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Reordering by the rule of decreased absolute amplitudes, the discrete cosine transforma-
tion (DCT) coefficients of an image are approximately modeled as dichotomous noise.
Based on this assumption, it is interesting to note that the classical multiplicative embed-
ding method can be transformed into an additive embedding rule, which accords with

the signal processing problem of detecting a known weak signal in additive non-Gaussian
noise. Then, following the generalized Neyman-Pearson lemma, a locally optimum detec-
tor, named the sign detector, is introduced to distinguish the correct watermark from
the wrong ones. The statistical characteristics of this nonlinear sign detector are analyt-
ically investigated in detail. Extensive experimental results demonstrate the robustness
of watermark against some common attacks, e.g., JPEG compression, cropping, filter-
ing, additive Gaussian noise, dithering, and also verify the robust performance of the
nonlinear sign detector for watermark detection.

Keywords: Nonlinear sign detector; Neyman-Pearson lemma; watermark detection;
robustness.
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1. Introduction

Digital image watermarking, as a tool for copyright protection of images, has
attracted significant attention [1–12]. A digital watermark contains information
about the copyright owner, the authorized consumer or other information needed
to be embedded, while the image acts as a host to which digital watermarks are
adhered to [1–13]. So far, there are mainly two main proposed watermarking tech-
niques, i.e., embedding the watermark in the spatial domain [1, 5–7, 12, 13] or
in the transformed domain [1, 6, 11, 16, 18, 26, 27] of a host image. It has been
shown that the discrete cosine transformation (DCT) coefficients of images have
interesting properties that can be exploited for watermark detection [14–29].

A well-known DCT-domain watermarking technique was proposed in [16], and
developed in [18]. The watermark consists of a pseudo-random sequence with a
normal distribution, and is embedded to a selected set of DCT coefficients of a host
image [16, 18]. In the course of watermark detection, the optimal correlation-based
detector is adopted as a linear detector with the assumption of DCT coefficients
following a Gaussian distribution [16, 18].

Progressively, many possible distributions of the DCT coefficients have been
proposed, including Weibull [17], Cauchy [19, 20], generalized Gaussian [22–27],
Laplacian [24, 25], etc. For these non-Gaussian probability density functions (pdf),
a locally optimum detector is usually derived for watermark detection [17, 19, 20,
26–29]. Especially, Barni et al. noted that the proposed watermark embedding rule
in [16, 18] does not obey an additive rule, and presented a new decoder for the
optimum recovery of watermarks [17].

In this paper, we consider the detection of a digital watermark embedded in
DCT coefficients of an image. The embedding rule mainly follows that proposed
by Barni [18] and Stanković [28]. Firstly, the DCT coefficients of an image are
reordered by their decreased absolute values, and a normal random variable, that
is, watermark, is embedded into a selected segment of DCT coefficients. Next, we
assume the selected segment of DCT coefficients as dichotomous noise for the water-
mark signal. Interestingly, the classical multiplicative embedding rule in [16, 18] can
be transformed into an additive relationship between the DCT coefficients (noise)
and the watermark (signal), which can be viewed as the signal detection problem
of a known weak signal in additive non-Gaussian noise. This kind of transforma-
tion of the embedding rule is an important distinction from previous related stud-
ies [16–18, 28].

Theoretical analyses and experimental results also demonstrate the assumptions
of the dichotomous pdf model of DCT coefficients and the Gaussian mixture pdf of
the marked DCT coefficients by watermark. In order to discern the correct water-
mark from the wrong ones, a locally optimum detector, named the sign detector,
is introduced by following the generalized Neyman-Pearson lemma. The theoreti-
cal statistical features of this nonlinear sign detector are discussed in detail, and
the corresponding decision threshold is also deduced theoretically for a given false
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alarm probability. Experiments of watermark under no attack are performed, and
demonstrate the theoretical analysis of the sign detector well. Finally, extensive
robustness experiments for the watermark detection have been carried out to eval-
uate the effectiveness of the nonlinear sign detector under various common attacks,
and the corresponding experimental results further validate the robustness of the
proposed watermarking scheme.

This paper is organized as follows. The watermarking scheme will be briefly
described in Sec. 2. Based on the assumption of a non-Gaussian pdf model of
DCT coefficients of an image, a locally optimum detector is derived for the water-
mark detection. The statistical characteristics of this locally optimum detector
are detailedly discussed. Main experimental results will be presented in Sec. 3.
Finally, we will discuss some further investigations, and draw our conclusions
in Sec. 4.

