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We demonstrate a new instance of useful-noise effect or stochastic resonance, occurring
in magnetic resonance imaging (MRI). Based on the physics of signal–noise coupling
specific to MRI, we establish the possibility of regimes where nonlinear post-processing
can benefit from an increase in the level of the noise present in the MRI apparatus. The
validation is obtained by both theoretical analysis and experimental observations. We
especially show that the beneficial tuning of the noise can be practically achieved by
controlling the bandwidth of the sampling receiver of the MRI apparatus. These results
constitute a nontrivial extension of stochastic resonance in the domain of images, arising

here with a signal–noise coupling in MRI which is distinct from the purely additive or
multiplicative couplings previously investigated in the framework of useful-noise effect.
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1. Introduction

In the domain of information sciences, early stages of the information processing
chain, at the acquisition sensor level, are often designed to produce a faithful linear
representation of a physical quantity from the environment. Toward the terminal
end of the information chain, the digital extraction of information generally involves
nonlinear steps. Hence, the final destination of acquired data may not always require
perfect “instrumentation and measurement” linearity at the acquisition level. And
when the final information task is planned in advance, it may be relevant to con-
sider a global design of the information processing chain possibly incorporating
useful nonlinearities even at early stages in the chain. A typical occurrence of this
philosophy seems to be at work with neural systems, which reach high efficiency
for information processing, based on elements that are strongly nonlinear as soon
as the early stages of the processing. At the early stages of the information chain,
one is usually confronted with a physical information-carrying quantity of interest
mixed with an inevitable ambiant noise. For linear processing at this stage, the
noise is always felt as a nuisance [1]. With nonlinearity at this stage, the possibility
of a beneficial action of the noise becomes possible, through a cooperative nonlin-
ear effect known as stochastic resonance [2]. In this respect, neural systems have
been shown to lend themselves to stochastic resonance, demonstrated experimen-
tally and theoretically described with a large variety of models of neuron (see [3] for
early work in isolated neurons or ensembles of neurons [4] and see [5] for a recent
bibliographic survey).

Stochastic resonance, since its introduction [6] in the domain of nonlinear
physics, has gradually emerged as a general paradigm of noise-assisted informa-
tion processing, reported to operate in many different areas such as electronic
circuits, lasers, neurons, nanodevices or chemical reactions [5, 7]. Stochastic res-
onance has mainly been reported with mono-dimensional signals for various digital
processes (including for instance quantization [8] detection [9] or estimation [10])
and its application to images is more recent [11–17]. Also, stochastic resonance has
essentially been explored with additive signal–noise coupling [7], and less frequently
with multiplicative signal–noise coupling [14, 18–20]. The identification and analy-
sis of physical processes with specific signal–noise coupling allowing for stochastic
resonance is still an on-going work. We investigate here the feasibility of stochas-
tic resonance in the domain of magnetic resonance imaging (MRI), which presents
a specific signal–noise coupling that is neither additive nor multiplicative and is
controllable by the operator.

Very recently, [21] has reported the possibility of one form of stochastic reso-
nance occurring in MRI in the Fourier domain. Reference [21] considers an analog
nonlinear bistable dynamic system that was earlier shown to lend itself to various
forms of stochastic resonance in different domains. Reference [21] then reports the
first application of this nonlinear filter in the domain of MRI, through a discrete-
time implementation operating in the Fourier k-space. At a fixed noise level present
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in k-space, [21] adjusts the parameters of the nonlinear filter so as to maximize the
performance. In this way, [21] optimizes the parameters of an adjustable nonlinear
system in the presence of fixed noise. By contrast here, we shall consider another,
simpler, nonlinear processor, allowing complete theoretical analysis and operating
directly in the image space with no time discretization needed. We rather explore
the situation of a fixed nonadjustable system, and study the effect of varying the
level of noise. We report the existence of an optimal nonzero level of noise where
the performance on MR images is maximized. We also demonstrate good agreement
between theory and acquisition performed on a real MRI apparatus, with experi-
mental noise. The possible forms of stochastic resonance with a given signal–noise
coupling, depend on the measure of performance used to assess the useful-noise
effects. We investigate the specific signal–noise coupling of the MRI with measures
of performance, the mutual information and the structural similarity (SSIM), that
were not used in [19]. Also, these quantitative measures are evaluated both experi-
mentally and theoretically. By contrast, [19] essentially resorts to visual inspection
of the images to assess stochastic resonance, and do not use quantitative measures.
This approach therefore constitutes a useful nontrivial complement to the first
demonstration of stochastic resonance with MRI [19] in several aspects, that are
especially relevant to extend the analyses and explorations of stochastic resonance.

