
June 17, 2008 10:13 WSPC/167-FNL 00434

Fluctuation and Noise Letters
Vol. 8, No. 2 (2008) L107–L123
c© World Scientific Publishing Company

Fluctuation and Noise Letters
Vol. 8, No. 2 (2008)
c© World Scientific Publishing Company

OPTICAL COHERENCE OF A SCALAR WAVE INFLUENCED BY

FIRST-ORDER AND SECOND-ORDER STATISTICS

OF ITS RANDOM PHASE
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We analyze a simple model of a scalar optical wave with partial coherence. The model
is devised to describe the influence on the coherence of the wave, of the statistical prop-
erties of its random phase, including both the second-order statistics (phase correlation)
— which is classic, but also the first-order statistics (phase distribution) — which is
nonclassic. Expectedly, upon increasing the disorder of the fluctuating phase through
a reduction of its correlation duration, the model shows that the coherence of the wave
is always reduced. By contrast, upon increasing the disorder of the fluctuating phase
through an increase of its dispersion, the model reveals that the coherence of the wave
can sometimes be enhanced. This beneficial consequence of an increase in disorder is
related to the phenomenon of stochastic resonance or improvement by noise in signal
processing.

Keywords: Optical coherence; phase fluctuations; statistical optics; interferometry;
stochastic resonance.

1. Introduction

Optical coherence is a macroscopically measurable manifestation of some order in a
light wave, which is under the dependence of microscopic degrees of freedom usually
nondirectly observable. Optical coherence is a rich notion, which is still experiencing
new interesting developments, at the conceptual level, and also thanks to advances
in technologies of light sources and optical devices allowing more and more control
on light properties [1–5].

Optical coherence is essentially governed by the statistical properties of light
fluctuations at the microscopic level [6–8]. A macroscopically observable light usu-
ally results from the superposition of elementary radiations emanating from a very
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large number of microscopic radiators. The ability of radiating in a coordinated
way, on average, for a single radiator over time, and for two spatially distinct radi-
ators, relates respectively to temporal and spatial coherence. An important factor
is then the correlation structure of the random fluctuations in the phase of the ra-
diated light, at two distinct times or at two distinct points in space, and therefore
refers to the second-order statistical properties of the random phase. Accordingly,
the second-order statistics of the random phase are at the root of the traditional
description of optical coherence. However, for the averages over the microscopic
fluctuations that control the coherence, it is plausible that the first-order (at one
time or one point in space) statistical properties of the random phase may also play
a part. It is this idea which is theoretically explored in this paper.

We analyze a simple model for a light wave which explicitly takes into account
both the first- and second-order statistics of the random phase for their impact
on the coherence measured by the fringe visibility in an interference experiment.
The model captures the conventional behavior of the coherence as a function of
the statistical correlation duration of the phase. It also reveals a possible influence
on the coherence of the statistical dispersion of the phase. Interestingly, we shall
demonstrate here that an increase in the disorder of the phase due to an increase of
its statistical dispersion, can sometimes translate into an improvement of the coher-
ence. This type of order-from-disorder phenomenon can be interpreted as a form
of stochastic resonance or improvement by noise in signal processing. Stochastic
resonance designates situations where an increase in the level of noise is capable
of producing an improvement of some measure of performance associated to defi-
nite signal or information processing tasks [9–11]. Stochastic resonance has been
observed in various processes, including electronic circuits and neuronal systems;
examples of stochastic resonance in optics are given in [12–20]. The possibility of
improving the coherence of a light wave through an increase in the disorder of its
randomly fluctuating phase, as reported here, could represent a new direction to
investigate novel forms of stochastic resonance.

2. Measuring the Coherence

In this Section 2, we briefly recall some basic notions which will be useful to us as
reference for the optical coherence [7, 8], and which we will extend in the following
Section 3. A very common model for a scalar wave of angular frequency ω0 and
fixed amplitude A, is [6, 8]

u(t) = A cos(ω0t + φ) . (1)

When the phase φ is constant in time, the wave u(t) has complete coherence, it
is strictly periodic with period T0 = 2π/ω0, and a time average over one period
defines its intensity

I0 =
1

T0

∫ T0

0

u2(t)dt =
A2

2
. (2)

A detector measuring light intensity will usually have an integration time much
longer than the period T0, and will rather be sensitive to the “experimental” average

lim
Tint→∞

1

Tint

∫ Tint

0

u2(t)dt . (3)
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Yet, for a strictly periodic wave u(t) and when Tint � T0, the experimental average
of Eq. (3) precisely matches the one-period average of Eq. (2) and the detector
effectively measures the intensity value I0 = A2/2.

