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The fundamental quantum information processing task of estimating the phase of a qubit is

considered. Following quantum measurement, the estimation e±ciency is evaluated by the
classical Fisher information which determines the best performance limiting any estimator and

achievable by the maximum likelihood estimator. The estimation process is analyzed in the

presence of decoherence represented by essential quantum noises that can a®ect the qubit and

belonging to the broad class of unital quantum noises. Such a class especially contains the bit-
°ip, the phase-°ip, the depolarizing noises, or the whole family of Pauli noises. As the level of

noise is increased, we report the possibility of non-standard behaviors where the estimation

e±ciency does not necessarily deteriorate uniformly, but can experience non-monotonic variations.

Regimes are found where higher noise levels prove more favorable to estimation. Such behaviors
are related to stochastic resonance e®ects in signal estimation, shown here feasible for the ¯rst time

with unital quantum noises. The results provide enhanced appreciation of quantum noise or

decoherence, manifesting that it is not always detrimental for quantum information processing.

Keywords: Quantum noise; stochastic resonance; quantum estimation; decoherence; improvement

by noise.

1. Introduction

For information sciences, stochastic resonance identi¯es situations where the action

of noise can prove bene¯cial to information processing [1–3]. Such stochastic reso-

nance e®ects have been reported and analyzed in a broad variety of information

processing tasks, including signal transmission [4–7], detection [8–10], estimation

[11–13], or for image acquisition [14–17], and this mainly in the classical (non-

quantum) domain. Quantum physics holds large potential for information proces-

sing, which is currently under intense investigation. Quantum noise or decoherence is

a critical feature impacting the performance of quantum information processing, and

better understanding and control of such noise are crucial to the progress of quantum
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information technologies [18–20]. A fundamental system of quantum information

is the quantum bit or qubit. Various forms of stochastic resonance have recently

been reported in informational processes involving the qubit in the presence of

noise. Forms of stochastic resonance have been investigated for information

communication over qubit channels [21–24]. For quantum sensors and metrology,

stochastic resonance has recently been extended to situations of quantum state

detection [25] or quantum state estimation [26, 27] from noisy qubits. These forms

of stochastic resonance in [25–27] have been shown possible speci¯cally with

quantum thermal noise acting on the qubit, where the decohering environment is

represented as a thermal bath at ¯nite temperature. Regimes were reported in

[25–27], where an increase in the noise temperature can prove favorable to the

metrological performance from the noisy qubit, in quantum detection or estima-

tion. The quantum thermal noise, as we shall explain below, owns the important

property of being a non-unital quantum noise, exhibiting in some sense a lesser

degree of symmetry, and this non-unital character is essential to the forms of

stochastic resonance observed in [25–27]. There however exist other important

quantum noises acting on the qubit that are unital noises, exhibiting higher degree

of symmetry. The class of unital quantum noises contains many important noises

for the qubit, such as the bit-°ip, the phase-°ip, the depolarizing noises, or the

whole family of Pauli noises. The forms of stochastic resonance reported in [25–27]

were not investigated in the presence of such common unital noises for the qubit.

So far, no scenario has been reported in quantum metrology, detection or esti-

mation, showing the possibility of stochastic resonance e®ects with such unital

quantum noises, and it is not known whether this is possible or not. In the present

paper, we show that this possibility holds, by reporting scenarios of phase esti-

mation from a noisy qubit, where unital quantum noise can play a role for im-

proving the e±ciency in de¯nite conditions.

2. Phase Estimation on a Noisy Qubit

For self-containedness of the present report, we begin this Section by brie°y pre-

senting the process of phase estimation on a noisy qubit which is in common with the

recent study of [27]; then here phase estimation will be investigated speci¯cally with

unital quantum noise not addressed in [27] or elsewhere. A qubit with two-dimen-

sional Hilbert space H2 is prepared in a quantum state represented by the density

operator �0 expressed in Bloch representation [28] as

�0 ¼
1

2
ðI2 þ r0 � ¾Þ; ð1Þ

with I2 the identity on H2, and ¾ a formal vector assembling the three 2� 2

(traceless Hermitian unitary) Pauli matrices ½�x; �y; �z� ¼ ¾. The coordinates of �0 in