2. Watermarking Scheme

In this section, we briefly introduce the considered watermarking scheme pro-
posed by Barni [18] and Stanković [28], as follows. Firstly, the signal W =
{w1, w2, . . . , wK} generated by a pseudo-random normal vector is treated as the
watermark [16–18], and the watermark length is K. Then, the N × N DCT coef-
ficients for a N × N gray image I are computed, and then reordered into a one
dimensional decreasing sequence [28] according to

T = {ti | |ti+1| ≤ |ti|, i = 1, 2, . . . , N2}. (1)

An illustrative segment of T taken from the standard test image “Lena” is shown
in Fig. 1(a). Similar results have been obtained on other test images of “Boat”,
“Bridge”, “Goldhill” and “Couple”. This kind of reordering was put forward by
Stanković and coworkers [28], which is different from the zig-zag scan reordering of
Barni et al. [18]. Here, T is regarded as the background noise for the watermark
signal W.

In order to obtain the perceptual invisibility of the watermark for the marked
image and the robust watermark against common signal processing operations, the
first L reordered DCT coefficients of T in the low frequency domain usually avoid
being marked [16–18]. The position L is usually selected from the media frequency
domain and the watermark W is robust to the high pass filtering [16–18]. From
the (L + 1)th reordered DCT coefficients of the sequence T, the watermark W is
inserted into T according to the following rule [16–18]

t′L+k = tL+k + α|tL+k|wk, (2)

where k = 1, 2, . . . , K, and α(0 < α � 1) is the scale parameter con-
trolling the watermark strength [18–22]. The marked DCT coefficients T′ =
{t′L+1, t

′
L+2, . . . , t

′
L+K} are formed.
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Fig. 1. A segment of (a) DCT coefficients T reordered by the rule of Eq. (1) with the length
K = 3000, and (b) the corresponding marked DCT coefficients T′ by the watermark W according
to the rule of Eq. (2). Here, the referred test image is “Lena”. The inserted position L = 20,000,
the watermark length K = 3000 and the scale parameter α = 0.3. (c) Statistical distribution of
marked DCT coefficients T′ of (b), with an approximated Gaussian mixture pdf f(t′) (solid line)
of Eq. (9). Here, for the generated watermark with seed 100 by MATLAB software, the estimated
parameters µ̂ = 18.7801 and θ̂ = 5.6616 computed by Eqs. (A.8) and (A.9) (see Appendix A).

Next, the T′ coefficients are put back to their original K positions indicated by
the original image I. Finally, the N ×N marked DCT coefficients are performed by
the inverse DCT transformation, resulting in the marked image I′. Note that the
original K positions of DCT coefficients T in the host image I and the watermark
W must be attainable for the following watermark recovery process, whereby the
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original K positions of DCT coefficients can be viewed as a set of secret keys
for watermark detection. This is the DCT-domain watermark embedding process
proposed by [18, 28]. In order to evaluate the degradation of the marked image I′,
a commonly used measure is the PSNR defined as [16–18]

PSNR = 10 log10

(
2552

MSE

)
, (3)

where MSE indicates the mean square error of pixel values between the marked
image I′ and the original one I.

With no attacks on the marked image I′, the inverse process of the abovemen-
tioned watermark embedding algorithm still yields the sequence T′, with the stored
K positions of DCT coefficients in the host image I. However, for a possibly attacked
image I∗, the inverse process of the above watermark embedding algorithm will give
a sequence T∗ = {t∗L+1, t

∗
L+2, . . . , t

∗
L+K} of DCT coefficients. Then, a watermark

detector is operated for determining if the watermark W exists or if the water-
mark is the correct one that we embedded into images. This is the DCT-domain
watermark recovering process [16–28].

2.1. Probability density models of DCT coefficients

For the watermark embedding algorithm of Eqs. (1)–(2), Stanković et al. [28]
assumed the marked DCT coefficients T′ with a class of exponential pdf, and pro-
posed the corresponding watermark detector. However, a mathematical difficulty
for constructing the watermark detector is that the 1/t′L+k term should avoid zeros
in the denominator [28].

According to the ordering rule of Eq. (1), an example of the segment of
DCT coefficients T with length K = 3000 is shown in Fig. 1(a). It is seen
that the absolute values of T do not change much (about in an interval of
[18, 20]), and there are 1554 positive values versus 1446 negative values in the
length K = 3000, in an approximately symmetrical way. Thus, in a certain
length K of the segment of DCT coefficients T, we view the statistical char-
acteristics of tL+k as a stationary stochastic process. We then assume that the
DCT coefficients tL+k take two equiprobable values of ±µ (µ > 0), and have a
dichotomous pdf

fT (t) =
1
2
δ(t − µ) +

1
2
δ(t + µ), (4)

with a zero mean and a root mean square (RMS) of µ. Here, the function of δ(t)
in Eq. (4) is defined as the limit of a Gaussian pdf

δ(t) = lim
ε→0

1√
2πε2

exp
[
− t2

2ε2

]
, (5)
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where ε2 is the variance of Gaussian pdf. Thus, Eq. (4) can be rewritten as

fT (t) = lim
ε→0

1√
2πε2

exp[−κ(t|µ, ε)], (6)

with

κ(t|µ, ε) =
t2 + µ2

2ε2
− ln

[
cosh

(
µt

ε2

)]
. (7)

