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Université de Lyon, CREATIS, CNRS UMR 5220, INSERM U1044
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Trichromacy is the representation of a light spectrum by three scalar coordinates. Such

representation is universally implemented by the human visual system and by RGB (Red
Green Blue) cameras. We propose here an informational model for trichromacy. Based
on a statistical analysis of the dynamics of individual photons, the model demonstrates
a possibility for describing trichromacy as an information channel, for which the input–
output mutual information can be computed to serve as a measure of performance. The
capabilities and significance of the informational model are illustrated and motivated
in various situations. The model especially enables an assessment of the influence of
the spectral sensitivities of the three types of photodetectors realizing the trichromatic
representation. It provides a criterion to optimize possibly adjustable parameters of the
spectral sensitivities such as their center wavelength, spectral width or magnitude. The
model shows, for instance, the usefulness of some overlap with smooth graded spectral
sensitivities, as observed for instance in the human retina. The approach also, starting
from hyperspectral images with high spectral resolution measured in the laboratory,
can be used to devise low-cost trichromatic imaging systems optimized for observation
of specific spectral signatures. This is illustrated with an example from plant science,
and demonstrates a potential of application especially to life sciences. The approach
particularizes connections between physics, biophysics and information theory.

Keywords: Information theory; photon statistics; light spectrum; trichromacy; color;
vision.
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1. Introduction

Information-theoretic concepts show more and more impact at the frontier with
physics [1–4], including biophysics [5, 6]. At this frontier some important issues lie
in the ways of quantifying information, in the resulting operational significance in
the physical world, in the connections of information with its physical supports and
with physical laws. For a contribution at this interface of physics and information
theory, we consider here the domain of optics, light signal and imaging [7–9], and
demonstrate the possibility of constructing an information-theoretic description of
the process of trichromacy.

We consider a light spectrum denoted S(λ) and supported by the domain of
wavelength λ ∈ [λmin, λmax]. A typical reference for S(λ) is the spectrum of visible
light radiated by a colored object in the visible range λ ∈ [λmin = 400 nm, λmax =
700 nm]. High-resolution spectrometers or hyperspectral cameras are capable of
accurately measuring such a light spectrum. However, devices exist with a much
more reduced spectral resolution, such as RGB cameras or the human retina, which
represent a continuous spectrum S(λ) over λ ∈ [λmin, λmax], by a few scalar values.
This is the case with trichromacy coding of a light spectrum, which replaces the
continuous spectrum S(λ) by three scalar values (R, G, B).

One can intuitively expect some significant reduction of information when a
continuous spectrum S(λ) is replaced by three scalars (R, G, B). Common RGB
cameras and the human retina implement this type of representation. Such systems
exploit light spectra to produce color images, and their (reduced) spectral repre-
sentation is targeting toward a sufficiently efficient discrimination of objects of the
environment in the imaged scene, rather than toward a complete restitution of their
radiated spectra. Color images produced in this way are usually valuable for their
informational content. It is therefore specially relevant to develop an informational
analysis of the representation of a continuous spectrum S(λ) by three scalar values
(R, G, B). An informational approach to trichromacy is specially appealing because
trichromacy, as a natural process implemented by visual processing, involves sen-
sory systems refined and optimized over biological evolution and associated with
high performance for information processing by vision [10, 11]. We propose such an
approach here, with the elaboration of an informational model for trichromacy and
the study of its properties.

Informational contents for physical signals can be defined and quantified in a
powerful way by means of statistical information theory, as pioneered by Shan-
non [12, 13]. If one wants to apply such an approach to light spectra, one needs
to setup a statistical description in this area. Light spectra are not immediately
given as statistical objects, a fortiori endowed with a univocal statistical signifi-
cance. Several approaches can be envisaged to describe light spectra in a statistical
framework, and these can be understood through an analogy with images. Images in
the same way are not immediately given as statistical objects. To formalize images
in a statistical framework, an approach is to consider an image as giving access
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to one or several realizations of a statistical process. An image can be identified
with one realization drawn from a statistical ensemble of images; or alternatively,
each pixel of an image can be identified with one realization of a statistical pro-
cess. Such realizations can be combined in order to obtain an estimation of relevant
probability distributions of the underlying statistical process. This is essentially
this type of approach which has been exploited so far for informational descriptions
of light spectra in imagery [14–18]. This approach relies on, and reflects, its basic
hypothesis: what is observed are realizations; and accordingly it critically depends
on the number of accessible realizations for estimating the underlying probability
distributions, which often is a limiting factor in a statistical description.

Another, distinct, approach consists in considering an image, not as a realiza-
tion from a statistical process, but as a probability distribution in itself. This type
of approach has been introduced in imaging [19–22], and shown fruitful, for infor-
mational studies such as the application of the principle of maximum entropy. The
basis of this approach receives justification from the law of large numbers, when
very large numbers of photons are involved in the process of image formation. Image
intensities and their spatial distributions are related to populations of photons and
their relative proportions interpretable as probability distributions. This view of
light intensities as probability distributions is also consistent with the specifica-
tions of quantum optics for the photon [23]. In this way, this approach relies on,
and reflects, a distinct basic hypothesis: what is observed are probability distribu-
tions. Accordingly, it is not affected by limiting issues concerning the number of
accessible realizations, and it is able to derive from one observation an informational
interpretation based on statistical information theory.