Eq. (1) are speci¯ed by the Bloch vector r0 2 R3, with norm jjr0jj ¼ 1 for a pure state

and jjr0jj < 1 for a mixed state. This qubit serves as a probe experiencing the
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transformation �0 7! U��0U
†
� de¯ned by the unitary operator

U� ¼ exp �i
�

2
n � ¾

� �
; ð2Þ

where n ¼ ½nx;ny;nz�> is a unit vector of R3. In Bloch representation, the trans-

formation U� of Eq. (2) amounts to a rotation of the initial Bloch vector r0 by the

angle � around the axis n in R3. This produces the rotated Bloch vector r1ð�Þ
characterizing the transformed state �1ð�Þ ¼ U��0U

†
� . With a given axis n, we seek to

estimate the unknown phase angle �, through measurement of the transformed qubit.

Such scenario bears important practical relevance for di®erent areas of metrology, for

instance atomic clocks, interferometry, or magnetometry, when operated at their

quantum limits [29].

For more realistic conditions, we consider that the rotated qubit state �1ð�Þ,
before it becomes accessible to measurement for estimating �, is a®ected by quantum

noise or decoherence. The action of a quantum noise is generally representable by a

completely positive trace-preserving superoperator Nð�Þ producing the noisy quan-

tum state �� ¼ Nð�1ð�ÞÞ. This is equivalent to a Bloch vector r� specifying �� sup-

plied by the a±ne transformation [28, 30]

r� ¼ Ar1ð�Þ þ c; ð3Þ
with A a 3� 3 real matrix and c a vector of R3 together characterizing the quantum

noise.

A quantum measurement is then performed on the noisy qubit in state �� in order

to estimate the unknown value of the phase �. From the outcomes of the measure-

ment, having the status of realizations of a classical random variable, an estimator b�
is devised for the phase �. After classical estimation theory [31, 32], it is known that

any estimator b� for � is endowed with a mean-squared error hðb� � �Þ2i which is lower

bounded by the Cram�er–Rao bound involving the reciprocal of the classical Fisher

information Fcð�Þ. The larger the Fisher information Fcð�Þ, the more e±cient the

estimation can be. The maximum likelihood estimator [32] is known to achieve the

best e±ciency dictated by the Cram�er–Rao bound and Fisher information Fcð�Þ, at
least in the asymptotic regime of a large number of independent measurements.

The classical Fisher information Fcð�Þ stands in this way as a fundamental metric

quantifying the best achievable e±ciency in estimation. Such Fisher information

has previously been applied to characterize stochastic resonance e®ects in classical

signal estimation a®ected by classical noise [4, 33–36]. Here, we will apply it to

investigate a task of quantum estimation a®ected by quantum noise. In view of its

status as a metric expressing the best estimation e±ciency, it is relevant to identify

the conditions of optimality maximizing the Fisher information Fcð�Þ. In this re-

spect, there exists a general upper bound [37, 38] formed by the quantum Fisher

information Fqð�Þ which limits the classical Fisher information Fcð�Þ by imposing

Fcð�Þ � Fqð�Þ. For estimation of the phase � from a noisy qubit in a state �� speci¯ed

by the Bloch vector r� of Eq. (3), the quantum Fisher information Fqð�Þ is
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expressible [39] as

Fqð�Þ ¼
½ðAr1 þ cÞAðn� r1Þ�2

1� ðAr1 þ cÞ2 þ ½Aðn� r1Þ�2: ð4Þ

In particular, the quantum Fisher information Fqð�Þ is maximized [40] with no noise

at F max
q ð�Þ ¼ 1 by a probe r0 orthogonal to the rotation axis n. Therefore, for phase

estimation from a qubit [40], the Fisher informations, quantum Fqð�Þ and classical

Fcð�Þ, never exceed the maximum F max
q ð�Þ ¼ 1.

The quantum Fisher information Fqð�Þ of Eq. (4) is intrinsic to the quantum state

�� and its relation to the phase parameter �, and does not refer to any speci¯c

measurement protocol on the state ��. By contrast, the classical Fisher information

Fcð�Þ characterizes an explicit measurement protocol which is required for e®ective

estimation. A general quantum measurement on a qubit is represented by a gener-

alized measurement or positive operator valued measure [28] which is de¯ned by K

measurement operators Mk ¼ bkI2 þ ak � ¾ which are positive operators on H2 with

ðak; bkÞ real satisfying
PK

k¼1 ak ¼ 0 and
PK

k¼1 bk ¼ 1, so as to realize
PK

k¼1 Mk ¼ I2.