It is interesting to note that, on the assumption of the selected DCT coefficients
of T with a dichotomous pdf of Eq. (4), the absolute value of T in the embedding
rule of Eq. (2) becomes a constant µ, i.e., |tL+k| = µ for k = 1, 2, . . . , K. Thus,
the marked DCT coefficient t′L+k becomes the sum of the selected DCT coefficient
tL+k (noise components) and the scaled Gaussian watermark α|tL+k|wk = αµwk

(signal components). This indicates that the embedding rule of Eq. (2) is directly
converted into an additive formula as

t′L+k = tL+k + θwk, (8)

for k = 1, 2, . . . , K and θ = αµ. Since W is a Gaussian random signal with zero
mean, unity variance and its pdf fW (w) = exp[−w2/2]/

√
2π, the pdf of marked

DCT coefficients of T′ can be computed by

f(t′) =
∫ ∞

−∞
fT (t)fW (t′ − t)dt =

1√
2πθ2

exp[−κ(t′|µ, θ)] , (9)

which is a Gaussian mixture pdf with the RMS of θ and two mean values of ±µ

for two corresponding peak points. For illustration purposes, the marked DCT
coefficients T′, as shown in Fig. 1(b), are formed by embedding the watermark
W into the segment of DCT coefficients T, as illustrated in Fig. 1(a). It is seen
in Fig. 1(b) that, due to the insertion of the watermark W, the ordered DCT
coefficients T are disordered as T′.

In practice, for a given data of marked DCT coefficients T′, we only know
that T′ might contain the watermark signal W, but the parameters µ and θ in
Eq. (9) are unknown. Here, we assume that DCT coefficients T′ are independent
and identically distributed. In Appendix A, according to the Gaussian mixture pdf
assumption of Eq. (9), the Maximum Likelihood estimators of µ̂ and θ̂ are deduced
in detail. In Table 1, the estimated parameters µ̂ and θ̂ are shown for different
values of the inserted position L and the watermark length K. The test images are
“Lena” and “Bridge”.

Table 1 shows that, as compared with the true scale parameter α = 0.3, the
larger inserted position L and the smaller watermark length K can yield the closer
values of α̂ = θ̂/µ̂ to the true value of 0.3. The reason is that, as shown in Fig. 1(a),
the absolute values of T do not vary acutely for more larger inserted positions L.
Also, in the shorter lengths K of the watermark W, the absolute values of T also
change slightly. These cases are clearly indicated in Table 1.
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Table 1. Evaluation of the Maximum Likelihood estimators of µ̂ and θ̂ for different values of the
position L and the watermark length K. The referred images are “Lena” and “Bridge”. 1000
different samples of watermarks have been measured, and the true scale parameter α = 0.3.

Image Inserted position L Watermark length K PSNR µ̂ θ̂ α̂ = µ̂/θ̂

Lena 10000 3000 48.0244 31.5119 9.6655 0.3067
8000 44.9235 27.3403 9.1030 0.3330

12000 43.9077 24.8894 8.9288 0.3587
20000 42.8776 21.3211 8.8031 0.4129

20000 3000 52.5195 18.7955 5.6760 0.3020
8000 49.0038 17.19265 5.3876 0.3134

12000 47.7618 16.1426 5.2524 0.3254
20000 46.4247 14.4587 5.1225 0.3543

Bridge 10000 3000 43.7338 51.6692 15.6199 0.3023
8000 40.3438 46.5113 14.7383 0.3169

12000 39.1560 43.3931 14.3557 0.3308
20000 37.8452 38.7207 13.9295 0.3597

20000 3000 46.9906 35.5470 10.6570 0.2998
8000 43.2607 33.3666 10.1904 0.3054

12000 41.8769 31.8933 9.9387 0.3116
20000 40.3137 29.4397 9.6245 0.3269

Moreover, an example of the histogram of DCT coefficients T′ and the cor-
responding fitted Gaussian mixture pdf f(t′) of Eq. (9), for the inserted position
L = 2 × 104 and the watermark length K = 3000, have been plotted in Fig. 1(c).
Clearly, the histogram of T′ is separated by the zero-axis to two sets, as shown
in Fig. 1(c), each of which collects around its mean values of ±µ̂, respectively and
almost symmetrically. Here, for the generated watermark with seed 100 by MAT-
LAB software, the estimated parameters µ̂ = 18.7801 and θ̂ = 5.6616 are computed
by Eqs. (A.8) and (A.9) (see Appendix A). It is seen in Fig. 1(c) that this Gaus-
sian mixture pdf model of Eq. (9) presents a good approximation to the statistical
histogram of DCT coefficients T′.

