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a b s t r a c t

The minimum description length principle is a general methodology for statistical
modeling and inference that selects the best explanation for observed data as the one
allowing the shortest description of them. Application of this principle to the important
task of probability density estimation by histograms was previously proposed. We review
this approach and provide additional illustrative examples and an application to real-
world data, with a presentation emphasizing intuition and concrete arguments. We also
consider alternative ways of measuring the description lengths, that can be found to be
more suited in this context.We explicitly exhibit, analyze and compare, the complete forms
of the description lengthswith formulas involving the information entropy and redundancy
of the data, and not given elsewhere. Histogram estimation as performed here naturally
extends tomultidimensional data, and offers for them flexible and optimal subquantization
schemes. The framework can be very useful for modeling and reduction of complexity of
observed data, based on a general principle from statistical information theory, and placed
within a unifying informational perspective.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In statistical information processing, probability density estimation is a ubiquitous and very useful process. For
probability density estimation from observed data, a much common approach proceeds through the construction of an
empirical histogram with regular (equal width) bins. When a fixed number of bins is imposed, the construction of a
histogram is a rather straightforward operation. However, the number of bins in itself has amajor impact on the quality of the
estimation realized by the histogram for the underlying probability density. For a given number N of observed data points,
if the number of bins is too small, the resolution of the histogram is poor and leads to a very raw estimate of the probability
density. On the contrary, if the number of bins is too large, the counts of data points in the bins fluctuate strongly to yield
a very jerky histogram as a poor estimate for the probability density. This points to an optimal number of bins between
these two extremes that will lead to an optimal histogram for estimating the probability density. Any approach aiming at
determining an optimal number of bins needs necessarily to rely on a definite criterion tomeasure optimality in this context
with histograms. A specially interesting approach of this type is based on the principle of minimum description length.
The minimum description length (MDL) principle provides a general approach for statistical modeling and inference

from observed data [1–3]. Briefly stated, this principle amounts to choosing for data, among a class of possible models,
the model that allows the shortest description of the data. The MDL approach is rooted in the Kolmogorov theory of
complexity [4]. Since its formal introduction some thirty years ago [5], the MDL principle has developed along both
theoretical and practical directions. The theoretical foundations of the MDL principle have been investigated to great depth
in statistics, and new theoretical aspects are still being explored [1,3,6]. At the same time, the MDL principle has been
considered to provide solutions to a large variety of problems, including nonlinear time series modeling [7,8], Markov-
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process order estimation [9,10], data clustering [11,12], signal denoising [13,14], image segmentation [15,16], curve fitting
[17,18], analysis of chaotic systems [19,20], genomic sequencing [21,22], neural networks [23,24]. Novel applications also
are still emerging [6]. We believe that theMDL approach still holdsmany potentialities relevant to scientific investigation. A
specifically interesting aspect is that theMDL principle offers a unifying thread for approachingmany distinct tasks of signal
and data processing that otherwise would stand as separate problems. Furthermore, the unified view which is provided is
formulated as a information-theoretic framework, and this may be specially relevant to advance an information point of
view in science [25–27].
Application of the MDL principle to probability density estimation by histograms was introduced in Ref. [28]. Part of

the present paper consists in reviewing this approach of Ref. [28], and also in providing additional illustrative examples,
through a presentation emphasizing intuitive and concrete arguments. Implementation of theMDL principle critically relies
on definite specifications for measuring the description lengths. As another part of the present paper, we also consider
alternative ways of measuring the description lengths, which differ from the choice made in Ref. [28], and which arguably
can be foundmore suited in this context of probability density estimation by histograms. We also explicitly exhibit here the
complete forms of the description lengths that arise from the various choices, through formulas involving the information
entropy and redundancy of the data, and which are not given in other studies. And we analyze and compare these formulas
for the description lengths. We also provide an application to measured data, in the line of a presentation emphasizing
concrete and physical appreciation of the MDL approach. In this way, for a part the present paper has a pedagogical and
illustrative intent as it proposes a detailed and illustrated review emphasizing concrete interpretations and intuition, on the
MDL principle for probability density estimation by histograms. For another part, the paper provides additional results and
insight with comparison of alternative choices and complementary analyses.
Minimum description length is often associated with another comparable approach identified as minimum stochastic