The coherent wave u(t) lends itself to interference phenomena. With an interfer-
ometric device, u(t) is split into two waves shifted in time by a pathlength difference
T , and then the two waves are recombined to form on a screen or a detector the
superposition

utot(t) = u(t) + u(t + T ) = A cos(ω0t + φ) + A cos(ω0t + ω0T + φ) . (4)

The intensity I of wave utot(t), through a time average of u2
tot(t) equivalently via

Eq. (2) or Eq. (3), comes out as

I = 2I0[1 + cos(ω0T )] . (5)

Depending on the pathlength difference T , the intensity I of Eq. (5) varies between
the minimum Imin = 0 (fully destructive interference) and the maximum Imax = 4I0

(fully constructive interference). Accordingly, the detector when moved along the
screen measures an interferogram formed by a succession of dark and bright fringes.

Following Michelson, for a interferogram in the vicinity of any pathlength dif-
ference T , the fringe visibility is defined as [6, 8]

V(T ) =
Imax − Imin

Imax + Imin

(6)

where Imax and Imin are the intensities at the maximum and minimum of the fringe.
Therefore, for a purely coherent wave according to Eq. (1) associated to the

intensity pattern of Eq. (5), the resulting visibility comes as

V(T ) = 1 (complete coherence) , (7)

a unity constant throughout the interferogram, which will be our reference in the
sequel for a state of complete coherence.

At another extreme, another reference behavior is the case of completely in-
coherent waves, that would give on the detector the intensity I = I0 + I0 = 2I0

associated to
V(T ) = 0 (complete incoherence) , (8)

for any pathlength difference T .
At the root, the phase φ introduced in Eq. (1) is a microscopic parameter usually

not directly accessible to measurement. It is the behavior of the intensity pattern
in an interference experiment, as summarized by the visibility V of Eq. (6), which
is a measurable manifestation of the state of coherence of the underlying wave, and
that we study in the sequel as our measure of coherence.

3. Partially Coherent Wave

3.1. Model of the wave and its intensity

We now introduce a model for a partially coherent scalar wave, which is able to
encompass all the intermediate states between complete coherence (V = 1) and
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complete incoherence (V = 0). In addition, the model will allow us to explicitly
describe the effect on the coherence, of the second-order statistics (correlation) of
the phase — which is classic, but also of the first-order statistics of the phase —
which is nonclassic. Starting from Eq. (1) and following [8], a partially coherent
wave can be modeled with a phase φ(t) varying in time:

u(t) = A cos(ω0t + φ(t)) . (9)

Now we choose to model the evolution of the phase φ(t) through an empiri-
cal or phenomenological description of independent elementary radiators producing
random uncoordinated emission. Our modeling choice is specially devised to allow
in the model, direct control as a free parameter of the probability density of the
random phase, which can be set arbitrarily and differ from a uniform density over
[−π, π]. Nevertheless, we will check a posteriori that our empirical modeling as-
sumption for the phase at a microscopic elementary level, leads to a model able to
predict, in the common case of a phase uniform over [−π, π], common macroscopic
properties of partially coherent light as they are experimentally observable. So our
modeling choice here is to model the phase φ(t) by a piecewise-constant random
signal defined as follows. At random times ti distributed according to a Poisson
process of parameter 1/τc, signal φ(t) changes for a new constant value φ(t) = ϕ,
the possible values ϕ accessible to φ(t) being selected independently at random
with the probability density function pφ(ϕ), as depicted in Fig. 1. The probability
density pφ(ϕ) has mean mφ and standard deviation σφ. The common choice is to
take pφ(ϕ) uniform over [−π, π], but here precisely we want to study the impact of
a general, non necessarily uniform, pφ(ϕ).

Fig. 1. Random signal φ(t) modeling the phase, and its probability density function pφ(ϕ).