2. Signal–Noise Coupling in MRI

MRI images are not directly acquired but result from a reconstruction process [22]
depicted in the two stages scheme of Fig. 1. In the first stage, raw data are sequen-
tially measured with a radiofrequency antenna to constitute two images, Re(k1, k2)
and Im(k1, k2) in Fig. 1, physically captured in quadrature by the sampling receiver
placed after the antenna. These raw data Re(k1, k2) and Im(k1, k2) are provided

Fig. 1. Two stages reconstruction process in MRI. Images in stage 1 are the measured raw data.
Images in stage 2 correspond to the reconstructed image of the physically observed object placed
in the experimental MRI apparatus.
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in the frequency-domain also called k-space by the MRI apparatus respectively as
the real and imaginary parts of a Fourier transform FT of a slice or volume of the
observed object placed in the experimental setup. In the second stage, the MRI
images in the spatial domain (u1, u2) are thus obtained after an inverse Fourier
transform of the raw data

M(u1, u2) = FT−1[Re(k1, k2) + iIm(k1, k2)]. (1)

The MRI images in the spatial domain contained in M(u1, u2) are complex data
usually visualized as a modulus image M(u1, u2) physically related to spatial dis-
tribution in proton density of the observed object

M(u1, u2) = |M(u1, u2)|, (2)

and a phase image Φ(u1, u2) physically related to susceptibility variations (such as
those induced by oxygen saturation, ferritin or superparamagnetic contrast agent)
or motion (such as blood flow) in the observed object [23]

Φ(u1, u2) = arg[M(u1, u2)], (3)

with (u1, u2) spatial coordinates. In standard conditions [22], noise in MRI can have
various origins including fluctuations in the observed object (motion and/or tissue
variation . . .) [24], thermal noise in the antenna or the electronic devices of the
sampling receiver placed after the antenna [25, 26]. For a steady observed object
presenting no internal source of fluctuations, the noise in the antenna or the sam-
pling receiver is well described by an additive Gaussian noise assuming independent
and identically distributed values at each sampled data [22] in the frequency domain
of stage 1 of Fig. 1. To simulate the signal–noise coupling in MRI, we therefore use
a three stages scheme visible in Fig. 2. Noise-free information-carrying modulus

Fig. 2. Three stages simulation of the noisy image formation process in MRI. Stage 0 applied
before the reconstruction process of Fig. 1 simulates the raw data measured from noise-free
information-carrying images. The physical signal–noise coupling is occurring in the frequency

domain on Stage 1.

1350005-4



2nd Reading

February 14, 2013 14:35 WSPC/S0219-4775 167-FNL 1350005

Tuning the Noise to Maximize Nonlinear Information Transmission

M(u1, u2) and phase Φ(u1, u2) images are Fourier transformed to simulate the raw
data measured in the frequency domain (Stage 0 in Fig. 2). The action of the noise
in the antenna and the sampling receiver is modeled by addition in the frequency
domain of two independent realizations N1(k1, k2) and N2(k1, k2) of identically dis-
tributed zero-mean Gaussian noises with same standard deviation σN . The recon-
struction process of Fig. 1 is then applied to produce a noisy modulus MN (u1, u2)
and noisy phase ΦN(u1, u2) which from linearity of the Fourier transform read

MN (u1, u2)

=
q

[M(u1, u2) cos(Φ(u1, u2)) + N1(u1, u2)]2 + [M(u1, u2) sin(Φ(u1, u2)) + N2(u1, u2)]
2,

(4)

and

ΦN (u1, u2) = arctan
[

M(u1, u2) sin(Φ(u1, u2)) + N2(u1, u2)
M(u1, u2) cos(Φ(u1, u2)) + N1(u1, u2)

]
, (5)

with N1(u1, u2) and N2(u1, u2) which are respectively equal to the real and imagi-
nary part of FT−1[N1(k1, k2) + iN2(k1, k2)]. The spatial domain noises N1(u1, u2)
and N2(u1, u2) are therefore independent realizations of zero-mean Gaussian noises
with same standard deviation σN .