It is this type of approach, we will apply here to light spectra, in order to
derive an information-theoretic assessment of trichromacy. A light spectrum will
be considered as a probability distribution related to the dynamics of individual
photons. On this basis, we demonstrate the possibility to construct an informational
model for the trichromatic (or multichromatic) coding of light spectra. We then
analyze the properties of the model in different situations. This serves two main
purposes, first to appreciate and assess the capabilities and significance of the model
and its assumptions as an informational description, and second to exploit the
model for a quantitative characterization of trichromacy and optimization of its
performance.

Some other informational approaches to trichromacy, based on statistical infor-
mation theory as we do here, have previously been proposed. The approach of [24]
starts from three primitive components R, G and B, and studies how the visual sys-
tem can combine or transform them efficiently, especially through color opponency.
An efficient transformation is obtained through decorrelation of the three R, G, B
components, by a Karhunen–Loeve expansion or principal component analysis, as
also advocated in [25]. Information theory is invoked to motivate a decorrelating
transformation as achieving optimal information compaction (energy compaction)
as explained in [24], although some other informational aspects remain invariant
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since the transformation is invertible. Also, the approach of [24] depends on the
assumed statistics over an ensemble of input light spectra [24, 26]. By contrast here,
our informational approach to trichromacy will operate at a lower level, essentially
for assessing the impact of the spectral sensitivities of the photodetectors imple-
menting the trichromatic (R, G, B) representation, rather than for assessing higher-
level operations performed by the visual system on the three components R, G and
B. It will compute and optimize the full mutual information rather than correlation
measures; and also it does not require assumptions on the statistics of an ensemble
of spectra but can provide an assessment on individual spectra.

As another related approach, Refs. [14–16] use information theory to esti-
mate various types of information specifically ascribable to colors in images. This
approach relies on sampling statistics for the colors, estimated from large amounts
of pixels measured in images of scenes under different illumination conditions. As
recognized in [16], the amount of information depends on how information is calcu-
lated, and the model we develop here relies on quite different statistical assumptions
for light spectra. Yet, we will demonstrate that a consistent informational descrip-
tion can also be obtained in this way.

In the present report, we will present the derivation of the original model for
trichromacy in Sec. 2. Next, in Sec. 3, the model will be tested for the evaluation of
different conceivable trichromatic sensors, and then an application will be described
in the context of hyperspectral imaging for plant science.

2. The Informational Model

The light spectrum S(λ) as evoked in the introduction commonly measures an
energy or power radiated per unit wavelength locally at each wavelength λ. For
the present statistical modeling, we choose to count photons, and so by dividing
by the energy hc/λ carried by a photon with wavelength λ, we rather define a
light spectrum S(λ) as a number of photons radiated per unit wavelength locally
at each wavelength λ. Moreover, the spectrum S(λ) counting the radiated photons
is appropriately normalized so that when a photon is emitted by the radiating
source, this photon as a probability S(λ)dλ of being radiated with the wavelength
λ, or more precisely in the infinitesimal range [λ, λ + dλ[. This assumption for
the photon is consistent with the specifications of quantum optics [23]. Also, at
a macroscopic level, when a very large number N of photons are radiated by the
source, by the law of large numbers, a fraction NS(λ)dλ is radiated at wavelength
λ, which consistently matches our previous interpretation of the spectrum (prior to
normalization) as counts of radiated photons per unit wavelength. So the normalized
spectrum S(λ) is the probability density for a radiated photon to have wavelength λ.

The light is collected by a sensor incorporating a set of photodetectors of M

distinct types labeled by index i. We focus here on the important case of trichro-
macy with M = 3, which is specially relevant for the human visual system, yet the
model we develop is applicable for arbitrary M [27, 28]. With sensors like RGB
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cameras or the human retina, each photodetector i produces an output response
usually constructed as a weighted linear integration on the input light. Photode-
tector i integrates the energy contained in the incident light spectrum weighted by
the spectral sensitivity of the photodetector to output a scalar measurement. For
our purpose, it is appropriate to also model the response of each photodetector at
the level of individual photons and in a probabilistic framework. We consider that
each photon with wavelength λ falling on the sensor has a probability fi(λ) of being
detected by a photodetector i. The probability fi(λ) is wavelength-dependent to
account for a wavelength-dependent spectral sensitivity for each photodetector i.
When a very large number N of photons are radiated by the source and fall on
the sensor, a fraction NS(λ)dλ is radiated at wavelength λ, among which a frac-
tion fi(λ)NS (λ)dλ is detected by a photodetector i. By integration over the whole
wavelength range [λmin, λmax] where the input spectrum S(λ) contains energy, the
total number Ni of photons collected by photodetector i comes out as:

Ni =
∫ λmax

λmin

fi(λ)NS (λ)dλ, i = 1, . . . , M, (1)

which matches the macroscopic picture of a weighted integration of the incident
light to construct the global response of the photodetector.