It is possible to define an autocorrelation function for Rφφ(τ) for the random
phase φ(t), whose physical meaning is given by the time average of Eq. (3):

Rφφ(τ) = lim
Tint→∞

1

Tint

∫ Tint

0

φ(t)φ(t + τ)dt = φ(t)φ(t + τ) . (10)
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The “physical” mean of Eq. (10) is obtained as a time average over one real-
ization φ(t) of the random phase. Under the assumption of ergodicity of φ(t), any
realization will yield the same mean in Eq. (10). Alternatively, Rφφ(τ) of Eq. (10)
can also be computed via statistical or ensemble average, taking care of the doubly
stochastic nature of φ(t) imposed by the temporal Poisson process in abscissa and
the amplitude density pφ(·) in ordinate. At fixed t and τ , one can consider first the
statistical average according to the density pφ(·), denoted E[·]. Then, this average
E[·] according to pφ(·) is complemented by the average according to the temporal
Poisson process, which is denoted 〈·〉. In principle, the double statistical average
〈E[φ(t)φ(t + τ)]〉 matches the time average φ(t)φ(t + τ) of Eq. (10).

At fixed t and τ ≥ 0, there are two possible configurations for the product
φ(t)φ(t + τ):

(i) φ(t)φ(t+τ) = ϕ1ϕ1, with ϕ1 a random number distributed according to the den-
sity pφ(·). Then, the statistical average according to pφ(·) gives E[ϕ2

1] = m2

φ + σ2

φ.
(ii) φ(t)φ(t + τ) = ϕ1ϕ2, with ϕ1 and ϕ2 two independent random numbers dis-
tributed according to the density pφ(·). Then, the statistical average according to
pφ(·) gives E[ϕ1ϕ2] = m2

φ.

Now configuration (i) holds if no transition of the Poisson process has taken
place in interval [t, t + τ ], this outcome occurring with probability exp(−τ/τc) ac-
cording to the properties of the Poisson process. And configuration (ii) holds in the
complementary case where at least one transition of the Poisson process has taken
place in interval [t, t + τ ], this outcome occurring with probability 1 − exp(−τ/τc).

The double statistical average of φ(t)φ(t + τ) then gives

〈E[φ(t)φ(t + τ)]〉 = [m2

φ + σ2

φ] exp(−τ/τc) + m2

φ[1 − exp(−τ/τc)] , (11)

which in principle matches Rφφ(τ) of Eq. (10), leading for any τ to

Rφφ(τ) = m2

φ + σ2

φ exp(−|τ |/τc) , (12)

as represented by Fig. 2.
The derivations of Eqs. (10)–(12) show how to relate a physical mean as realized

by a detector, to statistical means mathematically computable from the statistical
properties of random signals.

We now turn to the intensity I0 which can be attributed to the partially coherent
wave u(t) of Eq. (9). This intensity can no longer be defined through a time average
of u2(t) over one period T0 according to Eq. (2), because strictly speaking u(t) of
Eq. (9) is no longer periodic, due to the time-varying phase φ(t). A definition with
a well defined meaning is again through the physical mean of Eq. (3). The intensity
I0 measured by the detector for the wave u(t) of Eq. (9) is

I0 = lim
Tint→∞

1

Tint

∫ Tint

0

u2(t)dt = u2(t) . (13)

One then has
I0 = A2 cos2

(

ω0t + φ(t)
)

. (14)
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Fig. 2. Autocorrelation function Rφφ(τ) from Eq. (12) for the random phase φ(t) of Fig. 1.

The physical average in the right-hand side of Eq. (14) can also be matched by
the double statistical average

cos2
(

ω0t + φ(t)
)

=
〈

E
[

cos2
(

ω0t + φ(t)
)

]〉

. (15)

Since the averages are linear operations, one has

〈

E
[

cos2
(

ω0t + φ(t)
)

]〉

=
1

2
+

1

2

〈

E
[

cos
(

2ω0t + 2φ(t)
)

]〉

. (16)

From the identity cos(a + b) = cos(a) cos(b) − sin(a) sin(b), one also has

〈

E
[

cos
(

2ω0t+2φ(t)
)

]〉

=
〈

E
[

cos(2ω0t) cos
(

2φ(t)
)

]〉

−
〈

E
[

sin(2ω0t) sin
(

2φ(t)
)

]〉

.

(17)