Especially, for all k, one has jjakjj � bk � 1� jjakjj which is required to ensure

0 � Mk � I2, this implying jjakjj � 1=2. For estimating the phase �, when such a

generalized measurement is applied to the qubit in the state �� from Eq. (3), the

probability of obtaining outcome k is Pk ¼ trð��MkÞ ¼ bk þ r�ak, and the classical

Fisher information Fcð�Þ ¼
P

kð@�PkÞ2=Pk results [39] as

Fcð�Þ ¼
XK
k¼1

½akAðn� r1Þ�2
bk þ akðAr1 þ cÞ : ð5Þ

For a qubit, a most accessible measurement consists in measuring a spin ob-

servable � ¼ ! � ¾ with eigenvalues �jj!jj ¼ �1. This is equivalent to implementing

a von Neumann projective measurement de¯ned by the K ¼ 2 measurement

operators M� ¼ ðI2 � ! � ¾Þ=2, with jj!jj ¼ 1, forming two projectors on two or-

thogonal directions in H2 de¯ned by the Bloch vectors �! of R3. In this circum-

stance, the classical Fisher information Fcð�Þ of Eq. (5) reduces to

Fcð�Þ ¼
½!Aðn� r1Þ�2

1� ½!ðAr1 þ cÞ�2 : ð6Þ

The classical Fisher information Fcð�Þ of Eq. (5) or (6) will be taken as a metric of

e±ciency for the quantum estimation task. We will show that, as the level of

quantum noise increases, this estimation e±ciency assessed by Fcð�Þ is not bound to

always deteriorate. On the contrary, we will demonstrate the existence of conditions,

where higher levels of quantum noise can induce enhanced estimation e±ciency,

interpretable as a quantum form of stochastic resonance. Such possibility of noise-

enhanced e±ciency in quantum estimation has been shown recently in [26, 27] with

quantum thermal noise, also designated as generalized amplitude damping noise.
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The level of the quantum thermal noise, in the studies of [26, 27], is represented by

the temperature of the decohering environment acting as a thermal bath a®ecting the

qubit. This level is controlled by the variable c occurring in Eqs. (3)–(6) with c

carrying into the process the in°uence of the temperature of the thermal noise. In

particular, the presence of a non-vanishing c 6� 0 is essential for the noise e®ects

reported in [26, 27], and by varying c one can vary the noise temperature and show

the possibility, in de¯nite conditions, of enhanced estimation e±ciency at increasing

temperature.

An alternative and important class of noises for the qubit consists in unital

quantum noises, de¯ned by the invariance property NðI2Þ ¼ I2, and associated with

c � 0 in Eq. (3). Unital quantum noises have speci¯c interesting properties [41–43],

and many common qubit noises belong to this class, such as bit-°ip, or phase-°ip, or

depolarizing noises, or the whole family of Pauli noises we will consider below. For

quantum estimation processes, stochastic resonance or e®ects of enhancement by

noise have never been reported with unital quantum noises. Here, in the sequel, we

will show regimes of operation where these become possible.

3. Analysis with Unital Noises

For both unital noises and for the quantum thermal noise of [26, 27], it is known from

[40] that maximization of the quantum Fisher information Fqð�Þ of Eq. (4) requires a
probe prepared in a pure initial state �0 speci¯ed by a unit Bloch vector r0 orthogonal

to the rotation axis n. Only for more complicated noise models, such as the squeezed

generalized amplitude damping noise considered in [40], does one need an optimal

(pure) input probe r0 not orthogonal to the rotation axis n.