A given sensor with spectral resolution capabilities incorporates M distinct pho-
todetector types with M distinct probabilistic spectral sensitivities fi(λ), like the
M = 3 types of cone photoreceptors in the human retina or the three-CCD of an
RGB camera. Consistency of the probabilistic description imposes

Pdet(λ) =
M∑
i=1

fi(λ) ≤ 1, (2)

for each λ, where Pdet(λ) in Eq. (2) is the global probability for an incident photon
at λ to be detected by the sensor, altogether by absorption by one of its M internal
photodetectors. In addition,

Plost(λ) = 1 − Pdet(λ) = 1 −
M∑
i=1

fi(λ), (3)

is the probability that an incident photon at λ is missed by the sensor.
For instance, a useful model of spectral sensitivity [29–31] is according to the

Gaussian

fi(λ) = Ai exp

[
−

(
λ − λi

wi

)2
]
. (4)

For each photon we denote by Y the random variable describing the photodetec-
tion event occurring in the sensor. A photon emitted by the source is emitted at
wavelength λ with the probability S(λ)dλ; and a photon at λ is absorbed by pho-
todetector i with the (conditional) probability P (Y = i |λ) = fi(λ). By integration
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over the whole wavelength range, we obtain the overall probability that a photon
emitted by the source is detected by photodetector i as:

P (Y = i) =
∫ λmax

λmin

fi(λ)S(λ)dλ, i = 1, . . . , M, (5)

consistent with the global count Ni of Eq. (1). There is also a possibility that the
photon at λ is missed that we denote Y = 0, occurring according to Eq. (3) with
(conditional) probability P (Y = 0 |λ) = Plost(λ), leading to the overall probability
of a lost photon as

P (Y = 0) =
∫ λmax

λmin

Plost(λ)S(λ)dλ. (6)

In this way, the detection of a photon falling on the sensor is modeled as a random
event Y , with M + 1 possible outcomes, consisting in a detection by photodetector
i with the probability P (Y = i) of Eq. (5) for i = 1 to M , or in a lost photon with
the probability P (Y = 0) of Eq. (6).

We can now define the entropy H(Y ) of the detection process as [13]

H(Y ) = −
M∑
i=0

P (Y = i) log[P (Y = i)]. (7)

In a similar way, the emission of a photon by the light source can be modeled
as a random event X which describes the wavelength λ at which this photon is
emitted, with the outcome X ∈ [λ, λ + dλ[, or more concisely X = λ, occurring
with probability

Pr{X ∈ [λ, λ + dλ[ } = S(λ)dλ. (8)

The process of representing a continuous spectrum S(λ) by the scalar measurements
delivered by the M photodetectors, can thus be described as an information channel,
with input X and output Y . An input–output mutual information I(X ; Y ) can be
defined for such a channel, as [13]

I(X ; Y ) = H(Y ) − H(Y |X), (9)

with H(Y ) the output entropy of Eq. (7), and the input–output conditional entropy

H(Y |X) =
∫ λmax

λmin

H(Y |X = λ)S(λ)dλ. (10)

From the above description of operation of the photodetectors, we have

H(Y |X = λ) = −
M∑
i=0

P (Y = i |X = λ) log[P (Y = i |X = λ)], (11)

which is

H(Y |X = λ) = −
M∑
i=1

fi(λ) log[fi(λ)] − Plost(λ) log[Plost(λ)]. (12)
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Then, gathering Eqs. (12), (10) and (7) gives access to the mutual information
I(X ; Y ) in Eq. (9). As visible, the resulting mutual information I(X ; Y ) criti-
cally depends on the spectral sensitivities fi(λ) of the photodetectors. In this way,
I(X ; Y ) offers a quantitative assessment, in informational terms, of the process of
representing the continuous input spectrum S(λ) by the discrete scalar measure-
ments from M photodetectors.

The present model is based on assigning a probabilistic interpretation to the
spectral quantities that control the photon statistics determining the informational
measures. As already mentioned, this is an approach bearing similarity with that
of [19, 20, 22], and interpreting light intensity as a probabilistic measure. This
similarity provides a priori motivation to our approach, which transposes to the
spectral domain the probabilistic approach fruitfully developed in [19, 20, 22] for
light distribution in the spatial domain. An important step now, for the model we
have derived, is to test its properties, capabilities and informational significance.
We now address and illustrate these aspects, especially to provide additional, a pos-
teriori, motivation to our informational analysis.

3. Application of the Model

3.1. An idealized trichromatic sensor

An idealized trichromatic sensor specially efficient for spectral discrimination
according to the present informational approach, would use three rectangular sen-
sitivities fi(λ) = 1 over nonoverlapping wavelength supports and fi(λ) = 0 outside.
Such rectangular fi(λ) at 0 or 1 cancel the conditional entropy H(Y |X = λ) of
Eq. (12) for any λ, and thus yield H(Y |X) = 0 in Eq. (10) which is the overall
minimum of the nonnegative conditional entropy H(Y |X). At the same time, these
rectangular fi(λ) are able to achieve the overall maximum log(M + 1) for the out-
put entropy H(Y ) in Eq. (7). This is realized, for a given input spectrum S(λ), by
placing the spectral supports of the rectangular sensitivities fi(λ) so as to obtain
equiprobable P (Y = i) = 1/(M + 1) for i = 0 to M in Eq. (7). This guarantees
the overall maximum of the mutual information I(X ; Y ) in Eq. (9). These rectan-
gular sensitivities a priori stand as a reasonable intuitive expectation for what can
represent a form of efficient trichromatic sensor; and a posteriori they also stand
as the optimum predicted by the informational approach. This provides ground to
the informational approach, which matches reasonable intuitive solutions whenever
they are accessible.

However the rectangular sensitivities, with perfectly flat response at the maxi-
mum sensitivity fi(λ) = 1 and infinitely sharp selectivity at the support boundaries,
display an idealized character. They may not correspond to physically realizable
solutions, as for instance the sensitivities fi(λ) accessible with current technologies
of photodetectors or with biophysical devices such as the cone photoreceptors in the
retina. We therefore extend the exploration of the capabilities of the informational
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model in this direction of sensors constrained so as to come closer to more realistic
physical conditions.