Image post-processing of MRI then consists in extracting the useful spatial infor-
mation carried by MN(u1, u2) and ΦN (u1, u2) despite the presence of the noise.
From a Shannon-like informational point of view, the MRI image reconstruction
process can therefore be reduced to the simple image transmission channel illus-
trated for the modulus image M(u1, u2) in Fig. 3. Image post-processing can involve
any standard informational task: detection, estimation, segmentation, classification
. . . Extraction of useful information is by essence a matter of reducing the amount of
data and it cannot be a pure tautological linear transformation all along the infor-
mation processing chain. It is thus important to understand that all the standard
informational processes are, by essence, at least at the final stages of the infor-
mation chain, requiring some nonlinear processing. In this informational nonlinear
context, we are going to demonstrate that the noise, when considered as a tunable
input, can play a beneficial role in image transmission in standard conditions of
MRI.

Fig. 3. Shannon-like informational channel of magnetic resonant imaging. The noise-free
information-carrying modulus input image M(u1, u2) is coupled to the noise following Eq. (4)
to provide the noisy modulus image MN (u1, u2) which is post-processed to produce the output
image Y (u1, u2).
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3. Nonlinear Image Transmission

Both the noisy modulus image MN (u1, u2) of Eq. (4) and noisy phase image
ΦN (u1, u2) of Eq. (5) have physical meanings. Most often it is the modulus image
which is observed and exploited as providing more direct anatomical visualization
and interpretation of the observed objects. The phase image, although it is impor-
tant to provide additional information [27–29] such as flow velocity or susceptibility
mapping, has been comparatively less exploited so far. In this report, we choose
to work with a steady object presenting no susceptibility contrast. We will there-
fore focus only on information carried in noisy modulus image MN(u1, u2). In the
sequel, the observed object is consequently constituted by an input modulus image
M(u1, u2). The input phase image Φ(u1, u2) in stage 0 of Fig. 2 is taken as a uniform
constant image.

We now specify the statistical description of the acquired noisy modulus image
MN (u1, u2). The input modulus image M(u1, u2) formed by a distribution of gray
levels is characterized by the probability density pM (m) and for a given gray scale
m of the original image the conditional probability density function of the noisy
modulus image MN(u1, u2) resulting from Eq. (4) is (see for instance [30])

pMN |m(j) =
j

σ2
N

exp
[
− 1

2σ2
N

(j2 + 2m2)
]

B0

(√
2mj

σ2
N

)
, (6)

for j ≥ 0 and pMN |m(j) = 0 for j < 0 with the Bessel function B0(j) =∫ 2π

0
1
2π exp(j cos θ)dθ.

We consider the acquisition of MRI images with the statistical model of Eq. (6)
in the presence of a nonlinear system with input–output characteristic g[·] so that
the delivered output image Y (u1, u2) is

Y (u1, u2) = g[MN(u1, u2)]. (7)

Nonlinear phenomena can occur at different levels of the MRI information chain,
such as a default of homogeneity of the static magnetic field and saturation in the
response of the receiver for high amplitudes of excitation. We consider here a basic
nonlinearity arising in the post-processing of the noisy modulus image MN (u1, u2)
for information extraction purposes. In usual communication channels, the level of
the noise is imposed by the operating conditions. In the presence of nonlinearities
in the channel, stochastic resonance becomes a favorable option accessible to the
process. With stochastic resonance, the level of the noise is considered as a tunable
parameter, the increase of which can sometimes be turned into an improvement of
the performance. We are going to assess the impact of the noise level σN in Eq. (6)
on the quality of the output image Y (u1, u2) transmitted by the channel of Fig. 3
modeling standard acquisition conditions in MRI. The noise rms amplitude σN is in
practice a controllable parameter experimentally tunable with the bandwidth BW

of the sampling receiver while leaving the resolution of the image unchanged. The
smaller BW , the smaller σN in Eq. (6). In practical MRI acquisition conditions [23],
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one needs to tolerate a certain amount of noise since the bandwidth BW has to
remain sufficiently large to avoid chemical shift artefacts. Such artefacts appear
as spatial localization shifts created by differences in the chemical environment
in the observed object. In this work, we demonstrate the possibility of a further
advantage of this conventional tradeoff on σN with situations where, in the presence
of nonlinearity, an increase of the noise level σN translates into an improvement of
the quality of the transmitted output image Y (u1, u2).