For maximum estimation e±ciency, we therefore prepare the input probe in a

pure state �0 with a unit Bloch vector r0 orthogonal to the rotation axis n and

denoted r0 ¼ n?. With n ¼ ½nx;ny;nz�> given, we choose for de¯niteness n? ¼
½�ny;nx; 0�>=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x þ n2
y

q
in the plane ðOx;OyÞ of R3, ¯xing a (non-critical) origin to

count the rotation angle �. In the orthonormal basis fn;n?;n 0
? ¼ n� n?g of R3 one

then has for the rotated Bloch vector

r1ð�Þ ¼ cosð�Þn? þ sinð�Þn 0
?; ð7Þ

and

n� r1ð�Þ ¼ � sinð�Þn? þ cosð�Þn 0
?: ð8Þ

For unital noises with c � 0, the Fisher information of Eq. (5) for the generalized

measurement, follows as

Fcð�Þ ¼
XK
k¼1

ðak½� sinð�ÞAn? þ cosð�ÞAn 0
?�Þ2

bk þ ak½cosð�ÞAn? þ sinð�ÞAn 0
?�

: ð9Þ

Stochastic Resonance with Unital Quantum Noise
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And upon measuring the observable � ¼ ! � ¾, the Fisher information of Eq. (6)

follows as

Fcð�Þ ¼
ð!½� sinð�ÞAn? þ cosð�ÞAn 0

?�Þ2
1� ð!½cosð�ÞAn? þ sinð�ÞAn 0

?�Þ2
: ð10Þ

In general, for a given measurement protocol speci¯ed by the ðak; bkÞ in Eq. (9) or

by the observable � ¼ ! � ¾ in Eq. (10), the resulting Fisher information Fcð�Þ in

Eq. (9) or (10) is dependent on the speci¯c value of the phase angle � being estimated.

This indicates that the estimation e±ciency assessed by Fcð�Þ is dependent in par-

ticular on the orientation in R3 of the rotated Bloch vector r1ð�Þ relative to the

measurement vectors ak or !. However, it is not generally possible to adjust the

measurement vectors ak or ! to match the rotated Bloch vector r1ð�Þ so as to

maximize the Fisher information Fcð�Þ, since the value of the angle � under esti-

mation is unknown. Instead, one usually has to operate with ¯xed measurement

vectors ak or ! and cope with a �-dependent estimation e±ciency. In such circum-

stances, with ¯xed ak or !, we will show that there exist ranges or conditions on the

angle � where the estimation e±ciency Fcð�Þ improves as the level of noise increases.

For the demonstration, we consider an important class of unital quantum noises

relevant to the qubit and formed by Pauli noises [44]. A Pauli noise acts through

random applications of the four Pauli operators f�0 � I2; �x; �y; �zg which form an

orthogonal basis for operators on H2. In Kraus representation [28, 44], a Pauli noise

implements the quantum operation

� 7! N ð�Þ ¼
X

‘¼0;x;y;z

p‘�‘��
†
‘ ; ð11Þ

with the fp‘g a probability distribution. This leads in Eq. (3) to a transformation of

the Bloch vectors with c � 0 and the matrix

A ¼
�x 0 0

0 �y 0

0 0 �z

2
4

3
5; ð12Þ

with the real scalar coe±cients

�x ¼ p0 þ px � py � pz; ð13Þ
�y ¼ p0 � px þ py � pz; ð14Þ
�z ¼ p0 � px � py þ pz; ð15Þ

referring to the frame ðOx;Oy;OzÞ of R3. For the qubit, the class of Eqs. (11)–(12) in

particular contains such important Pauli noises as the bit-°ip, the phase-°ip, the bit-

phase-°ip, the depolarizing noises [28, 44]. The three parameters �‘ in Eqs. (13)–(15)

are compression factors satisfying 0 � j�‘j � 1 for all ‘ 2 fx; y; zg, to guarantee that

the Bloch ball of valid Bloch vectors is mapped into itself. In this way, the trans-

formation r 7! Ar by the noise compresses the Bloch vectors in R3. An increasing

N. Gillard, �E. Belin & F. Chapeau-Blondeau
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level of noise corresponds to a more pronounced compression. The maximum level of

compression would occur as �x ¼ �y ¼ �z ¼ 0, corresponding to a noisy state with a

null Bloch vector 0 characterizing the maximally mixed qubit state I2=2 identi¯able

with the maximally noisy state. As the level of noise increases, the variation of the

Fisher information Fcð�Þ from Eq. (9) or (10) is then controlled by the geometric

con¯guration of the measurement vectors ak or ! in relation to the rotation axis n

and the compression axes of the Pauli noise in R3. In the sequel we will show that, as

the level of Pauli noise increases, the Fisher information quantifying the estimation

e±ciency, is not bound to monotonically deteriorate, but that on the contrary it can

experience non-monotonic variations, where higher noise levels prove more favorable

to estimation.