3.2. A simple trichromatic sensor

We turn to a smoother model of spectral sensitivities fi(λ), with no discontinuities,
yet simple enough to be amenable to quantitative analysis and qualitative under-
standing. We introduce the function tri(x) as a symmetric (even) triangular wave-
form of magnitude unity and support x ∈ [−1, 1], and zero elsewhere, according to

tri(x) =

{
1 − |x| for x ∈ [−1, 1],

0 otherwise.
(13)

We take

fi(λ) = tri
(

λ − λi

wi

)
(14)

as the triangular waveform centered at λi with support in [λi − wi, λi + wi].
Figure 1 depicts three spectral sensitivities fi(λ) according to the triangular model
of Eq. (14), with different parameter settings (λi, wi), in a way which could crudely
mimic the situation of a trichromatic sensor like the retina or an RGB camera.

As a common model for a light spectrum, we consider a black body spectrum
according to the Planck law as [23]

B(λ) =
2hc2

λ5

1
exp

(
hc

kTλ

) − 1
. (15)

At a temperature T = 6000K, the black body spectrum B(λ) of Eq. (15) is a
good model for the solar illumination on earth. The energetic spectrum B(λ) of
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Fig. 1. For a trichromatic sensor, the three spectral sensitivities fi(λ) according to the triangular
model of Eq. (14) with, from left to right, in nanometers (λ1 = 450, w1 = 50), (λ2 = 550, w2 = 100)
and (λ3 = 650, w3 = 50).
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Fig. 2. Input spectrum S(λ) resulting from the black body spectrum B(λ) of Eq. (15) at temper-
ature T = 6000 K normalized over the visible range λ ∈ [λmin = 400 nm, λmax = 800 nm].

Eq. (15), after division by hc/λ to obtain a number of photons, and after proper
normalization as explained in Sec. 2, leads to the spectrum S(λ) depicted in Fig. 2.
The black body spectrum will serve here as an interesting model of broadband light
spectrum useful to test the present informational modeling of trichromacy.

We now want to analyze the coding of the black body spectrum of Fig. 2 by
the trichromatic sensor of Fig. 1. Especially, the input–output mutual information
I(X ; Y ) from Eq. (9) offers a measure of efficacy of this coding, enabling for instance
to appreciate the impact on the coding of the parameterization (λi, wi) of the
photodetectors. For illustration, we consider that the parameters (λi, wi) are fixed
as in Fig. 1 except for the spectral width w2 of the green photodetector which
is assumed adjustable. Then, Fig. 3 shows the input–output mutual information
I(X ; Y ) resulting from Eq. (9), as a function of the adjustable width w2 of the
spectral sensitivity f2(λ) of the green photodetector.

The evolution in Fig. 3 reveals that there exists a maximum of the mutual
information I(X ; Y ), which is achieved by an optimal width w2 = 100nm for the
spectral sensitivity of the green photodetector of the trichromatic sensor in Fig. 1.
The spectral sensitivity of the green photodetector is depicted in Fig. 1 at this
optimal width w2 = 100nm achieving the maximum I(X, Y ) = 1.0790Sh. Figure 1
represents the optimal sensor in the constrained family of sensors with spectral
sensitivities according to Eq. (14) and one adjustable parameter w2. The optimum
of Fig. 1 predicts that the trichromatic sensor of Fig. 1 is maximally efficient when
there is some overlap, in the wavelength domain, of the spectral sensitivities fi(λ)
of its three types of photodetectors. Especially, the configuration with w2 = 50nm
that would correspond to three sensitivities fi(λ) of equal width and no overlap
in Fig. 1, is not optimal, according to the mutual information measure. This is in
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Fig. 3. For the coding of the black body spectrum of Fig. 2 by the trichromatic sensor of Fig. 1,
input–output mutual information I(X; Y ) from Eq. (9), as a function of the adjustable width w2

of the spectral sensitivity f2(λ) of the green photodetector.

contrast with the flat sensitivities of Sec. 3.1 which are optimal with no overlap. The
graded sensitivities of Eq. (14) draw benefit from some overlap for better spectral
representation.

The special case of a monochromatic light can illustrate that some benefit can
be drawn from the overlap of graded sensitivities as in Fig. 1. A monochromatic
light, from which a large number of photons is collected, when there is no overlap of
the three sensitivities fi(λ) will be represented by an (R, G, B) triplet with only one
nonzero component among three. Such configurations realize a limited exploitation
of the representation capabilities of a triplet (R, G, B), associated with an output
variable Y with a low entropy H(Y ) in Eq. (7) and a low input–output mutual
information I(X ; Y ) in Eq. (9). Some overlap in the sensitivities fi(λ) will produce
triplets (R, G, B) with more than one nonzero components, exploiting a larger part
of the representation capabilities of a triplet (R, G, B), associated with higher out-
put entropy H(Y ) in Eq. (7) and higher input–output mutual information I(X ; Y )
in Eq. (9). The overlap coupled to graded sensitivities preserve the localization
capabilities of the sensor (which is not true with the flat sensitivities of Sec. 3.1).
For instance, a monochromatic light at λ0 ≈ 480 nm activates the blue and green
photodetectors in the same way, since f1(λ0) ≈ f2(λ0) ≈ 0.3 in Fig. 1, and is thus
represented by a triplet (R, G, B) with B = G and R = 0. This same proportion of
B and G precisely locates the monochromatic light at λ0 ≈ 480nm in Fig. 1. Other
proportions of R, G and B would usually allow similar capability of precisely locat-
ing another λ0 from the overlapping graded sensitivities of Fig. 1. This special case
of a monochromatic light offers a concrete illustration of the possibility of some ben-
efit from overlap in graded spectral sensitivities, as pointed out by maximization of
the input–output mutual information I(X ; Y ). The case of a broadband spectrum
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S(λ) is more complex than that of the monochromatic light. However, one can
expect that the measure I(X ; Y ) with its general informational significance, keeps
some relevance to assess spectral representation in wide conditions. On a general
basis, for overlapping sensitivities fi(λ), maximization of the input–output mutual
information I(X ; Y ) in Eq. (9), realizes an optimal trade-off between output rich-
ness of representation measured by H(Y ) and input–output equivocation measured
by H(Y |X). The whole shapes of the sensitivities fi(λ), and not only the overlap
of their supports, is taken into account in the maximization of I(X ; Y ), so as to
provide an information-based optimum for the setting of adjustable parameters in
the spectral sensitivities fi(λ).