For methodological reasons here, we choose the nonlinearity g[·] of Eq. (7) as a
static memoryless input–output characteristic

g[MN(u1, u2)] =




0 for MN (u1, u2) < θ0,

MN(u1, u2) for θ0 ≤ MN (u1, u2) ≤ θ,

θ for MN (u1, u2) > θ,

(8)

with linear characteristic between threshold θ0 ≥ 0 and saturating upper limit
θ ≥ θ0. This characteristic includes the special case of a simple two-level thresholder
when θ = θ0 modeling the high-level nonlinearity of a binary detection scheme or
the elementary quantization step of a reduction of the dynamic by requantization.
In addition, the static nonlinearity g[·] of Eq. (8) has already been studied in the
context of stochastic resonance with additive coupling [31] occurring in thermal
noise or with multiplicative coupling occurring with speckle noise in optics [14] for
instance. As given in Eq. (4), the signal–noise coupling in MRI is neither additive
nor multiplicative. It is therefore interesting to be able to compare the impact of
an increase of the level of the noise with the nonlinearity of Eq. (8) in the presence
of the specific MRI signal–noise coupling of Eq. (4) against the behavior observed
in purely additive or multiplicative signal–noise coupling.

4. Noise-Assisted Image Transmission

We first consider the application of a binary input image at the input of the informa-
tional channel of Fig. 3. This situation models a simple scene composed of a uniform
object placed alone in a MRI apparatus. The noisy modulus image MN (u1, u2) is
then processed by g[·] taken as a simple quantizer with threshold θ0 = θ as

g[MN (u1, u2)] =

{
0 for MN(u1, u2) ≤ θ,

θ for MN(u1, u2) > θ.
(9)

For binary input images M(u, v) with two possible levels m0 or m1, we have the
probability density function pM (m) = p1δ(m−m1) + (1− p1)δ(m−m0), where p1

is the fraction of pixels at m1 in image M(u, v). In this context, the information
chain from the binary input image M(u1, u2) to the binary output image Y (u1, u2)
is similar to a binary channel. An appropriate measure of performance to quantify
the transmission of information is provided by the mutual information IMY which
measures the similarity between the information-carrying input image M(u, v) and
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output image Y (u, v) with

IMY = H(Y ) − H(Y |M), (10)

with entropies H(Y ) = −∫j djpY (j) log2[pY (j)] and H(Y |M) = −∫m dmpM (m) ×∫
j djpY |m(j) log2[pY |m(j)]. In the input–output binary case, we have a possibility of

an explicit theoretical derivation of the mutual information IMY . Using the function
h(j) = −j log2(j), the entropies are

H(Y ) = h[p1p11 + (1 − p1)p10] + h[p1(1 − p11) + (1 − p1)(1 − p10)], (11)

and

H(Y |M) = (1 − p1)[h(p10) + h(1 − p10)] + p1[h(p11) + h(1 − p11)], (12)

with p1k = Prob{Y = θ |M = mk} for k ∈ {0, 1}. We are now ready to confront
the evolution of IMY from calculation of probabilities involved in Eq. (10) with
experimental result or numerical simulation. Figure 4 illustrates quantitatively the
possibility of a useful-noise effect in the MRI informational channel of Fig. 3. In
Fig. 4, the useful-noise effect occurs, when the level σN of the noise is raised, where
the mutual information IMY follows a nonmonotonic evolution culminating for a
nonzero optimal level of noise. These regimes of stochastic resonance in Fig. 4
operate when, in absence of noise, the level of the pixels related to both object and
background are located bellow the fixed threshold θ of the quantizer in Eq. (9). In
such a configuration, the threshold θ is too large, ill-positioned, to perform a good
binary classification of the pixels in the noisy modulus image MN (u1, u2) and our
analysis demonstrate that an increase of the level of the noise by tuning the receiver