For the statistical average according to the density pφ(·), one has E[cos(2ω0t)
cos(2φ(t))] = cos(2ω0t) E[cos(2φ(t))], with E[cos(2φ(t))] now a deterministic con-
stant independent of t, so that 〈cos(2ω0t) E[cos(2φ(t))]〉 = 〈cos(2ω0t)〉E[cos(2φ(t))].
Also cos(2ω0t) is a deterministic factor whose average over t in the sense of the tem-
poral Poisson process reduces to a uniform time average of the cosine function, which
vanishes. One therefore has 〈cos(2ω0t)〉 = 0, leading to 〈E[cos(2ω0t) cos(2φ(t))]〉 =
0. And in the same way in Eq. (17) one also has 〈E[sin(2ω0t) sin(2φ(t))]〉 = 0.
The right-hand side of Eq. (17) is then zero, and therefore the right-hand side of
Eqs. (15) and (16) is 1/2, and this without any restrictive condition on the density
pφ(·) or the correlation duration τc.
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One arrives at the same result by reasoning on the way is performed, from a very
long realization of the random signal, a physical average like cos(2ω0t) cos(2φ(t)) .
For all the values of t congruent modulo T0 to a same point tred of the interval
[0, T0[, the term cos(2ω0t) keeps the same value cos(2ω0tred), while the associated
term cos(2φ(t)) visits all the values accessible to it with the statistical weight pφ(φ).
The accumulation of all these products gives cos(2ω0tred) E[cos(2φ)]. The factor
E[cos(2φ)] independent of tred makes that the integral in tred ∈ [0, T0[ reduces to
the integral of a cosine which is identically zero. By this process, the physical
average of the left-hand side of Eq. (15), after its linearization, is found to be 1/2.

It then follows that for the partially coherent wave, the intensity I0 defined by
Eq. (14) is I0 = A2/2. This is a familiar expression for the intensity, which is here
connected to an explicit mathematical formulation of the partially coherent wave
with arbitrary phase density pφ(·). Especially, the present derivation shows that the
intensity of the wave is unaffected by the probability density pφ(·) of the random
phase. This will no longer be the case for the coherence of the wave, as measured
in an interference phenomenon, as we shall see next.

3.2. Interference phenomenon

With the partially coherent wave of Eq. (9), we return to the interference experiment
of Section 2. The detector now receives the superposition

utot(t) = u(t) + u(t + T ) = A cos
(

ω0t + φ(t)
)

+ A cos
(

ω0t + ω0T + φ(t + T )
)

. (18)

The intensity I associated to the wave utot(t) of Eq. (18) and that the detector
measures is

I = lim
Tint→∞

1

Tint

∫ Tint

0

u2

tot(t)dt = u2
tot(t) , (19)

or

I = u2(t) + u2(t + T ) + 2 u(t)u(t + T ) . (20)

By the same reasoning that terminates Section 3.1 after Eq. (13), one finds u2(t) =
u2(t + T ) = I0 = A2/2. The behavior in the interference of the intensity I of
Eq. (20) is then dependent on the autocorrelation function of the field

u(t)u(t + T ) = A2 × C(T ) , (21)

with the interference factor

C(T ) = cos
(

ω0t + φ(t)
)

cos
(

ω0t + ω0T + φ(t + T )
)

. (22)

giving the intensity

I = 2I0[1 + 2C(T )] . (23)

The physical average in the right-hand side of Eq. (22) can also be matched by
the double statistical average

C(T ) =
〈

E
[

cos
(

ω0t + φ(t)
)

cos
(

ω0t + ω0T + φ(t + T )
)

]〉

, (24)
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for which again two possible configurations have to be considered:

(i) When φ(t) = φ(t + T ) = ϕ1, with ϕ1 a random number distributed according to
the density pφ(·), then Eq. (24) gives

C(T ) =
〈

E
[

cos(ω0t + ϕ1) cos(ω0t + ω0T + ϕ1)
]〉

(25)

=
1

2

〈

E
[

cos(ω0T )
]〉

+
1

2

〈

E
[

cos(2ω0t + ω0T + 2ϕ1)
]〉

. (26)

With the same considerations that have been used to evaluate Eq. (17), one can
conclude for Eq. (26) that 〈E[cos(2ω0t + ω0T + 2ϕ1)]〉 = 0 and 〈E[cos(ω0T )]〉 =
cos(ω0T ). Therefore, in this configuration (i) one finds

C(T ) =
1

2
cos(ω0T ) . (27)

(ii) When φ(t) = ϕ1 and φ(t + T ) = ϕ2, with ϕ1 and ϕ2 two independent random
numbers distributed according to the density pφ(·), then Eq. (24) gives

C(T ) =
〈

E
[

cos(ω0t + ϕ1) cos(ω0t + ω0T + ϕ2)
]〉

. (28)

For the product of the two cosines in Eq. (28), one can use

cos(ω0t + ϕ1) = cos(ω0t) cos(ϕ1) − sin(ω0t) sin(ϕ1) , (29)

and

cos(ω0t + ω0T + ϕ2) = cos(ω0t + ω0T ) cos(ϕ2) − sin(ω0t + ω0T ) sin(ϕ2) . (30)