Furthermore, we also note that the cumulative distribution function (CDF) of
Gaussian mixture noise of T′ is

F (t′) =
1
2

[
Φ
(

t′ − µ̂

θ̂

)
+ Φ

(
t′ + µ̂

θ̂

)]
, (10)

where Φ(x) = (
√

2π)−1
∫ x

−∞ exp[−z2/2]dz. For a given significance level 0.1, we
perform a Kolmogorov-Smirnov test [42] to compare the statistical values in the
data vector T′ with the cumulative distribution function of the Gaussian mixture
noise for all values of L and K given in Table 1, and the hypothesis of Eq. (9)
can be accepted. An illustrative instance is shown in Fig. 2 for the referred test
image “Bridge”, where the empirical CDF of marked DCT coefficients T′ (dashed
line) matches the hypothesized CDF computed by Eq. (10) (solid line) well. Sim-
ilar results are also tested for other images, e.g., “Lena”, “Boat”, “Couple” and
“Goldhill”.
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Fig. 2. Empirical CDF of marked DCT coefficients T′ (dashed line) and the hypothesized CDF
of Eq. (10) (solid line). Here, the marked image is “Bridge”. The inserted position L = 20000,
the watermark length K = 20000 and the scale parameter α = 0.3. The estimated parameters
µ̂ = 29.4428 and θ̂ = 9.6009 are computed by Eqs. (A.8) and (A.9) (see Appendix A) for the
generated watermark with seed 100.

Based on the above analyses of pdf models of DCT coefficients T and marked
coefficients T′, we approximately demonstrated the assumptions of dichotomous
pdf model of Eq. (4) and the Gaussian mixture pdf model of Eq. (9). In this
way, the essential watermark embedding rule of Eq. (2) is converted into an
additive rule of Eq. (8) that will elicit the following nonlinear detector in next
Subsection 2.2.

2.2. Watermark detector

Now, according to the additive embedding rule of Eq. (8), the scaled watermark
signal θW is submerged in the additive dichotomous noise T of Eq. (4). It is well
known that, from the generalized Neyman-Pearson lemma of detecting a known
weak signal in additive non-Gaussian noise, a locally optimum detector [36–41] can
be expressed as

K∑
k=1

−θwk

dfT (t′L+k)

dt′L+k

fT (t′L+k)
> λ, (11)



January 6, 2012 17:56 WSPC/S0219-4775 167-FNL 00061

Evaluation of the Sign Detector for DCT Domain Watermark Detection 345

for the hypothesis H1 : θ > 0, with a decision threshold λ. Using Eq. (6), Eq. (11)
can be expanded as

lim
ε→0

(
K∑

k=1

wk

[
t′L+k − µ tanh

(
µt′L+k

ε2

)])
> lim

ε→0

(
ε2λ

θ

)
, (12)

with

dfT (t′L+k)

dt′
L+k

fT (t′L+k)
= lim

ε→0
−dκ(t′L+k|µ, ε)

dt′L+k

= lim
ε→0

[
− t′L+k

ε2
+

µ

ε2
tanh

(
µt′L+k

ε2

)]
.

Noting limε→0 tanh(µt′L+k/ε2) = sign(t′L+k), Eq. (12) is then expressed as

D =
K∑

k=1

wk[t′L+k − µ sign(t′L+k)] > 0, (13)

where sign(·) is the sign or signum function. Under the assumptions of a dichoto-
mous noise of Eq. (4), the test statistic D in Eq. (13) being larger than zero
indicates that the signal W is present; that is, the hypothesis H1 : θ > 0. How-
ever, the more practical task is that the test statistic D in Eq. (13) can be
utilized to determine whether a given watermark is the true one from a set
of known watermarks [18]. Concretely, the issue that we are usually confronted
with is a pirate claiming another arbitrary watermark W′ = {w′

1, w
′
2, . . . , w

′
K}

being embedded into the given data T′. Thus, for a set of known watermark
W′s that include the true one W, we are more interested in the following
hypotheses test

H0 : f(t′) for W′ �= W,

H1 : f(t′) for W′ = W. (14)

Based on the locally optimum detector of Eq. (13), we compare the test statistic D
in Eq. (13) with a decision threshold γ for distinguishing the right watermark W
from wrong ones W′s. This is

D =
K∑

k=1

w′
k[t′L+k − µ sign(t′L+k)] > γ, (15)

which is named by the sign detector here. The performance of the sign detector of
Eq. (15) will be discussed in detail in Sec. 2.3. Moreover, the threshold γ will be
solved for a given false alarm probability.
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2.3. Theoretical analysis of the sign detector of Eq. (15)

Assume the components wks of the correct watermark W and w′
ks of an arbitrary

watermark W′ are zero mean, independent and equally distributed normal random
variables, and the given data T′ contains the signal W actually. Then, for an
arbitrary watermark signal W′ that might be the correct one or quoted by the
pirate, we substitute t′L+k in the transformed embedding rule of Eq. (8) into the
test statics D, and obtain

D =
K∑

k=1

w′
k[t′L+k − µ sign(t′L+k)]

=
K∑

k=1

w′
k[tL+k + θwk − µ sign(tL+k + θwk)]