Fig. 4. Input–output mutual information IMY of Eq. (10) as a function of the rms amplitude σN

of the noise in the sampling receiver for various values of the threshold θ = 0.5, 0.9, 0.95, 1, 1.1 of
the quantizer in Eq. (9). Solid lines stand for the theoretical expressions of Eq. (10). The discrete
data sets (∗) are obtained from the calculation of Eq. (10) on images collected experimentally.
Parameters p1 = 0.1, m0 = 0.05 and m1 = 0.7 used in the theoretical results have been estimated
from the experimental images.
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bandwidth of the MRI apparatus can benefit to the transmission of the information
carried by the output image Y (u1, u2).

We have confronted the prediction given by the theoretical modeling of
Eqs. (10)–(12) with experimental images acquired on a real MRI apparatus. Exper-
iments were performed on a Bruker Avance DRX system (Bruker Biospin SA, Wis-
sembourg, France) in conventional acquisition conditions with a reference 2D-spin
echo sequence and a linear sampling process. The system is equipped with a 150
mm vertical super-wide-bore magnet operating at 7 teslas, a 84mm inner diameter
shielded gradient set capable of 144mT/m maximum gradient strength and a stan-
dard 64mm diameter birdcage resonator. A reference 2D spin-echo sequence was
acquired with a repetition time of 150ms, an echo time of 60ms, a slice thickness of
2mm, a field-of-view of 70mm and a matrix size of 256×256. The number of exper-
iments was 1. The slice was perpendicular to the tube. Figure 5 gives an illustration
of the experimental tuning of the noise level σN with the bandwidth BW of the
sampling receiver. The characteristic relation between the receiver bandwidth and
the noise rms amplitude given in the plot of Fig. 5 is specific to the MRI apparatus
used in this report. Nevertheless, once this relation is known for a given apparatus
the following results which will be given in terms of noise rms amplitude will remain
unchanged. The object in the scene, is a 50mL BD Falcon(TM) filled with water
doped with a NiCl2 and MnCl2 0.1mmol solution. A qualitative illustration of the
corresponding experimental images is provided in Fig. 6. We observe in Fig. 4 a
good agreement between experimental and theoretical results in the range of noise
available in our experimental setup which includes for sufficiently large threshold θ

regimes where an increase in the level of the noise benefits to the transmission of
information through the binary channel.

For further illustrations, we now consider the case where the nonlinearity of
Eq. (8) has a linear and a saturating part with θ0 �= θ. We also enrich the image to
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Fig. 5. Bandwidth of the sampling receiver BW as a function of the noise standard deviation σN

in Eq. (6) estimated from experimental magnetic resonant images of an empty tube.
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(a) (b)

(c) (d)

Fig. 6. Images (a) and (c) are noisy modulus images MN (u1, u2) in the process of Eq. (7) experi-
mentally obtained with the setup described in Fig. 4 for a low level of noise σN = 0.05 in (a) and
a higher level of noise σN = 0.17 in (c). Images (b) and (d) stand for the respective output images
Y (u1, u2) provided by the quantizer of Eq. (9) for a fixed threshold θ = 1.1 while the background
level m0 = 0.05 and the object level is m1 = 0.7.

be acquired with the standard multiple gray-level Shepp-Logan phantom image sim-
ulated in Fig. 7 which presents several structures of various contrast. To test other
measures of similarity, we propose to use the structural similarity index (SSIM)
defined in [32, 33] as

JMY =
4(〈MY 〉 − 〈M〉〈Y 〉)〈M〉〈Y 〉

(〈M2〉 − 〈M〉2 + 〈Y 2〉 − 〈Y 〉2)(〈M〉2 + 〈Y 〉2) , (13)

where 〈·〉 stands for an average over the images. As explained in [32, 33], the SSIM
index evaluates overall image similarity by incorporating in its definition the combi-
nation of three factors: a loss of correlation, a luminance distortion and a contrast
distortion. It has been shown to display a good match with visual perception of
image similarity [32, 33].