For the sequel, in the frame ðOx;Oy;OzÞ of R3 the rotation axis n ¼ ½nx;ny;nz�>
can also be identi¯ed by the coelevation angle �n 2 ½0; �� relative to the axis Oz and

the azimuth angle ’n 2 ½0; 2�½ around Oz, to give n ¼ ½nx ¼ sinð�nÞ cosð’nÞ;ny ¼
sinð�nÞ sinð’nÞ;nz ¼ cosð�nÞ�>. In the orthonormal basis fn;n?;n 0

?g of R3, it is

convenient to identify the unit measurement vector ! by the coelevation angle �! 2
½0; �� relative to the axis n and the azimuth angle ’! 2 ½0; 2�½ around n.

4. Phase-Flip Noise

As a ¯rst example, we consider an important Pauli noise for the qubit which is the

phase-°ip noise. Phase-°ip noise is able to represent any random phase shift expe-

rienced by a qubit as it scatters with no loss of energy, as with a traveling photon for

instance [28]. Phase-°ip noise is obtained in Eq. (11) with the four probabilities

p0 ¼ 1� p, also px ¼ py ¼ 0 and pz ¼ p. This leads in Eqs. (13)–(15) to the com-

pression factors �x ¼ �y ¼ 1� 2p and �z ¼ 1, indicating that the phase-°ip noise

compresses the Bloch vector of a qubit only along the two directions ðOx;OyÞ of R3.

At p ¼ 0, the noise matrix A in Eq. (12) is the identity of R3 and it characterizes the

noise-free situation. As the level of noise increases, the probability p rises above 0,

and the compression along ðOx;OyÞ gradually increases to get maximized at �x ¼
�y ¼ 0 when p ¼ 1=2.

We now, examine the variation of the Fisher information Fcð�Þ from Eq. (9) or

(10) characterizing the e±ciency of phase estimation from the noisy qubit, when the

level of phase-°ip noise increases from no noise at p ¼ 0 to maximum noise at

p ¼ 1=2. The variation of the Fisher information Fcð�Þ from Eq. (9) or (10) is here

controlled by the geometric con¯guration of the measurement vectors ak or ! in

relation to the rotation axis n and the two compression axes ðOx;OyÞ of the phase-
°ip noise.

Figure 1 illustrates the three regimes of variation that are found accessible to the

Fisher information. Figure 1(A) in (a) and (b) shows the standard expected regime,

where the Fisher information Fcð�Þ decreases as the noise probability p increases,

manifesting the common situation of an estimation e±ciency which deteriorates as

the level of noise increases. By contrast, Fig. 1(A) in (c) and (d) shows the possibility

Stochastic Resonance with Unital Quantum Noise
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of a non-standard regime, where the Fisher information Fcð�Þ increases as the noise

level p increases. In such con¯gurations, higher levels of noise, when accessible, are

more favorable to the estimation e±ciency. In addition, Fig. 1(B) shows another non-

standard regime, with non-monotonic variations of the Fisher information Fcð�Þ. In
Fig. 1(B), depending on the conditions, there exists a critical value of the noise

probability p 2 ½0; 1=2�, where the Fisher information Fcð�Þ gets minimized. This

identi¯es critical noise levels that are specially detrimental to the estimation e±-

ciency; and operating below, but also above, such critical noise levels is more fa-

vorable to estimation. More e±cient information processing with increasing noise is

identi¯able with stochastic resonance e®ects. In this respect, the form of Fig. 1(B)

with ¯nite noise levels that are speci¯cally detrimental, would rather characterize

regimes of stochastic antiresonance, as also reported in [27].

