the coherent input trains.
Furthermore, the number of noise inputs can be increased up to an optimal value where the
coherent part of the response reaches a maximum. This property of noise-enhanced signal
transmission can be related to the phenomenon of stochastic resonance. The present study
demonstrates for the first time the possibility of stochastic resonance in a realistic situation
of multiple spike train transmission by the neurons, and it assigns a useful role in information
processing to spontaneous random neuron spiking.

Introduction. – Some fifteen years ago, in the context of climate dynamics, a paradoxical
nonlinear effect has been discovered, under the name of stochastic resonance [1], [2]. This
effect can be described as an enhancement of the transmission of a coherent signal by certain
nonlinear systems, that is obtained through an increase of the noise applied to the system.
This property has since been observed in a wide range of both model systems and natural
ones, including electronic circuits, ring lasers, superconducting devices, and neurons [3], [4].

For the neuron, stochastic resonance has been found in various theoretical models [5]-[9].
Also, experimental demonstrations have been obtained on hair mechanoreceptor neural cells of
the crayfish [10] and of the cricket [11]. All these studies have considered the case of a peripheral
sensory neuron, that is submitted to a pair of analog signals which are a direct image of analog
stimuli from the external world to which the sensory neuron is directly exposed. Usually, one of
these signals is a sinewave and the other a continuous Gaussian noise. Stochastic resonance is
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then observed in the transmission of the analog stimulus when the power of the noise signal is
increased. Another recent study displaces the focus from the individual neuron to a complete
neural system [12], and demonstrates (both with computational and experimental results)
stochastic resonance in weak visual stimulations in the central receptive field as affected by
noise in the surrounding field.

Beyond the case of these peripheral sensory neurons which are submitted to analog stimuli
because of their direct contact with the external world, it is known that most neurons process
signals under the form of trains of spikes. The possibility of stochastic resonance in spike
train transmission was first established in [13], with a simple integrate-and-fire neuron model
submitted to one coherent train and one noise train. To progress toward a more realistic
assessment of stochastic resonance in the neuron, one especially has to recognize that a neuron
response is usually conditioned by many more than two inputs. We investigate here the
possibility of a stochastic resonance effect with multiple spike trains (both coherent trains and
noise trains) applied to a neuron. Our investigation considers a more realistic conductance-
based model for the neuron and the synaptic transmission, and a special care is devoted to
attributing plausible values to the neural parameters, rather than values that are ad hoc to
observe stochastic resonance. The present study is the first to examine whether and how
stochastic resonance in spike train transmission can take place, in the realistic situation where
many (hundreds of) trains condition the neuron response. We show that a new scheme can
be devised where an increase in the number of noise trains onto the neuron can result in an
improvement of the transmission of the coherent trains.

Stochastic resonance in spike transmission. – In neural signal transmission, a presynaptic
action potential (spike) produces the rapid release of the neurotransmitter in the synaptic
cleft, that in turn triggers ion channels which induce changes in the electric conductance of the
membrane at the postsynaptic region. The resulting evolution of the membrane conductance
Gi(t) in a synaptic region i of a neuron can be modelled as [14]

dGi
dt

= −Gi(t)
τG

+ [Gsat
i −Gi(t)]wiEi(t) , (1)

where Ei(t) =
∑
k δ(t − tk) represents the input spike train (with dimension s−1) on the

synaptic region i, τG is a time constant for the ion channel kinetics, Gsat
i is the saturation

value of the synaptic conductance that arises from the finite number of postsynaptic channels,
and wi models the efficacy of synapse i in transducing input spikes into membrane conductance
changes.

With several synaptic inputs on the neuron, its membrane potential V (t) above rest evolves
according to

Cm
dV
dt

= −GmV (t) +
∑
i

Gi(t)[V rev
i − V (t)] , (2)

where Cm and Gm are, respectively, the membrane capacitance and conductance of the post-
synaptic neuron at rest, and V rev

i is the reversal potential of synapse i.
If the membrane potential V (t) reaches the threshold Vth, an output spike is fired by the

neuron. V (t) is then reset to zero where it remains frozen during a refractory period Tr, after
which the variation of V (t) resumes according to eq. (2). The signal S(t) on the neuron output
thus evolves according to the following:

if V (t) = Vth, then S(t) = δ(t′ − t) ,
V (t) ← 0 frozen during Tr ; (3)

else S(t) = 0 .
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We now consider the response of the neuron when submitted to a superposition of Nc +Nn

input spike trains. A number Nc of these spike trains are coherent trains: they are periodic
with period Tc, with the same period but a random phase for every coherent train. In other
words, for i belonging to the Nc coherent trains, one has Ei(t) =

∑+∞
m=−∞ δ(t −mTc + ϕi),

where ϕi is a fixed phase for input train i that can fall anywhere, with uniform probability,
between 0 and Tc. These coherent inputs can be viewed as the image of a periodic coherent
stimulus received by a set of sensory receptors. The periodic stimulus impinges on the receptors
with a distribution in its phase, and also the multiple neural pathways connect the receptors
to the neuron under consideration may vary in length and delay. These elements justify the
phase differences among the Nc coherent inputs.

The neuron also receives a number Nn of incoherent spike trains. These incoherent trains
have no relation with the periodic coherent stimulus. They have their origin in random
activities of neurons that can spontaneously emit a few spikes per second. Such spike trains
have the status of a noise, that is assumed Poisson. In other words, for i belonging to the
Nn noise trains, one has Ei(t) =

∑
k δ(t − tk), where the tk’s are Poisson random times,

independent for different i’s, but with a common density 1/Tn of a few spikes per second.
We shall now show that when the coherent part of the input to the neuron is weak and

cannot be acted upon (small external stimulus), a reinforcement of the noise part of the input
can enhance the coherent response on the output at frequency 1/Tc. This is properly the
phenomenon of stochastic resonance.