And through Eqs. (29)–(30), the product of the two cosines in Eq. (28) develops
into four product terms. One of wich is

C1 =
〈

E
[

cos(ω0t) cos(ϕ1) cos(ω0t + ω0T ) cos(ϕ2)
]〉

, (31)

which, via the two separate averages, gives

C1 =
〈

cos(ω0t) cos(ω0t + ω0T )
〉

E2[cos(φ)] . (32)

By the identity 2 cos(a) cos(b) = cos(a − b) + cos(a + b), one gets for the temporal
average in Eq. (32),

〈

cos(ω0t) cos(ω0t + ω0T )
〉

=
1

2

〈

cos(ω0T )
〉

+
1

2

〈

cos(2ω0t + ω0T )
〉

. (33)

Since 〈cos(2ω0t + ω0T )〉 = 0, one finally obtains

C1 =
1

2
cos(ω0T ) E2[cos(φ)] . (34)
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Next, the second product term from Eq. (28) and accompanying C1 of Eq. (31)
is

C2 =
〈

E
[

sin(ω0t) sin(ϕ1) sin(ω0t + ω0T ) sin(ϕ2)
]〉

. (35)

Repeating for C2 similar arguments as for C1, one finally obtains

C2 =
1

2
cos(ω0T ) E2[sin(φ)] . (36)

Again with similar arguments, the two last product terms accompanying C1 and
C2 are

C3 = −
〈

E
[

cos(ω0t) cos(ϕ1) sin(ω0t + ω0T ) sin(ϕ2)
]〉

= −1

2
sin(ω0T ) E[cos(φ)] E[sin(φ)] , (37)

and

C4 = −
〈

E
[

sin(ω0t) sin(ϕ1) cos(ω0t + ω0T ) cos(ϕ2)
]〉

=
1

2
sin(ω0T ) E[cos(φ)] E[sin(φ)] . (38)

By collecting the four product terms C1 to C4, Eq. (28) for configuration (ii)
leads to

C(T ) =
1

2
cos(ω0T )

(

E2[cos(φ)] + E2[sin(φ)]
)

. (39)

Since over time, according to the temporal Poisson process, configuration (i)
occurs with probability exp(−T/τc) and configuration (ii) with probability 1 −
exp(−T/τc), a weighted average of Eqs. (27) and (39) leads for Eqs. (22) and (24)
to

C(T ) =
1

2
cos(ω0T )

[

exp
(

− T

τc

)

+
(

E2[cos(φ)] + E2[sin(φ)]
)(

1 − exp
(

−T

τc

))

]

.

(40)

This determines the intensity I of Eq. (23) at pathlength difference T in the inter-
ference process. For this intensity pattern, the visibility at pathlength difference T ,
as defined by Eq. (6), now comes out as

V = exp
(

− T

τc

)

+
(

E2[cos(φ)] + E2[sin(φ)]
)(

1 − exp
(

− T

τc

))

. (41)

We have with Eq. (41) a measure of the coherence of the wave exhibiting its de-
pendence with the second-order statistics of the phase through the correlation du-
ration τc, but also — what is new here — with its first-order statistics through
E2[cos(φ)] + E2[sin(φ)] controlled by the probability density pφ(·).



June 17, 2008 10:13 WSPC/167-FNL 00434

L116 F. Chapeau-Blondeau et al.10 F. Chapeau-Blondeau, D. Gindre, R. Barillé & D. Rousseau

3.3. The classic case of a uniform phase

As indicated in Section 3.1, the model of partially coherent wave is based on an
empirical phenomenological description for the phase φ(t) at the microscopic level
of elementary radiators. We now want to get some appreciation of the ability of this
model to produce verifiable predictions at the macroscopic level of observable light.
The common situation for a partially coherent light is a phase uniform over [−π, π].
In this case of a density pφ(φ) uniform over [−π, π], the model has the expectations
E[cos(φ)] = E[sin(φ)] = 0 and Eq. (40) simplifies into

C(T ) =
1

2
cos(ω0T ) exp

(

− T

τc

)

. (42)

From Eq. (42), and coming back to Eq. (21), the model provides an expression of
the autocorrelation function of the field, for any time delay τ , as

u(t)u(t + τ) =
A2

2
cos(ω0τ) exp

(

−|τ |
τc

)

. (43)

Fourier transforming the autocorrelation of Eq. (43) gives access to the power spec-
trum of the wave, which comes out as a spectral line centered at frequency ω0, with
a Lorentzian shape of width measured by 1/τc. The Lorentzian spectral line, as
predicted by the model, is a spectrum which is very commonly observed for par-
tially coherent monochromatic light [8]. With a correlation duration τc of the phase
which goes to infinity, the model describes a completely coherent wave, with a field
autocorrelation u(t)u(t + τ) = A2 cos(ω0τ)/2 associated to a Dirac-delta spectrum.
By reduction of the correlation duration τc, the model describes a degradation of
the coherence, with a spectrum which broadens into a Lorentzian spectral line with
width 1/τc increasing as the coherence is reduced. These properties of the model
match experimental properties commonly observable on partially coherent light.