Figure 1 presents various regimes of variation of the Fisher information Fcð�Þ of
Eq. (10) characterizing the estimation e±ciency in the range around � ¼ �=4. Such

behaviors of Fcð�Þ are generic and can be found analogously in other ranges of the

parameter �. In addition, it is possible to obtain a �-independent characterization of

the estimation e±ciency, and show that it still has access to non-standard and non-

monotonic regimes of variation with the level of noise. This can be accomplished by

averaging the Fisher information Fcð�Þ from Eq. (9) or (10) over the unknown angle �

taken uniform in ½0; 2�½. This uniform probability distribution for the angle � is

however not critical, and stands as a reasonable assumption when strictly no prior

knowledge is available for the range of � to be estimated. Such a �-averaged Fisher

information obtained from Fcð�Þ of Eq. (10) is presented in Fig. 2.

The �-averaged Fisher information in Fig. 2 illustrates that the three regimes of

variation are preserved for the average estimation e±ciency. Especially, in certain
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Fig. 1. Fisher information Fcð�Þ from Eq. (10) as a function of the probability p of the phase-°ip

noise, with a rotation axis n ¼ ½1; 0; 0�>, for the angle � ¼ �=4. The measurement vector ! is in panel A
with �! ¼ �=4 and ’! ¼ 0:75� (a), 0.60� (b), 0:40� (c) and 0:25� (d); in panel B with �! ¼ �=2 and

’! ¼ 0:27� (a), 0:30� (b) and 0:35� (c).
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conditions, estimation can be more e±cient, on average, when operating at higher

noise level.

The phase-°ip noise tested here is an important unital noise for the qubit, which

shows, as indicated, an invariant axis ��� the Oz axis ��� in the compression by the

noise matrix A of Eq. (12). The bit-°ip noise and the bit-phase-°ip noise are two

other important unital noises for the qubit, which analogously show an invariant axis

in the compression ��� the Ox and the Oy axis, respectively. Therefore, similar non-

standard and non-monotonic variations or stochastic resonance e®ects also hold

equivalently for the estimation e±ciency in the presence of bit-°ip and bit-phase-°ip

noise. Moreover, an invariant axis of the noise is not a critical property required for

such stochastic resonance to occur, as we shall see next.

5. Three Axes of Compression

We now use a Pauli noise according to Eqs. (11)–(15) that is able to compress the

Bloch vectors in the three directions of R3. To have a control on the noise level or

noise compression through a single scalar parameter p, we choose in Eq. (11) the four

probabilities p0 ¼ 1� p, px ¼ 0:5p, py ¼ 0:3p and pz ¼ 0:2p. This leads in Eqs. (13)–

(15) to the compression factors �x ¼ 1� p, �y ¼ 1� 1:4p and �z ¼ 1� 1:6p

expressing how the Pauli noise compresses the Bloch vector of a qubit state along the

three directions ðOx;Oy;OzÞ of R3. At p ¼ 0 with no compression is the noise-free

situation. As the level of noise increases, the probability p rises above 0, and the most

pronounced compression occurs along the Oz direction and gets maximized at �z ¼ 0

when p ¼ 1=1:6 ¼ 0:625. With such Pauli noise with three e®ective directions of
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Fig. 2. Fisher information Fcð�Þ from Eq. (10) averaged over the angle �, as a function of the probability p
of the phase-°ip noise. In panel A for (a) and (b) the rotation axis n is with �n ¼ �=4 and ’n ¼ 0, the

measurement vector ! is with ’! ¼ 1:5�, and �! ¼ 0:29� (a), �! ¼ 0:25� (b); for (c) and (d) �! ¼ ’! ¼ 0,

’n ¼ 0 and �n ¼ �=4 (c), �n ¼ �=8 (d). In panel B the rotation axis n is with �n ¼ �=4 and ’n ¼ 0, the
measurement vector ! is with ’! ¼ 0, and �! ¼ 0:1� (a), �! ¼ 0:15� (b) and �! ¼ 0:2� (c).
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compression in R3, we show that non-monotonic and non-standard variations of the

e±ciency in estimation are still possible as the level of noise increases. The variation

of the Fisher information Fcð�Þ from Eq. (9) or (10) will depend as before on the

geometric con¯guration of the measurement vectors ak or ! in relation to the ro-

tation axis n and the three compression axes of the Pauli noise in R3.