≈
K∑

k=1

θw′
k wk +

K′/2∑
m=1

2µ w′
m −

K′/2∑
n=1

2µ w′
n. (16)

The reason is that, due to the addition of θwk to tL+k, some tL+ks will change their
signs. The change of sign indicates the value of tL+k +θwk crossing zero. Therefore,
using Eq. (9), the number of the changed signs of tL+ks are K ′/2 ≈ �KQ(µ/θ)�/2
for both positive and negative values of tL+ks. Here, �·� finds a next smallest integer
and the right-tail probability function Q(x) =

∫∞
x

exp[−z2/2]/
√

2π dz [37, 42].
From Eq. (16), the mean of D can be computed as

E[D;H0] ≈ 0, E[D;H1] ≈ θK, (17)

whereby the expectation of
∑K

k=1 θw′
kwk in Eq. (16) is zero for the statistically

independent vectors W′ �= W of the hypothesis H0 :W′ �= W, while
∑K

k=1 θw2
k

accord with the χ2(K) pdf with the degree of freedom K [37, 42] for the hypothesis
H1 :W′ = W and E[

∑K
k=1 θw2

k] ≈ θK. For both hypotheses, the expectation of
last two terms of Eq. (16) E[

∑K′

m=1 µ w′
m −∑K′

n=1 µ w′
n] ≈ 0. Also, according to

the above pdf models of the test statistics D for both hypotheses H0 and H1, the
variances of D can be approximately computed as

Var[D;H0] ≈ Kθ2 + 4K ′µ2, Var[D;H1] ≈ 2Kθ2 + 4K ′µ2. (18)

For a sufficiently large length K, we usually evaluate the asymptotic pdf of
the test statistic D as a Gaussian distribution model with the mean E[D] and the
variance Var[D] [37, 42]. Thus, for a given false alarm probability PFA [37, 42], the
decision threshold γ can be expressed as

γ ≈
√

Var[D;H0] Q−1(PFA) =
√

Kθ2 + 4K ′µ2 Q−1(PFA), (19)
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where Q−1(x) is the inverse function of Q(x). Then, using Eq. (19), the detection
probability PD can be written as

PD ≈ Q

[
γ − E[D;H1]√

Var[D;H1]

]
= Q

[√
Kθ2 + 4K ′µ2Q−1(PFA) − θK√

2Kθ2 + 4K ′µ2

]

≈ Q



√

1 + 4
(

µ
θ

)2
Q
(

µ
θ

)
Q−1(PFA) −√

K√
2 + 4

(
µ
θ

)2
Q
(

µ
θ

)



= Q

[√
1 + 4α−2Q(α−1)Q−1(PFA) −√

K√
2 + 4α−2Q(α−1)

]
, (20)

which is the function of the ratio µ/θ = α−1 and the watermark length K. It
is noted in Eq. (8) that parameters µ and θ actually indicate the RMS values of
the noise T and the signal W, respectively. Thus, the scale parameter θ/µ = α

can be also regarded as the input signal-to-noise ratio. For a fixed false alarm
probability PFA and given input signal-to-noise ratio α, Eq. (20) indicates that
the detection probabilities PD is a monotonic increasing function of the watermark
length K.

2.4. Evaluation of the sign detector under attacks

The above theoretical analyses of the sign detector of Eq. (15) are calculated by
utilizing the marked DCT coefficients T′ = {t′L+1, t

′
L+2, . . . , t

′
L+K}. For practical,

reasons, for a given data T′, the parameters µ and θ are unknown for water-
mark detection, and should be estimated by the Maximum Likelihood method
in Appendix A. Moreover, when the marked image has been corrupted by inten-
tional or unintentional attacks, the data that is utilized for estimating µ and θ is the
corrupted DCT coefficients T∗ = {t∗L+1, t

∗
L+2, . . . , t

∗
L+K} taken from the attacked

image I∗. Throughout the rest of the paper, we still assume the corrupted coef-
ficients T∗ with a Gaussian mixture pdf. On the basis of this assumption, for a
given data T∗, the estimated parameter of µ̂ of Eq. (A.8) and θ̂ of Eq. (A.9) can be
computed by substituting t∗L+k for t′L+k. Likewise, the previous expression of the
sign detector of Eq. (15) can be rewritten as

D =
K∑

k=1

w′
k[t∗L+k − µ̂ sign(t∗L+k)] > γ, (21)

and, for a given false alarm probability PFA, the threshold γ becomes

γ =
√

Kθ̂2 + 5K ′µ̂2 Q−1(PFA), (22)
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with K ′ ≈ �KQ(µ̂/θ̂)�. The detection probability PD of Eq. (20) can be recalcu-
lated as

PD = Q



√

1 + 4
(

µ̂

θ̂

)2

Q
(

µ̂

θ̂

)
Q−1(PFA) −√

K√
2 + 4

(
µ̂

θ̂

)2

Q
(

µ̂

θ̂

)

, (23)

with the estimated parameters µ̂ to θ̂ computed by Eqs. (A.8) and (A.9)
(see Appendix A). These modified formulae of the sign detector of Eq. (21), the
threshold of Eq. (22) and the detection probability of Eq. (23) will be testified by
the following robustness experiments in Sec. 3.