For pφ(φ) uniform over [−π, π], Eq. (41) of the model leads to an interferogram
visibility

V = exp
(

− T

τc

)

. (44)

From Eq. (44), at any T � τc, the model predicts V ≈ 1, identifying a situation
of high coherence; and at any T � τc, the model predicts V ≈ 0, identifying
a situation of low coherence. These predictions of the model again match the
common experimental observation in an interference phenomenon: the coherence
measured by V is high at pathlength difference T much smaller than the correlation
duration τc and low at T much larger than τc. Also, the model via Eq. (44), at
fixed τc imposed by the light source, describes the way the interferogram fades
away with decreasing visibility V , as the distance to the central fringe increases.
Alternatively, at a given point with fixed T , varying the correlation duration τc of
the phase, allows one to obtain at this point, according to the value assigned to
V by Eq. (44), an interference of highly coherent waves when τc � T , or of quasi
incoherent waves when τc � T , or any partial degree of coherence for intermediate
τc. These properties of the model reproduce the common behavior observed in a
interference experiment.
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Therefore, in the classic case of a phase uniform over [−π, π], the present model
of a partially coherent wave is able to yield predictions in accordance with common
observable properties of light. This ability of the model based on a simple empirical
description of the phase at the microscopic level, may be due to the fact that
the model is used to derive predictions for macroscopic quantities resulting from
statistical and temporal averages. As it is often the case in statistical physics,
macroscopic quantities emerging from averages are not critically influenced by the
detailed assumptions at the microscopic level, providing they capture a few essential
basic features. The verifications of this Section suggest that this may be the case
for the present model. Based on this grounding, we will now apply this model to
explore the nonclassic case of a nonuniform random phase.

3.4. Influence of the statistics of the phase

We now examine the evolution of the degree of coherence measured by the visibility
V of Eq. (41), in the general case of an arbitrary probability density pφ(·) for the
phase.

At fixed τc > 0, if pφ(φ) tends to the Dirac delta function δ(φ) (the values of φ
concentrate more and more around zero), then E[cos(φ)] → 1 and E[sin(φ)] → 0. It
follows that in Eq. (41) the visibility V → 1, and one is returned to the situation of
complete coherence of Eq. (7) whatever T and τc.

If the density pφ(φ) is uniform over φ ∈ [−ϕM , ϕM ] ⊆ [−π, π], then E[cos(φ)] =
sin(ϕM )/ϕM and E[sin(φ)] = 0. The case ϕM → 0 gives the preceding case of the
Dirac delta, while the case ϕM = π is the classic case discussed in Section 3.3. With
an arbitrary ϕM ∈ [0, π] then

V = exp
(

−T

τc

)

+ sinc2(ϕM )
(

1 − exp
(

− T

τc

))

. (45)

At fixed τc and T , when the phase dispersion ϕM increases from 0 to π, it results
that V of Eq. (45) monotonically decreases from V = 1 (complete coherence) to
V = exp(−T/τc) (a state of partial coherence). One thus registers a monotonic loss
of coherence, at fixed τc and T , when the phase dispersion ϕM increases from 0
to π.

Yet, this monotonic loss of coherence is not necessarily the rule, for another
phase distribution pφ(·), and this is a specific finding of this paper. For a simple
illustration, we consider the density pφ(φ) = [δ(φ + σφ) + δ(φ− σφ)]/2 describing a
phase φ(t) randomly flipping between two discrete values ±σφ. From Eq. (41) one
then gets

V = exp
(

−
T

τc

)

+ cos2(σφ)
(

1 − exp
(

−
T

τc

))

. (46)