Figure 3 shows various con¯gurations of variation of the Fisher information Fcð�Þ
of Eq. (10), characterizing the estimation e±ciency in the range around � ¼ �=4

when measuring the observable � ¼ ! � ¾.
In Fig. 3, depending on the con¯guration of the measurement vector ! in relation

to the rotation axis n, the same three regimes of variation of the Fisher information

Fcð�Þ as in Sec. 4 are observed, as the level p of the Pauli noise increases. For instance,

Fig. 3(c) shows the standard situation where Fcð�Þ monotonically decreases as p

increases, identifying an e±ciency in estimation which deteriorates as the level of

noise increases. By contrast, Figs. 3(b) and 3(d) present non-monotonic variations of

the e±ciency Fcð�Þ as the noise level p increases; this again reveals the existence of a

critical noise level, around p � 0:3 in Fig. 3, where Fcð�Þ gets minimized. Such a ¯nite

critical noise level is specially detrimental to the estimation e±ciency, and smaller,

but also larger noise levels, are more favorable to estimation, as illustrated in Fig. 3.

Finally, Fig. 3(a) shows the possibility of a Fisher information Fcð�Þ monotonically

increasing as the noise level p grows, indicating here that raising the level of noise is

always bene¯cial to the estimation e±ciency.

In addition, Fig. 4 shows that the non-standard and non-monotonic regimes of

variation are still accessible for the �-averaged Fisher information, when Fcð�Þ from
Eq. (10) is averaged over the angle � taken uniform in ½0; 2�½.
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Fig. 3. Fisher information Fcð�Þ from Eq. (10) as a function of the probability p of the Pauli noise, with a

rotation axis n of �n ¼ 0:5� and ’n ¼ 0:6�, for the angle � ¼ �=4. The measurement vector ! is with

�! ¼ 0:7�, and ’! ¼ 0:15� (a), ’! ¼ 0:2� (b), ’! ¼ 0:25� (c) and ’! ¼ 0:3� (d).
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As the noise level p increases, Figs. 4(b) and 4(c) show non-monotonic anti-

resonant variations, while Fig. 4(a) shows an increasing variation, for the �-averaged

Fisher information. In such con¯gurations, the non-standard variations of the

�-averaged Fisher information indicate that bene¯t for estimation by increasing the

level of noise is in this way globally accessible, and not restricted to speci¯c values or

ranges of the phase angle � being estimated.

One can especially note in Fig. 4 that the levels involved for the Fisher infor-

mation are relatively small, compared to the overall maximum of 1 indicated in

Sec. 2 for phase estimation from a qubit. This overall maximum Fisher information of

1 can only be reached at no noise, with an optimal input probe r0 and optimal

measurement vectors ! or ak matched to the rotation axis n. The conditions of Fig. 4

for instance are very far from these optimality conditions. Such situation may be

imposed by the external context, that would force to operate at a low Fisher infor-

mation. Nevertheless, the Fisher information can be enhanced by increasing the level

of noise in de¯nite con¯gurations as we show; and although the resulting improve-

ment itself may also be small, we ¯nd it is feasible in principle. Intrinsically low levels

of the Fisher information can also be compensated by increasing the number of

repetitions of the estimation process. The estimation process involving measurement

of the qubit can be repeated on many independent qubits, independent photons or

electrons for instance, that may be physically accessible in number. In such condi-

tions the Fisher information is additive and can be raised to larger levels.

6. Discussion

We have considered the task of estimating the phase � of a qubit a®ected by quantum

unital Pauli noise. The estimation e±ciency is assessed by the classical Fisher
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Fig. 4. Fisher information Fcð�Þ from Eq. (10) averaged over the angle �, as a function of the probability p

of the Pauli noise, with a rotation axis n of �n ¼ �=4 and ’n ¼ 0. The measurement vector ! is with

’! ¼ 0, and �! ¼ 0:01� (a), �! ¼ 0:06� (b) and �! ¼ 0:09� (c).
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information Fcð�Þ, a fundamental metric that quanti¯es the best e±ciency limiting

the performance of any conceivable estimators, and achievable by the maximum

likelihood estimator in de¯nite (usually asymptotic) conditions. When a large

number N of estimation experiments are repeated on independent probing qubits,

the mean-squared error of the maximum likelihood estimator reaches the Cram�er–

Rao lower bound and therefore the best e±ciency dictated by the Fisher information

Fcð�Þ analyzed here. At small number N of repetitions, the Cram�er–Rao bound may

however not be tight, and other bounds are known with the potential ability to come

closer to the mean-squared estimation error. This is for instance the case with Ziv-

Zakai error bounds [45], which have recently been extended to the quantum domain

[46], and could also be tested for stochastic resonance e®ects, quantum or classical.