3. Experimental Results

In order to verify the effectiveness of the proposed watermark scheme, we test some
commonly used 512 × 512 gray images with no attack and some common attacks.
The following results refer to the standard test images “Lena”, “Bridge”, “Boat”,
“Goldhill”, and “Couple”. According to the analysis of the detection probability PD

of Eq. (20) above, the larger the watermark length K is, the better performance
the detector of Eq. (15) has. Here, we chose a sufficient large length K = 2 × 104

and the scale parameter α = 0.3.
In view of the invisibility of watermark and the assumption of ordered DCT

coefficients as dichotomous noise, we select the position L = 1.5 × 104 to insert
the watermark signal in the embedding rule of Eq. (8). For the five test images
of “Lena”, “Bridge”, “Boat”, “Goldhill”, and “Couple”, the corresponding PSNRs
are all larger than 39 dB. We note that the position L, the watermark length K

and the scale parameter α can all affect the PSNR of watermarked image and
the detection probability. And it is interesting to study the optimality of the posi-
tion L, the watermark length K and the scale parameter α further. In the fol-
lowing robustness experiments of the watermark against some common attacks,
we will fix the false alarm probability PFA = 10−6. And for each attack test, the
experiments are carried on 107 times for obtaining the actual values of detection
probabilities PD.

3.1. Experimental results of JPEG coding

Figure 3(a) shows the detection probability PD as a function of the JPEG com-
pression for the five test images. When the JPEG quality factor degrades from
10% to 1%, as illustrated in Fig. 3(a), the detection probability PD of Eq. (23) also
decreases gradually. It is noted that, as the JPEG quality factor is not less than 8%,
the detection probability PD always keeps 100% for the five test images attacked by
JPEG coding. It is noteworthy in Fig. 3(a) that, the detection probability PD still
keeps 100% for the test image of “Bridge”, even the JPEG quality factor is reduced
to 4%. At the JPEG quality factor 8% of the referred test image “Lena”, Fig. 3(b)
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Fig. 3. Robustness results of watermark against the attack of JPEG coding. (a) The detection
probability PD as a function of JPEG quality factor for the five test images indicated in the legend.
(b) At the JPEG quality factor 8% of the test image “Lena”, detector responses of Eq. (21) to
1000 correct watermarks Ws (◦) versus 1000 randomly generated wrong marks W′s (∗). For each
test, the threshold γ (×) of Eq. (22) is also plotted. Here, the watermark length K = 2× 104, the

scale parameter α = 0.3 and the position L = 1.5 × 104.

illustratively plots the detector responses of Eq. (21) to 1000 correct watermarks Ws
versus 1000 randomly generated wrong marks W′s. In addition, the corresponding
detection thresholds γ of Eq. (22) are depicted in Fig. 3(b), which clearly separate
the corresponding responses of detector to Ws and W′s. These experimental results
demonstrate the theoretical analyses of Eqs. (21)–(23) well.

3.2. Experimental results of attacks of median filtering

and low pass filtering

Figure 4(a) describes the test results of the detection probability PD versus the
median filtering with window sizes of 3 × 3, 5 × 5, 7 × 7 and 9 × 9. It is seen that,
for the median filter with window sizes 3×3 and 5×5, the detector of Eq. (21) can
correctly detect the embedded watermarks with PD = 100% for the five test images.
When the median filter is of window sizes 7×7 and 9×9, as shown in Fig. 4(a), the
performances of the detector of Eq. (21) are degraded rapidly. We also show the
robustness results of watermark against the low pass filtering in Fig. 4(b). The low
pass filter is with window sizes of 5 × 5, 6 × 6 and 7 × 7. The results demonstrate
that watermarking is robust to low pass filtering of window size 5×5 without errors
for the five test images. When the window size of the low pass filter is 6 × 6, the
test images “Boat” and “Bridge” still stand against this kind of filtering attack.
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Fig. 4. Robustness results of watermark against filtering attacks. The detection probability PD

as a function of (a) the median filtering window size and (b) the low pass filtering window size.
The watermark length K = 2× 104, the scale parameter α = 0.3 and the position L = 1.5× 104.

3.3. Experimental results of additive noise and multiplicative

noise attacks

Figure 5(a) depicts the robustness results of the watermark against the spatial
Gaussian noise to corrupt the watermarked image. It is seen that, for the spatial
Gaussian noise variance of up to 6400, the nonlinear sign detector of Eq. (21) can
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Fig. 5. Robustness results of watermark against noise corruption. Detection probability PD as
a function of (a) the additive Gaussian noise variance and (b) the multiplicative speckle noise
variance. The watermark length K = 2 × 104, the scale parameter α = 0.3 and the position
L = 1.5 × 104.
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properly detect the right watermarks with PD = 100%. As the noise variance
is larger than 6400, the detector cannot decipher the correct watermark without
errors, and PD decreases gradually. In Fig. 5(b), the robustness results of water-
marks against the multiplicative speckle noise are illustrated. It is seen that the
detector is able to detect the correct watermark perfectly in the presence of the
speckle noise variance of less than 0.3.