The neuron model of eqs. (1)-(3) has been numerically simulated, with an Euler discretiza-
tion of the equations, with a time step much smaller than the model time constants. Realistic
numerical values, at least in order of magnitude, have been assigned to all the neural param-
eters [14]. We took τG = 3 ms, Gm = 10 nS, Cm = 100 pF and Vth = 20 mV above rest. We
considered only the presence of excitatory inputs with, for all of them, V rev

i = 70 mV above
rest. The saturation synaptic conductance is Gsat

i = 2 nS, the same for all synapses in order to
limit the number of parameters. The synaptic efficacy also has the same value for all inputs,
and is estimated to be wi = 0.7; this value of wi is consistent with estimations that can be
deduced from underlying biophysical mechanisms of synaptic transmission [14], and it results
in several hundreds of inputs that are typically needed to make the neuron fire. The coherent
period Tc as well as the noise mean interspike time Tn are taken to be 500 ms. We emphasize
that the present values are merely illustrative, and are in no way critical for the observation
of the stochastic resonance effect, that is preserved over a wide range of parameter values.

In standard stochastic resonance, the coherent input alone is insufficient by itself to trigger
the output, and it requires assistance from the noise. To conform with this condition, we
chose a number Nc = 250 coherent inputs, that are insufficient by themselves to bring the
postsynaptic neuron to fire. Noise inputs are then gradually added, through the lifting of
some upstream inhibition. When their number Nn becomes sufficient, the neuron will start to
fire. At first, the output firing will be rare, but it will be correlated with the coherent input
spikes, since with Nn still small, firing requires a cooperative action of the coherent inputs and
the noise inputs. As the number Nn of noise inputs is increased, the probability of output firing
will gradually rise, reinforcing the content in the output which is correlated with the coherent
input. As Nn is further increased, the noise trains alone will become sufficient to trigger the
output, with no assistance from the coherent inputs. From then on, with increasing Nn, the
correlation of the output with the coherent inputs will gradually diminish.

This nonmonotonic action of the noise has been precisely quantified through the computa-
tion of the output autocorrelation function RSS(τ) ≡ 〈S(t)S(t+ τ)〉, where 〈.〉 denotes a time
average over t. In general, as illustrated in fig. 1, RSS(τ) contains a periodic component at
the period Tc of the coherent inputs, superposed to a contribution from the noise, and the
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Fig. 1. Fig. 2.

Fig. 1. – Typical normalized output autocorrelation function RSS(τ) for the neuron, as a function of
the time lag τ/Tc.

Fig. 2. – Typical normalized output power spectral density PSS(ν) resulting from a Fourier transform
of the autocorrelation of fig. 1, as a function of the frequency ν/(1/Tc).

relative importance of the coherent component displays the previously described nonmono-
tonic evolution with the amount of input noise. This can be properly quantified with the
computation of the output power spectral density PSS(ν), the Fourier transform of RSS(τ).
In general, as depicted in fig. 2, PSS(ν) contains sharp spectral lines at integer multiple of
the coherent frequency 1/Tc, superposed to a broad-band continuous background due to the
noise. In PSS(ν), at the fundamental frequency 1/Tc, the height of the coherent spectral line
above the noise background, divided by the magnitude of this background, offers a standard
definition for the output signal-to-noise ratio SNR [4]. We then study the variation of the SNR
as a function of the number Nn of noise input trains applied to the neuron. This variation is
shown in fig. 3, and it presents the nonmonotonic influence of the amount of input noise that
is characteristic of stochastic resonance.

The curve of fig. 3 demonstrates that, with a small number of coherent inputs at period Tc

which are insufficient to trigger the neuron, addition of noise inputs allows a neuron response
exhibiting correlation with the coherent inputs. Furthermore, the number of noise inputs can
be increased up to an optimal value where the coherent part of the response, at frequency
1/Tc, reaches a maximum.

Discussion. – The present study proves for the first time the possibility of stochastic
resonance in a realistic situation of multiple spike train transmission by the neuron. We
chose not to oversimplify the model in a direction that could have facilitated the theoretical
description of the stochastic resonance effect. On the contrary, we chose to preserve sufficient
realism to the neuron and synaptic transmission modelling, especially for the essentially
nonlinear stages that are introduced in signal transmission by these processes, as conveyed
by eqs. (1), (2) and (3). With plausible numerical values for the parameters, the present
treatment also authorizes both qualitative and quantitative interpretations. In such a context,
strategies previously applied to the theoretical description of stochastic resonance do not seem
to directly transpose here, in the presence of multiple neural nonlinearities and the transmission
of trains of pulses.
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Fig. 3. – Output signal-to-noise ratio SNR as a function of the number Nn of noise input spike trains
applied to the neuron.

A novel scheme of noise-enhanced signal transmission is shown here to be available with the
basic mechanisms of neuronal response. The proposed scheme assigns, to noise trains produced
by spontaneous random neuron spiking, a useful role in neural information processing, by im-
proving the transmission of small coherent signals. Previous stochastic resonance experiments
in neurons, as reported in the introduction, have mainly used external (environmental) noise.
Internal noise originating in random fluctuations in the neuron is difficult to control [15].
The present scheme considers another source of internal noise, with the spontaneous random
spiking of presynaptic neurons, which appears as a much more controllable internal noise
source for a neural system to exploit, for signal transmission enhancement through stochastic
resonance. Whether this scheme is actually used under this form by actual neurons is still
an unproven matter, which requires experimental examination. Without further evidence, the
present study demonstrates that such a scheme is at least authorized by the basic mechanisms
of neural signal transmission, and that it may have important implications for information
processing by neurons.
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