At fixed τc and T , when the phase dispersion σφ increases from 0 to π, it results
that V of Eq. (46) first decreases from V = 1 at σφ = 0 (complete coherence) down
to the minimum V = exp(−T/τc) when σφ = π/2 (a state of partial coherence), to
rise again up to V = 1 at σφ = π, restoring complete coherence. For the coherence
measured by the visibility V at a fixed point T and fixed correlation duration τc

at the source, one thus registers a nonmonotonic variation, with a possibility of
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increasing the coherence by means of an increase in the phase dispersion σφ, over
certain ranges. This is a constructive effect (increased coherence) obtained through
an enhancement of a noise component (increased phase dispersion). This type of
behavior is reminiscent of stochastic resonance or useful-noise effects, by which
an increase in the noise level improves the performance, as reported for instance
in [12–16, 18, 19, 21–23]. Especially, [21–23] showed the possibility of stochastic
resonance with phase noise on a periodic wave, although with no reference to optical
coherence.

Based on the results of [10,23], it can be expected that other distributions pφ(·)
of the phase might lend themselves to a form of nonmonotonic improvement of the
coherence. For a more elaborate distribution, we consider, in similarity with [10,23],
the mixture of two Gaussians

pφ(φ) =
1

∆φ 2
√

2π
exp

(

− (φ + φ0)
2

2 ∆φ2

)

+
1

∆φ 2
√

2π
exp

(

− (φ − φ0)
2

2 ∆φ2

)

. (47)

The probability density of Eq. (47) is made of two Gaussian peaks of same width
∆φ, one centered at −φ0 and the other at φ0. This density of Eq. (47) has mean
mφ = 0 and variance σ2

φ = φ2
0

+ ∆φ2; and it leads to the averages E[sin(φ)] = 0

and E[cos(φ)] = cos(φ0) exp(−∆φ2/2). The resulting interferogram visibility from
Eq. (41) is then

V = exp
(

−
T

τc

)

+ cos2(φ0) exp(−∆φ2)
(

1 − exp
(

−
T

τc

))

. (48)

At fixed width ∆φ, increasing φ0 increases the rms phase dispersion σφ = (φ2
0

+
∆φ2)1/2. The resulting evolution of the visibility V of Eq. (48) is presented in Fig. 3.
The evolution of Fig. 3 displays again a possibility of improving the coherence
measured by V by means of an increase of the phase disorder measured by its rms
dispersion σφ.

Another nonmonotonic evolution of the visibility V can also be obtained with
a density pφ(·) uniform over [−ϕM , ϕM ] for the phase, leading to V of Eq. (45).
When the phase dispersion ϕM increases above π, in Eq. (45) the factor sinc2(ϕM )
starts to rise again, leading to an increasing visibility V in this range of ϕM , as
represented in Fig. 4.

In Fig. 4, when the dispersion ϕM of the uniform random phase increases, a
nonmonotonic evolution of the visibility V is observed for any value of T/τc. When
ϕM increases above π in Fig. 4, the resulting improvement of V is relatively small
compared to the visibility of V = 1 with no phase dispersion at ϕM = 0. However,
common optical conditions will often impose a uniform random phase with disper-
sion ϕM = π. This value ϕM = π is precisely the location of a minimum of the
visibility V in Fig. 4, for any T/τc. At T/τc � 1, this minimum of the visibility
is very close to zero, as seen for instance in Fig. 4 at T/τc = 10 and ϕM = π.
From this configuration, if the phase dispersion is increased up to ϕM ≈ 3π/2, the
relative increase of the visibility is then strong. In Fig. 4 at T/τc = 10, we have
V(ϕM = π) ≈ 5 × 10−5 and V(ϕM ≈ 3π/2) ≈ 5 × 10−2, which corresponds to
an amplification of three orders of magnitude of V when the phase dispersion is
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Fig. 3. Interferogram visibility V of Eq. (48), as a function of the phase dispersion σφ = (φ2

0
+

∆φ2)1/2, by varying φ0 at ∆φ = π/5 and T/τc = 1/4.

increased from ϕM = π to ϕM ≈ 3π/2. Knowing that common optical conditions
are likely to impose ϕM = π to begin with, if an action is practically implementable
to further increase the phase dispersion up to ϕM ≈ 3π/2, this could translate into
strong enhancement of the coherence measured by V . We note that it is in principle
quite possible to have a random phase φ(t) varying over an interval [−ϕM , ϕM ]
ranging beyond [−π, π]. This could be the case with mechanical vibrations produc-
ing pathlength fluctuations that would exceed a sufficient amount relative to the
wavelength, as realized in [24] for instance. This is the same possibility which is
present with the phase noise in [10, 23], and also all the techniques dealing with
phase wrapping and unwrapping are in fact related to this same issue.