3.4. Experimental results of cropping and rotating

When a subpart of the watermarked image is cropped, as indicated in Fig. 6(a),
the extracted image subpart can be framed via a black background [18]. Then,
the cropped image is composed again as a 512 × 512 grey one, and the mentioned
watermark recovery process can be performed subsequently. However, the black
background of supplemented pixel values will bring some very large outliers into
the DCT coefficients, as shown in Fig. 6(b). For detecting the watermark, the
absolute values of the DCT coefficients beyond 50 are constrained by setting to
zero. Here, the value of 50 is an experiential numeral, which can be referred to the
marked DCT coefficients of Fig. 1(b). In this way, we test the performance of the
detector of Eq. (21), and plot the corresponding results to demonstrate robustness
in Fig. 6(c). It is shown in Fig. 6(c) that until the watermarked image is cropped
as 12.36% of the original image, i.e., 180 × 180 subpart of the image, the detector
of Eq. (21) can detect the right watermark with the detection probability PD = 1
for the five test images.

Figure 7 shows the detection probability PD as a function of rotating angle
of test images. It is noted that the watermark can survive small rotations up to
0.4◦ with the detection probability PD = 1. As for rotating the image with 0.5◦,
the detection probability PDs are degraded to 87.8%, 94.5%, 89.6%, 78.7% and
61.5%, for the test images of “Lena”, “Boat”, “Bridge”, “Couple” and “Goldhill”,
respectively. Note that some parts of the image convey more information than
others, and it will be interesting to test the influence of the cropped part of the
image on the detection probability PD.

3.5. Experimental results of attacks of dithering

and desynchronization

For the dithered versions of the five test images, the corresponding robustness exper-
iments demonstrate that the detector of Eq. (21) can identify the right watermarks
embedded in the images with the detection probability PD = 1.

Watermarking desynchronization is one of the most effective attack against any
digital watermarking scheme [1, 7, 8, 10, 15, 34, 35]. In the proposed watermarking
scheme of Sec. 2, the original K positions of the DCT coefficients T in the host image
are viewed as a secret key set for the watermarking detection. For distinguishing
right from wrong watermarks, these K positions of T must be available for the
detector of Eq. (21). However, if the detector has difficulty in retrieving these K
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Fig. 6. Robustness results of watermark against image geometric cropping. (a) The watermarked
image “Lena” cropped as 180×180 with a black background frame. (b) The corresponding marked
DCT coefficients T∗. (c) The detection probability PD versus the subpart area of test images.
The watermark length K = 2 × 104, the scale parameter α = 0.3 and the position L = 1.5 × 104.

positions, the desynchronization between the embedding process and detecting pro-
cedure appears, i.e., the desynchronization attack. As shown in Fig. 1(a), the well-
ordered DCT coefficients T sorted by their decreased absolute values are disordered
randomly by inserting the watermark W into themselves, resulting in the marked
DCT coefficients T′ of Fig. 1(b).

When the secret key set of K positions are unknown to the detector, the sorting
operation of absolute values cannot recover the order of watermarked coefficients T′.
For the five test images, the detector of Eq. (21) fails to detect the correct watermark
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Fig. 7. Robustness result of watermark against image geometric rotating. The detection probability
PD as a function of rotating angle of test images. The watermark length K = 2 × 104, the scale
parameter α = 0.3 and the position L = 1.5 × 104.

under this kind of desynchronization attack. For the classical watermarking scheme
[18], the detector needs to know the watermark W and the inserted position L

for watermark detection. The fixed zig–zag scan can easily yields the marked DCT
coefficients for watermark detection. Here, the proposed watermarking detection
process requires to know not only the watermark W, but also all marked (L+1)th
to (L+K)th DCT coefficients positions. We emphasize that the essential feature of
this proposed watermarking scheme is in converting the well-known multiplicative
embedding rule of Ref. [18] to an additive embedding rule of Eq. (8) that educes
the related locally optimal detector of Eq. (21). According to the abovementioned
experiments, its robustness capability against noisy corrupting and cropping are
outstanding, as shown in Fig. 5 and Fig. 6, but needs to be further improved to be
against the desynchronization attack.

4. Conclusions

In this paper, we analyzed in detail the performance of a locally optimal detec-
tor for a DCT-domain watermarking scheme. According to the reordering rule of
decreased absolute amplitudes, the absolute values of the ordered DCT coefficients
are approximately the same constant in a certain length that equals to the length
of watermark. Then, we assumed the selected segment of the DCT coefficients that
the watermark is embedded into as the dichotomous noise. In this way, the classical
multiplicative embedding method of Eq. (2) [18] becomes an additive relationship
of the DCT coefficients and the watermark signal. Therefore, we are appropriately
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confronted with a well-known signal detection problem of detecting a known weak
signal in the additive non-Gaussian noise.