The ability of the SSIM to be in good match with the visual appreciation of
image quality in a stochastic resonance context has recently been demonstrated
in [34] with an additive signal–noise mixture. We now present the use of the SSIM
in the context of the nonadditive signal–noise mixture of MRI. With the nonlinearity
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(a) (b) (c)

(d) (e) (f)

Fig. 7. (a) 8-bit simulated version of the Shepp-Logan “phantom” image with 256 gray-levels
coded between 0 and 1; a constant offset = 0.72 parameter is added to all pixels of the original
image (a) to form the input modulus image M(u1, u2). The phase image Φ(u1, u2) is taken as a
uniform Φ(u1, u2) = π/4 so that M(u1, u2) sin(Φ(u1, u2)) = M(u1, u2) cos(Φ(u1, u2)) in Eq. (4);
Image (b) is the output transmitted image Y (u1, u2) without noise σN = 0. Images (c)–(f) stand
for the respective output images Y (u1, u2) provided by the saturating nonlinearity of Eq. (9) for
a saturation level θ = 1 and a threshold θ0 = 0 and increasing level of noise σN = 0.13 (c), 0.33
maximizing the SSIM index (d), 0.7 (e), 1.5 (f).

g[·] of Eq. (8), one can theoretically evaluate JMY . To this purpose, we introduce
the conditional probability Prob{Y ∈ [y, y + dy[|M = m}. For the nonsaturated
pixels in the output image Y (u1, u2), when θ0 < y < θ, one has

Prob{Y ∈ [y, y + dy[|M = m} = pMN |m(y)dy. (14)

For the saturated pixels of the output image Y (u1, u2), the level is y = θ, one has

Prob{Y = θ|M = m} = Prob{mN ≥ θ|M = m} = 1 − FMN |M=m(θ), (15)

with the cumulative distribution function FMN (j) =
∫ j

−∞ pMN (j′)dj′. Therefrom,
we have all the ingredients to calculate our measure of structural similarity JMY

for a given distribution pM (m) of gray levels in the input image M(u1, u2). We
are thus in position to study the impact of the level of noise in the transmission
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Fig. 8. Input–output structural similarity measure JMY of Eq. (13) as a function of the rms
amplitude σN of the noise in the sampling receiver. Same images and parameters as in Fig. 7 with
various offset = 0.55, 0.6, 0.65, 0.67, 0.72, 0.8, 0.9, 1.

of MRI images through the static nonlinearity of Eq. (8). As visually perceivable
in Fig. 7, the possibility of benefit from an injection of noise still holds with the
more sophisticated multiple gray-level images. This occurs when the noisy modulus
image MN(u1, u2) has a strong spatial uniform offset which locates a significant
part of the level of the pixels in the saturating part of the post-processing function
in Eq. (8) even in absence of noise. In such configurations, the noisy modulus image
MN (u1, u2) is ill-positioned in the saturating part of the nonlinearity of Eq. (8) and
we observe that an increase of the level of the noise can benefit to the transmission

(a) (b)

Fig. 9. Input–output measures of similarity IMY in panel A, and JMY in panel B, with a pure
additive signal–noise coupling (dotted lines), and with the MRI signal–noise coupling (solid line),
as a function of the noise rms amplitude σN . Input image M is the binary object of Figs. 4 and
6 with same values for the threshold θ.
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of visual information carried by the output image Y (u1, u2). This visual qualitative
appreciation in Fig. 7 is confirmed in Fig. 8 with the structural similarity measure
JMY which displays the nonmonotonic stochastic resonance signature when the
level of noise σN in the sampling receiver is raised.

5. Discussion

In this report, we have investigated the interest to tune the level of the noise in
MRI. We have shown, with simple binary scenes as well as with multiple gray-level
images, the possibility of a useful-noise effect in the transmission of images. The
useful-noise effect is culminating for a nonzero amount of noise when a nonlinearity
is applied after the Fourier reconstruction step of MRI. These results have been
illustrated with quantitative measures of similarity in good match with the quali-
tative visual inspection of acquired images. A validation has been given with a real
MRI apparatus demonstrating the feasibility of the useful-noise effect in practical
conditions where the noise is experimentally tuned by controlling the bandwidth of
the sampling receiver. These new results, together with the results of [21], establish
the possibility of novel forms of stochastic resonance and their potentialities in MRI
for novel types of nonlinear effects useful to information processing.