3.3. Gaussian trichromatic sensor

As another example of the optimization capabilities of the informational model,
we address the situation of a Gaussian trichromatic sensor with three types of
photodetectors with Gaussian spectral sensitivities fi(λ) as in Eq. (4). We consider
the case where the spectral widths wi in Eq. (4) are fixed to the common value
wi = 50nm, for i = 1, 2, 3, which is typical to commercial trichromatic cameras [31].
It is then feasible to use the informational approach to optimize the locations λi

and relative magnitudes Ai in Eq. (4), by seeking those values that maximize the
input–output mutual information I(X, Y ). This is done again with the black body
spectrum of Fig. 2 as input, and the resulting optimal sensitivities are presented in
Fig. 4 that achieves the maximum I(X, Y ) = 1.2495Sh.

The optimal configuration of the trichromatic sensor in Fig. 4 shows that there
is significant overlap of the spectral sensitivities fi(λ) at the optimum. The central
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Fig. 4. For the coding of the black body spectrum of Fig. 2 by a trichromatic sensor with Gaussian
spectral sensitivities fi(λ) as in Eq. (4) and wi = 50nm, for i = 1, 2, 3, the optimal configuration
(A1 = 1, λ1 = 436 nm), (A2 = 0.95, λ2 = 520 nm) and (A3 = 1.00, λ3 = 604 nm), maximizing the
input–output mutual information I(X; Y ) from Eq. (9).
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(green) spectral sensitivity f2(λ) has a slightly lower relative magnitude A2 =
0.95 at the optimum in Fig. 4, which is consistent to cover the middle-wavelength
range where the three sensitivities fi(λ) overlap most. For the coding of the black
body spectrum of Fig. 2, the optimized sensor with Gaussian sensitivities of Fig. 4
achieving I(X, Y ) = 1.2495Sh, is a little more efficient than the optimized sensor
with triangular sensitivities of Fig. 1 which achieves I(X, Y ) = 1.0790Sh, according
to the present informational criterion.

3.4. Photopic vision in the retina

We now study with the informational model, the trichromatic sensor formed by the
human retina for photopic vision. For the characterization of the three types of cone
photoreceptors of the retina, numerical values estimated for the effective sensitivities
were taken from [32, p. 8]. Then for our purpose here, we have fit the numerical
values from [32] with the three theoretical models, given for the S, M and L cones
respectively by Eqs. (16)–(18), where the wavelength λ is in nanometers:

f1(λ) =
(

λ − 381
26.8

)7.2

exp

[
−

(
λ − 381

15

)1.2
]
, λ ≥ 381 nm; (16)

f2(λ) = 1.1 exp

[
−

(
λ − λ2

w2

)2
]
, (λ2, w2) = (549, 54) nm; (17)

f3(λ) = 0.97 exp

[
−

(
λ − 573

61

)2
]
. (18)

The three spectral sensitivities fi(λ) of Eqs. (16)–(18) are then plotted in Fig. 5.
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Fig. 5. For the S, M and L cone photoreceptors of the human retina, the three theoretical models
of spectral sensitivities, respectively f1(λ), f2(λ) and f3(λ) according to Eqs. (16)–(18), and
matching the estimated numerical values from [32].
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Fig. 6. For the coding of the black body spectrum of Fig. 2 by the trichromatic sensor (retina)
of Fig. 5, input–output mutual information I(X; Y ) from Eq. (9), as a function of the adjustable
center wavelength λ2 of the spectral sensitivity f2(λ) from Eq. (17).

We can now apply the mutual information measure of Sec. 2, for an assessment
of the retina operating with the photoreceptors of Fig. 5. It is possible for instance to
evaluate the impact of the center wavelength λ2 of the spectral sensitivity f2(λ) from
Eq. (17). In Fig. 6, the center wavelength λ2 of the type M cone is varied between
450 and 580nm, and the resulting mutual information I(X ; Y ) is presented.

The mutual information I(X ; Y ) in Fig. 6 displays a maximum for the center
wavelength λ2 = 535nm. This indicates that, according to the mutual information
measure in Fig. 6, the nominal position λ2 = 549nm as in Eq. (17), is not optimal
for the center wavelength. Instead, λ2 = 535nm is the one-parameter optimized
configuration maximizing the input–output mutual information in the trichromatic
representation.

Figure 7 shows the assessment of the spectral width parameter w2 of the sensi-
tivity f2(λ) of the type M cone from Eq. (17).