The marked DCT coefficients by watermark is with a Gaussian mixture pdf,
and the unknown pdf parameters can be estimated by the Maximum Likelihood
method [37, 42]. Based on the generalized Neyman-Pearson lemma, a locally opti-
mum detector, named the sign detector, has been deduced and employed for the
watermark detection. Theoretical analyses of the performance of this nonlinear sign
detector were discussed, and extensive robustness experiments have been carried
out. The corresponding results demonstrated the effectiveness of the proposed sign
detector against some common attacks.

Our analysis in this paper elicits a new kind of correlation-based watermarking
scheme, with emphasis on the detectability of a nonlinear sign detector. To improve
the proposed watermarking scheme, the future research direction will be devoted
to enhance the robustness of watermark against attacks of rotation and desyn-
chronization. Moreover, for the maximum allowable energy under the invisibility
constraint, ways to tune the watermark length, the inserted position and the scale
parameter into an optimal set is also an interesting research direction for robust
watermark detection [17, 29]. We also note that the comparisons between the pro-
posed detector and classical watermark detectors will be of increased interest for
further studies [28, 29].
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Appendix A. Parameter Estimations of µ and θ for a Gaussian
Mixture pdf Model of Eq. (9)

For the signal W corrupted by additive noise T of Eq. (4), the marked DCT coeffi-
cients T′ is with a Gaussian mixture pdf model of Eq. (9). In practice, the param-
eters µ and θ are unknown for a given data vector T′. Here, we use the Maximum
Likelihood method [37] to estimate the parameters µ and θ. To do this, the Maxi-
mum Likelihood estimators µ̂ and θ̂ can be obtained from the logarithmic likelihood
equation as [37]

[µ̂, θ̂] = arg max
µ,θ

K∑
k=1

ln f(t′L+k), (A.1)

which yields

∂ ln f(t′L+k)
∂µ

= 0,
∂ ln f(t′L+k)

∂θ
= 0. (A.2)
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Subsequently, Eq. (A.2) can be expanded as
K∑

k=1

[
− µ

θ2
+

t′L+k

θ2
tanh

(
µt′L+k

θ2

)]
= 0, (A.3)

K∑
k=1

[
−1

θ
+

t′2L+k + µ2

θ3
− 2µt′L+k

θ3
tanh

(
µt′L+k

θ2

)]
= 0. (A.4)

Multiply both sides of Eq. (A.3) by θ2, we have

µ =
1
K

K∑
k=1

[
t′L+k tanh

(
µt′L+k

θ2

)]
. (A.5)

Substituting Eq. (A.5) into Eq. (A.4) yields

θ =

√√√√ 1
K

K∑
k=1

t′2L+k − µ2, (A.6)

and Eq. (A.5) then reduces to

µ = ϕ(µ) =
1
K

K∑
k=1

[
t′L+k tanh

(
µt′L+k

1
K

∑K
k=1 t′2L+k − µ2

)]
. (A.7)

Equations (A.6)–(A.7) are not the close-form solutions for the parameters µ and θ.
Thus, in the numerical experiments, we set an initial value of µ0 and use the fixed
point iteration method

µn+1 = ϕ(µn) =
1
K

K∑
k=1

[
t′L+k tanh

(
µnt′L+k

1
K

∑K
k=1 t′2L+k − µ2

n

)]
, (A.8)

to solve Eq. (A.7) for n = 0, 1, 2, . . . . Since −1 ≤ tanh(x) ≤ 1 and
−∑K

k=1 |t′L+k|/K ≤ ϕ(µ) ≤ ∑K
k=1 |t′L+k|/K for −∑K

k=1 |t′L+k|/K ≤ µ ≤∑K
k=1 |t′L+k|/K, the fixed point algorithm converges. There are three fixed points

of ±µn+1 and zero for the iteration of Eq. (A.8). The fixed point iteration method
will bring the final numerical solution µ̂ = µn+1 when the difference |µn+1 − µn| is
less than a sufficiently small constant such as 10−3. In numerical experiments, we
usually take the initial value of µ0 > 10 and the positive fixed point µ̂ = µn+1 will
be obtained generally. Then, from Eq. (A.6) and Eq. (A.8), the estimated parameter
θ̂ is given by

θ̂ =

√√√√ 1
K

K∑
k=1

t′2L+k − µ̂2. (A.9)

Similarly, we also assume the corrupted marked coefficients T∗ with a Gaussian
mixture pdf for the common attacks on images. On the basis of this assumption,
for a given data T∗, the estimated parameter of µ̂ of Eq. (A.8) and θ̂ of Eq. (A.9)
can be also computed by substituting t∗L+k for t′L+k.
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