If we return to the general expression of the visibility V in Eq. (41), one always
has 0 ≤ E2[cos(φ)] + E2[sin(φ)] ≤ 1, for any density pφ(·). It results that, at given
density pφ(·) and fixed pathlength difference T , the visibility V of Eq. (41) always
decreases when the correlation duration τc decreases. Decreasing the correlation
duration τc of the phase φ(t) is one way of increasing the phase disorder, but this
way of increasing the phase disorder can never improve the coherence, in the wave
model of Eq. (9). On the contrary, as demonstrated above, increasing the phase
disorder by increasing the phase dispersion is capable of improving the coherence.

4. Discussion

We have analyzed a simple model of a scalar optical wave with partial coherence.
The model is specially devised to describe the influence on the coherence, of both
first-order and second-order statistical properties of the random phase. Classic
models of partially coherent light [8] do not allow direct control on the probability
density of the phase as a free parameter. The model of Section 3.1 was implemented
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Fig. 4. Interferogram visibility V of Eq. (45), as a function of the phase dispersion ϕM , for different
values of T/τc.

in order to obtain such a control, with the aim of theoretically investigating the im-
pact of the probability density of the phase on the coherence. For the classic case
of a random phase uniform over [−π, π], the model predicts common behaviors in
accordance with observable properties of light. Based on this grounding, we have
applied the model to theoretically explore the impact of nonclassic statistics of the
phase on the coherence. In this way, the model shows that increasing the disor-
der of the wave by decreasing the correlation duration of the random phase always
degrades the coherence of the wave; this is a known and expected behavior of the
optical coherence, captured by the model. Furthermore, the model reveals that in-
creasing the disorder of the wave by increasing its phase dispersion can sometimes
lead to an improvement of the coherence of the wave. This behavior is reminiscent of
stochastic resonance or similar useful-noise effects, where an increase in the amount
of noise or disorder can improve some measure of order or performance or efficacy
of processing. Usually, stochastic resonance studies assume additive noise; a few
studies have exhibited stochastic resonance with phase noise [21–23] although with
no reference to optical coherence. The presence of phase noise is natural to optical
waves, and a standard measure of order in this context, the optical coherence, is
shown here to lend itself to a form of stochastic resonance. The present results
demonstrating a theoretical possibility of noise-improved optical coherence, open
a new direction for stochastic resonance investigations. For instance, the present
model of partially coherent wave could serve as a basis for theoretical analysis of
more complex optical experiments, for example frequency doubling or other non-
linear effects, in order to examine whether it is possible to register phenomena
where a measure of efficacy (other than the visibility V) could be maximized in the
presence of a partial coherence, away from both complete coherence and complete
incoherence.
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It is interesting to note that a different but related theoretical exploration of
the impact of the probability density of the phase, can be found in the recent
publication [25]. Reference [25] studies sums of random phasors to model optical
speckle, and it observes that the contrast of a partially developed speckle can be
changed, and specially increased, by varying the probability density of the phase of
random phasors. In similarity with our present study, [25] gives another theoretical
study manifesting some possibly beneficial influence of varying an optical phase
away from uniformity over [−π, π].

If we follow the present theoretical analysis, it suggests that there might be
some benefit in trying to vary, away from uniformity over [−π, π], the distribution
of the phase of a partially coherent wave. A subsequent issue will be to consider
the practical possibilities for varying the phase. The useful approach though, would
not be to try to experimentally reproduce the precise conditions of our empirical
model of Section 3.1, but rather to consider that our model suggests, through the
consideration of simple theoretical conditions, some possible benefit of varying the
distribution of the phase; from here then, any practical means of varying the phase
could be interesting to examine in this respect. Some proposals to be examined
could be as follows. Some control on the phase distribution could be obtained
by imposing, with electroacoustic devices, random vibrations interacting with the
wave, or pathlength fluctuations (for instance with piezoelectric actuators) for one
or both of the interfering waves relative to the other. Magneto-optical or electro-
optical phase-modulating devices could also be tested. Concentration of a noisy
wavefront obtained from speckle noise could also be examined. All these, or other,
proposals to gain some control on the phase distribution of a partially coherent
wave, remain to be practically investigated.

The results reported here concerning the behavior of wave coherence, might also
be relevant outside optics, with radiowaves or acoustics, for coherent or interfero-
metric imaging applications for instance. In another direction, connection with the
coherence of the quantum wave function could also be envisaged [26, 27], and the
impact of noise on the decoherence process in quantum information processing.
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