The mutual information measure in Fig. 7, shows that the nominal configuration
w2 = 54nm as in Eq. (17), is not optimal for the spectral width. Instead, w2 = 79nm
is the one-parameter optimized configuration in Fig. 7 for maximizing the input–
output mutual information in the trichromatic representation.

For the spectral sensitivity f2(λ) of Eq. (17), when both parameters λ2 and w2

are assumed adjustable. Figure 8 presents the input–output mutual information
I(X ; Y ) in the plane (λ2, w2).

The joint optimization in (λ2, w2) maximizing the mutual information I(X, Y )
in Fig. 8, leads to the optimal configuration (λ2 = 533, w2 = 48)nm associated
with the maximum I(X, Y ) = 0.86Sh. The resulting optimal sensitivity f2(λ) is
depicted in Fig. 9.

Only the low-level operation of forming the trichromatic representation is
assessed in Fig. 9, and specifically by means of the proposed informational criterion,
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Fig. 7. For the coding of the black body spectrum of Fig. 2 by the trichromatic sensor (retina)
of Fig. 5, input–output mutual information I(X; Y ) from Eq. (9), as a function of the adjustable
width parameter w2 of the spectral sensitivity f2(λ) from Eq. (17).
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Fig. 8. For the coding of the black body spectrum of Fig. 2 by the trichromatic sensor (retina)
of Fig. 5, input–output mutual information I(X; Y ) from Eq. (9), as a function of the center
wavelength λ2 and width w2 of the spectral sensitivity f2(λ) from Eq. (17).

and optimization is performed over a small set of adjustable parameters to illustrate
the approach. The results of Fig. 9 do not imply a deficiency in the human visual
system, because as a whole, the human visual system integrates more complex
and higher levels of information processing of the color information which are not
addressed by the present informational model of trichromacy. The operation of the
retina itself may be optimized based on different aspects, and related to the visual
system as a whole. Our goal here is not the modeling of color processing by the
visual system. It is rather an informational modeling of the process of representing
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Fig. 9. For the S, M and L cones of the retina, the models of spectral sensitivities from Fig. 5
and after optimization at (λ2 = 533, w2 = 48) nm of the M cone sensitivity f2(λ) in Eq. (17)
maximizing in Fig. 8 the input–output mutual information I(X, Y ) (solid lines). The dashed line
is the non-optimal nominal configuration (λ2 = 549, w2 = 54) nm for f2(λ) as in Fig. 5.

a continuous light spectrum by three scalar (trichromatic) components, with an
assessment of the efficiency of the process in informational terms.

Nevertheless, the optimal configuration (λ2 = 533, w2 = 48)nm according to the
information-theoretic model, and the nominal configuration (λ2 = 549, w2 = 54) nm
of the retina, as compared in Fig. 9, can be interpreted as close to one another,
with respect to the ranges where the parameters (λ2, w2) can have meaningful
variations. It can then be concluded that, for the coding of a black body spectrum
representing the average solar illumination on earth, the tuning of the retina is
close to an optimum according to the present information-theoretic model. This
somehow confirms that biological sensory organs are adapted in their environment
for efficient information processing. In the reverse direction, one can a priori grant
some form of optimality for information processing to the retina, due to its being
the result of a selection process refined over biological evolution [10, 11]. Then the
information-theoretic model which arrives at an optimum close to the biological
solution, receives in this way some legitimation for its ability to convey a meaningful
notion of informational optimality. Altogether, one can retain here some form of
consistency uniting sensory processing and informational modeling.

3.5. An application to hyperspectral images

We now propose an illustration of the informational model on experimentally mea-
sured light spectra from hyperspectral imaging. We consider an application from
plant science for the detection of apple scab [33, 34]. Apple scab is a major infec-
tious agent damaging the production of apples. Early detection of apple scab on
the tree leaves prior to propagation to the fruits is an important challenge for yield
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improvement. The proposal here is to apply our informational model of trichro-
macy in order to produce an optimized representation of light spectra measured
from apple tree leaves, and test the potential of this optimal trichromatic represen-
tation for early detection of apple scab.

In order to assess various possible trichromatic representations, we start in
the laboratory with the measurement of high-resolution spectra. We used a NEO
HySpex hyperspectral camera capable of measuring spectra with 160 equal-width
bands over the wavelength range λ ∈ [λmin = 400 nm, λmax = 1000 nm] correspond-
ing to a spectral resolution ∆λ = 3.75 nm, with a 12-bit quantization. Such high-
resolution spectra are then used to compute a trichromatic representation through
linear integration weighted by a set of three spectral sensitivity functions fi(λ)
chosen for the three types of photodetectors. In this way, from a measured hyper-
spectral image in which each pixel is a 160-component high-resolution spectrum,
we construct a pseudo RGB image in which each pixel is a 3-component vector
representation which can be handled and displayed as a standard RGB image. Fig-
ure 10 displays three such trichromatic images constructed from a high-resolution
hyperspectral image of an apple tree leaf infected by scab. The three trichromatic
images of Fig. 10 are constructed through weighted integration by three different
sets of spectral sensitivities {fi(λ), i = 1, 2, 3}.