Here, with the generic classical Fisher information metric, we have shown that, as

the level of noise increases, the estimation e±ciency does not necessarily deteriorate

monotonically, but that on the contrary it can experience non-standard and non-

monotonic regimes of variation where higher levels of noise can prove more favorable

to estimation. These non-standard and non-monotonic regimes of variation of the

Fisher information were reported here in Figs. 1–4 when measuring a spin observable

� ¼ ! � ¾. Yet, this condition is by no means critical, and similar regimes of

stochastic resonance can also be obtained when using generalized measurements for

estimation, and would follow from Eq. (9) instead of Eq. (10).

An essential aspect is that such stochastic resonance e®ects in quantum estima-

tion are shown feasible here for the ¯rst time with the important class of Pauli unital

noises. The variation of the Fisher information Fcð�Þ from Eq. (9) or (10) is con-

trolled by the geometric con¯guration of the measurement vectors ak or ! in relation

to the rotation axis n and the compression axes of the Pauli noise in R3. In practical

quantum metrology, the geometry of these vectors may be constrained or imposed to

some extent, and not fully adjustable at will. In given con¯gurations of them,

identi¯able through the methodology developed here, we have shown that increasing

the level of noise can be an option to contribute to enhancing the estimation

e±ciency.

Beyond the proof of feasibility in principle of regimes of improvement by noise, in

practice to bene¯t from such possibility implies that the level of noise, quanti¯ed in

Figs. 1–4 by the probability p, can be known to some extent, to appreciate whether

its increase is pro¯table and have control on its tuning when implemented. For this

purpose, estimation techniques can be employed [47–49], which to some extent rest

on the same principles as those reported in Sec. 2. They can be implemented prior to

the phase estimation task to evaluate the level of noise. E±cient states for a probing

qubit can be devised to maximize the performance in estimating the level of noise,

with here also the possibility in principle of reaching high accuracy by repeating the

process with a large number of independent probing qubits.

For the qubit, the Pauli noises we tested, characterized by a diagonal matrix A in

Eq. (12), can be considered as a generic form for unital noises. Any matrix A in

Eq. (3) characterizing a generic unital noise, is a real matrix that maps the Bloch ball
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of R3 into itself. By the polar decomposition [28], it can always be expressed as

A ¼ RS, where S is a real symmetric matrix and R a real unitary matrix. The

symmetric matrix S has a diagonal form similar to Eq. (12) that expresses the

compression of the Bloch vectors by the unital noise occurring in R3 along the three

directions set by the three orthogonal eigenvectors of S. By appropriately de¯ning

the computational orthonormal basis fj0i; j1ig of H2 for the qubit, it is always

possible to refer the Bloch ball in R3 to the orthogonal frame formed by the three

eigenvectors of S, so that S will be in diagonal form. Next, the real unitary matrix R

implements a rotation in R3. Such a rotation conserves the norms and does not

compress the Bloch vectors. It maps pure quantum states into pure quantum states,

and as such it represents a coherent part (rather than a genuine noisy part) in

the evolution of the quantum states by the unital noise, and it does not a®ect the

possibility of stochastic resonance regimes. The same regimes of variation of the

Fisher information Fcð�Þ as reported in Secs. 3–5 for Pauli unital noises, can be

expected to hold equivalently for arbitrary unital noises. It will just be a matter of

interpreting the geometric con¯guration in R3 of the measurement vectors ak or ! in

relation to the rotation axis n and the compression axes of the unital noise, in

presence of the rotation byR. In this respect, with any generic unital noise, we expect

to observe in equivalent geometric con¯gurations, all the regimes of variation of Fcð�Þ
and the stochastic resonance e®ects that were found in Secs. 3–5 with the Pauli unital

noises of Eq. (12).

The present results attest in novel and signi¯cant conditions and con¯gurations

that quantum noise or decoherence is not always a nuisance, but can sometimes

prove bene¯cial to information processing. This provides better appreciation to cope

with quantum noise or decoherence for quantum information processing.
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