In most stochastic resonance studies, the information–noise mixture results from
an additive coupling performed before the processing system. Other couplings have
yet been also considered under the scope of stochastic resonance, like multiplicative
noise [14, 19, 20] or phase noise [35–37]. An important motivation for these explo-
rations is the physical existence of such mixtures in real world or by construction
in existing technological devices. Additive information–noise mixture is the result
of thermal Gaussian noise present in most systems when conditions for the central
limit theorem are operating, i.e., when sufficiently large number of independent
noise sources are assumed to occur in the experimental apparatus. Multiplicative
noise is naturally produced in coherent imaging or also observed in mobile telecom-
munications (as modeled in the fading Rayleigh channel). Phase noise naturally
appears when the path length of a telecommunication channel fluctuates (turbu-
lence for instance in aerian telecommunications) or also when some jitter is present
in the sampling rate of analog-to-digital converter. The signal–noise coupling in
MRI is neither additive nor multiplicative. To assess the specificity of this signal–
noise coupling, we have chosen here for methodological reasons the same saturating
static nonlinearity as used in [14, 31] respectively for additive and multiplicative
signal–noise mixture. With multiplicative signal–noise coupling, as shown in [14], in
absence of noise, the output is generally carrying no information on the input image.
In the case of MRI signal–noise coupling, transmission of information is possible at
a zero noise level and the stochastic resonance effect is therefore more similar to
what is found [31] with additive signal–noise coupling where the signal has to be
ill-positioned to transmit information at zero noise level to benefit from an injec-
tion of noise. The quantitative evolution of the measure of performance in MRI is

1350005-13



2nd Reading

February 14, 2013 14:35 WSPC/S0219-4775 167-FNL 1350005

A. Delahaies et al.

however distinct from a pure additive signal–noise (Y = M + N with N zero-mean
Gaussian noise with standard deviation σN ) coupling as demonstrated in Fig. 9.

The present results enrich the panel of real world signal–noise mixtures that can
benefit from stochastic resonance. They also contribute to extend the analysis of
useful-noise effects in imaging. This is an interesting direction to contribute to the
study of nonlinear systems for image processing [38] since, up to now, useful-noise
effects have mainly been studied with mono-dimensional nonlinear systems.

In this report, we have tuned the level of the noise with the bandwidth of the
sampling receiver. MRI also requires the tuning of other parameters like the slice
thickness, the field of view, the gradient value, the time of repetition which are all
impacting the level of the noise. Similar to the bandwidth of the sampling receiver,
the choices of these parameters are in standard conditions with the result of a
tradeoff. A direct perspective for further development of this work could therefore
be to investigate if the usual tradeoff on other parameters of the MRI apparatus
could lead to other useful-noise effects when some nonlinear informational post-
processing is applied after the acquisition. In MRI acquisition, the tuning of the
noise realized by the tuning of the receiver bandwidth is not done automatically.
This parameter is manually adjusted by the operator in charge of the acquisition.
Automatic noise tuning procedures have been developed in the stochastic resonance
literature [39] and they could be applied in this context. In this work, the sampling
strategy of the k-space was fixed. This choice affects second-order statistics of the
noise, and therefore has no influence on the measures of similarity which are based
on the first-order statistics of the noise. However, the study of the influence of the
sampling strategy in the k-space would be an interesting perspective especially in
the direction of a very recent work [40] which demonstrates the influence of the
second-order statistics in the visual perception of stochastic resonance.

The information task considered here was an image transmission task. Possible
benefit from tuning the noise in MRI could also be considered with other contexts
of interest for MRI applications like detail enhancement [41] or edge-preserving
restoration processes [42]. In another direction, in this report we have essentially
focused our attention on the modulus MRI image. It would also be interesting to
study the effect of raising the noise on the MRI phase image since it is known that
useful-noise effects can also occur with phase noise [36] even in absence of nonlinear
post-processing.
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