The trichromatic image of Fig. 10(a) is computed with the set of spectral sensi-
tivities {fi(λ), i = 1, 2, 3} from Eqs. (16)–(18) modeling the photodetectors of the
retina. The trichromatic image of Fig. 10(a) is very close in appearance to the leaf
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Fig. 10. Three trichromatic images with size 77× 126 pixels, from a high-resolution hyperspectral
image of an apple tree leaf infected by scab, constructed through weighted integration by three
different sets in (a), (b) and (c), of spectral sensitivities {fi(λ), i = 1, 2, 3}. In (a) the two red
circles at pixels (25, 50) and (31, 62) indicate the spots of the two spectra displayed in Fig. 11.
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as it appears to the naked eye. The trichromatic image of Fig. 10(b) is computed
with three Gaussian spectral sensitivities fi(λ) according to Eq. (4), with equal
width wi = 50nm, equal magnitude Ai = 1, and evenly covering the visible spec-
trum with center wavelengths at λ1 = 450nm, λ2 = 550nm and λ3 = 650nm. The
trichromatic image of Fig. 10(b) realizes an RGB image as it could be produced by
a standard RGB camera operating over the visible wavelength range.

For the purpose of the experiment, scab has been deliberately inoculated onto
the leaf of Fig. 10 in four known areas. The two images of Figs. 10(a) and 10(b)
illustrate that the infection by scab is barely visible, by the naked eye of by a stan-
dard RGB camera, as also known from previous studies [33, 34]. In order to improve
the detection of apple scab, we now devise a third trichromatic representation, as
shown in Fig. 10(c), optimized according to our informational model of trichromacy.

A high-resolution spectrum representative of an infected region on the leaf is
extracted from the hyperspectral image. Such a spectrum representative of an
infected region is plotted in Fig. 11, together with another spectrum representative
of a sane region of the leaf. The two spots of measurement, at pixels (25, 50) and
(31, 62) in the hyperspectral image, are indicated by two red circles in Fig. 10(a).

The experimental spectra are used in the computation with their native resolu-
tion ∆λ corresponding to 160 regular spectral bands over the integration domain
λ ∈ [λmin = 400 nm, λmax = 1000 nm] and a 12-bit quantization, this providing
an adequate representation of the smoothly varying measured spectra, as observed
in Fig. 11. By comparison, the black body spectrum used in Secs. 3.2–3.4 from
the model of Eq. (15) was sampled, for numerical evaluation of the integrals as
Eqs. (5)–(6), with a very narrow step typically to accommodate 104 regular sam-
ples over the integration domain [λmin, λmax]. The quantization is at the resolution
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Fig. 11. Two representative spectra from the hyperspectral image of Fig. 10: (a) (in red) at pixel
(25, 50) in the infected region; (b) (in green) at pixel (31, 62) in the sane region.
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of modern computers for number representation, just as for the discrete probabil-
ities P (Y = i) resulting from the input spectra. Such conditions in themselves are
generally not critical for the study.

It can be observed in Fig. 11 that the two measured spectra representative of
a sane or an infected regions are relatively poorly contrasted over the visible range
up to λ ≈ 700nm. This explains the relatively low efficiency of the two images of
Figs. 10(a) and 10(b) for distinguishing the infection by scab on the leaf. Mean-
while, in the near infrared range above 700nm in Fig. 11, the contrast of the sane
and infected spectra is much more pronounced. Also, we have verified that the
infected spectrum shown in Fig. 11(a) is well representative of the spectra at pix-
els known to be infected in the hyperspectral image, with relatively low dispersion
among them compared to the variability of the spectra over the whole leaf. For the
task of constructing a trichromatic image offering a good display of the infected
regions of the leaf, we choose to optimize the trichromatic representation according
to the informational approach of Sec. 2 with the infected spectrum of Fig. 11(a)
as input. Three Gaussian spectral sensitivities fi(λ) according to Eq. (4), with
adjustable parameters (λi, wi, Ai) for i = 1 to 3, are chosen for the trichromatic
sensor. The input–output mutual information I(X ; Y ) is then maximized accord-
ing to the nine parameters (λi, wi, Ai) for i = 1 to 3. The optimal configuration
maximizing I(X ; Y ) is depicted in Fig. 12.

For maximization of I(X ; Y ) over a small number of parameters, direct compu-
tation of I(X ; Y ) over a fine grid of points in the parameter space is usually feasible.
This provides an evaluation of the criterion I(X ; Y ) as shown in Figs. 3, 6, 7 for a
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Fig. 12. Three optimal Gaussian spectral sensitivities according to Eq. (4) and jointly maximizing
the input–output mutual information I(X, Y ) for the infected spectrum represented by the black
thin line (the spectrum of Fig. 11(a) converted to a number of photons by division by hc/λ
and normalized to unit magnitude to fit into the figure): (λ1 = 541, w1 = 111, A1 = 1), (λ2 =
903, w2 = 41, A2 = 0.89), (λ3 = 980, w3 = 50, A3 = 0.97) achieving I(X, Y ) = 1.2109 Sh.
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one-parameter space, and in Fig. 8 for a two-parameter space, from which a loca-
tion for the maximum is easily deduced. For maximization of I(X ; Y ) over a larger
number of parameters as in Fig. 12, direct computation of I(X ; Y ) is feasible only
over loose or reduced grids in the parameter space. For maximization of I(X ; Y ) in
Fig. 12, we fixed A1 = 1 with no loss of generality since the informational criterion
is insensitive to a common magnitude of reference for the three spectral sensitivi-
ties fi(λ). Also the variation of the center wavelengths is limited by the condition
λ1 ≤ λ2 ≤ λ3 with no loss of generality. For maximization of I(X ; Y ) over the
remaining parameters (λi, wi, Ai) we combined several techniques having simple
implementations. We used multidimensional line search methods [35, 36] combined
with direct computation of the criterion over successively reduced domains; and
these approaches were repeated with several initializations and parameterizations,
and various perturbations of the solution to test its robustness [35]. The resulting
maximum associated with Fig. 12 is obtained with a spectral precision consistent
with the spectral resolution ∆λ of the measured spectra in Fig. 11. Alternative
techniques can be used for maximizing the informational criterion I(X ; Y ). For our
main purpose here of presenting the informational model of trichromacy, a valida-
tion of the interest of the solution obtained in Fig. 12 rests also in the enhanced
representation afforded by the resulting optimized trichromatic image of Fig. 10(c).

The optimal spectral sensitivities in Fig. 12 tend to concentrate in the range
of high wavelengths where the input spectrum has larger magnitude and larger
number of photons. At the same time, some uniform representation of the whole
input spectrum over its whole support between 400nm and 1000 is preserved, with
the blue sensor f1(λ) insuring a broadband integration to convey the low-magnitude
spectral features present in the lower range of the support. A significant outcome
of the informational optimization realized in Fig. 12, is the resulting trichromatic
image of the leaf which is represented in Fig. 10(c). It can be realized in Fig. 10 that
the visibility of the four infected regions (appearing darker in Fig. 10(c)) has been
significantly enhanced. This is automatically achieved by the numerical criterion of
the maximization of the input–output mutual information I(X ; Y ). Yet, as visible
from Fig. 10, the numerical criterion expressed with informational quantities also
matches a notion of perceived efficiency in the visual inspection for scab detection
from a trichromatic image. This provides further motivation and significance to the
present informational model of trichromacy.

4. Discussion

We have proposed here an original informational model for trichromacy. The model
is based on a statistical analysis of the dynamics of individual photons, and it relies
on a probabilistic interpretation of the spectral quantities that control the photon
statistics taking place in the operation of a trichromatic sensor. Trichromacy in
this way can be described as an information channel for which an input–output
mutual information can be computed to serve as a measure of performance. After
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the construction of the model here, several applications have been performed which
illustrate some of its informational capabilities. The model especially exhibits the
influence of the spectral sensitivities of the photodetectors realizing the trichro-
matic representation, and provides a means to optimize their adjustable parameters
with an informational criterion. Other informational models of trichromacy can of
course be envisaged, based on other assumptions and a different procedure; yet our
approach forms a consistent proposal for an informational model. It is especially
not limited by the requirement of large numbers of realizations to be observed from
a statistical ensemble which often sets a limit in probabilistic modeling. The results
here stand as first exposition and test of the model, and more explorations are
under way to further study the informational capabilities of the model in broader
conditions.

A specific area of application of the present informational model is the design of
low-cost optimized imaging systems. Starting with a hyperspectral camera accessi-
ble in the laboratory as in the scenario of Sec. 3.5, one can use the informational
model to design a set of optimal photodetector spectral sensitivities selected to max-
imize the visibility in a scene of objects or regions characterized by a given represen-
tative spectrum. The optimization can take into account technological constraints
imposed by the available optical components, like photodetectors and their spectral
responses, or optical filters, or light sources with their spectral profiles [37, 38]. The
result would be a low-cost imaging system, resembling standard RGB imaging sys-
tems, yet producing trichromatic images optimized for the efficient observation of
objects of interest specified by their broadband reflectance spectrum. Live sciences
especially could benefit from such low-cost imaging systems spectrally optimized.
Biological structures and tissues from animals or plants can be characterized by
specific reflectance spectra. Multispectral and hyperspectral imagings, which were
initially focused to remote sensing, are more and more often applied in the labo-
ratory to near-field imaging, especially for characterization in life sciences. These
broadband imaging systems remain relatively costly, and could, for some applica-
tions, be replaced by low-cost RGB-like trichromatic systems spectrally optimized
as described here. This could for instance contribute in the exploitation of the high
potential of hyperspectral imaging for plant phenotyping, quality assessment, and
early detection of plant pathogens [33, 39–42].

Various extensions of the present informational model of trichromacy can be
envisaged. For instance, for further application to imaging, spatial information could
also be taken into account to complement the spectral information attached to the
light spectra. In the situation of Sec. 3.5 with hyperspectral images, a single spec-
trum representative of a class of interest for the pixels, is taken into account as
input to the model, so as to optimize the trichromatic representation for maximum
information transmission regarding this representative spectrum. As an extension,
spatial dependence of spectra of interest from a scene could be taken into account.
This requires to refine the statistical object (the spectrum) forming the input to
the information channel, by including an account of a spatial dimension. This could
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be done for instance based on the statistical interpretation of the spatial distribu-
tion of light intensities over an image as in the informational approach to imaging
of [19, 20, 22, 43]; or also based on histograms as probability distributions con-
structed from an ensemble of pixels. Also, depending on the task envisaged, infor-
mational measures other than the input–output mutual information I(X ; Y ), could
be chosen to assess the performance of the trichromatic representation. For instance
in imaging, for a task of classification between two classes of pixels, each class being
well characterized by a representative spectrum, an informational measure of class
contrast or separation, like the relative entropy or Kullback–Leibler divergence [13],
or even richer informational measures applicable in imaging [44, 45], could be con-
sidered. An explicit expression for such an informational contrast can be derived
in the framework of the model of Sec. 2. The trichromatic representation could
then be optimized so as to maximize this informational contrast for a trichromatic
image displaying the two classes of interest. Rich potentialities therefore exist to
pursue informational approaches in imaging, and to connect physics, biophysics and
information theory.
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