complexity. These are two distinct, although related, approaches. In particular, stochastic complexity is usually based on
the introduction, for the parameters of the model, of a specific prior probability distribution, upon which the subsequent
results depend. A uniform prior can be used as in Ref. [28], or the so-called Jeffreys prior as in Ref. [3]. Both description
length and stochastic complexity are examined in Ref. [28] for probability density estimation by histograms. Ref. [29]
concentrates on stochastic complexity with uniform prior for probability density estimation by histograms. These two
notions of description length and stochastic complexity can be defined as distinct notions, as it emerges from Refs. [28,29,3].
However, some other studies imply the terminologies ‘‘description length’’ and ‘‘stochastic complexity’’ as synonyms to
designate a same underlying notion. Ref. [30] uses the terminologies ‘‘description length’’ and ‘‘stochastic complexity’’
essentially as synonymous, although there is a single underlying notionwhich is description length aswe understand it here,
and not stochastic complexity as in Refs. [28,29,3]. Ref. [30] provides detailed mathematical proofs concerning asymptotic
properties and a general theoretical bound, through the introduction of an index of resolvability, for the statistical accuracy
and efficacy of probability density estimation by any type of estimators, not necessarily histograms. Further refinements and
improvements on these theoretical properties are given in Ref. [31]. Two asymptotic theorems are also proved in Ref. [28],
and two theorems concerning upper bounds are established in Ref. [29]. Ref. [32] confronts, for histogramestimation, several
forms of penalized maximum-likelihood methods that include the MDL and stochastic complexity based approaches of
Ref. [28]. Refs. [33,34] present another formofMDL for histogramdensity estimation, as they define stochastic complexity by
means of the notion of normalizedmaximum likelihood to avoid a specific prior and in order to obtain aminimax optimality,
and then complement this stochastic complexity by a measure of the description length of the parameters to form the
criterion to be minimized. In our present paper, for probability density estimation by histograms, we concentrate on the
minimum description length, as in Ref. [28] and Ref. [30], and not on the minimum stochastic complexity as considered in
Refs. [28,29] with uniform prior, or in Ref. [3] with Jeffreys’ prior, or in Refs. [33,34] via normalizedmaximum likelihood.We
see this minimum description length endowed with the advantage of a simple and concrete informational interpretation
which is not shared by the minimum stochastic complexity. We review, illustrate and complement the MDL approach
here. So far, MDL for probability density estimation by histograms has mainly been discussed in the literature connected
to information theory and statistics. Formal proofs have been established for important mathematical properties of the
approach. As a complement, we propose here to discuss the MDL methodology in a more physically-oriented presentation,
leaning on concrete intuition and illustrative examples. Such a relation between information theory and statistical physics
seems interesting to us to promote for the potentialities of mutual enrichment, as for instance illustrated by the recent
studies of Refs. [35–38].

2. A histogrammodel for probability density

One disposes of N observed data points xn forming the data set
x = {xn, n = 1, . . .N}. (1)

These N data points xn are assumed to be N independent realizations of a random variable X distributed according to the
probability density function f (x). The probability P(x) of observing a given data set x is therefore expressible as

P(x) = dxN
N∏
n=1

f (xn), (2)

where dxmeasures the infinitesimal domain of reference around xn.
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One seeks to estimate the probability density f (x) from theN data points xn of Eq. (1). For this purpose, a histogrammodel
is introduced for the unknown density f (x) under the common form of an approximation by a piecewise constant function.
This histogram model is denotedM and is defined as follows. The density f (x) is modeled by K constant plateaus of value
fk, for k = 1 to K , each of these plateaus being defined in the abscissa between xmin and xmax over a regular bin of width

δx =
xmax − xmin

K
=
1x
K
, (3)

with xmin and xmax respectively the minimum and maximum values of the xn’s over the data set x of Eq. (1). Especially,
consistency of the probability density model imposes

K∑
k=1

fkδx = 1. (4)

The probability P(x) of Eq. (2), based on the histogram modelM for the density f (x), is expressible as

P(x) = dxN
K∏
k=1

f Nkk , (5)

where Nk is the number of data points xn of the data set x that fall within bin number k, verifying
∑K
k=1 Nk = N .

3. Maximum-likelihood histogram estimation

When the number of bins K is fixed, the density modelM is specified by the K parameters fk for k = 1 to K . To determine
these parameters from the data, a standard approach is the maximum-likelihood method [39] which consists in selecting
those values of the parameters fk that maximize the probability P(x) in Eq. (5) of the observed data set x. Maximizing P(x)
of Eq. (5) under the constraint of Eq. (4) is achieved by the well-known maximum-likelihood solution

f̂k =
Nk
Nδx

, k = 1, . . . K . (6)

Themaximum-likelihood solution of Eq. (6) completely specifies, for the probability density f (x), the histogrammodel with
a fixed number K of regular bins.

4. Minimum description length

Another point of view can be adopted to arrive at the solution of Eq. (6). Information theory stipulates that to code data
xn appearing with probability P(xn), the optimal code assigns a codeword with length − log P(xn). To code the whole data
set x of Eq. (1), the optimal code assigns a length− log P(x), which by the probability model of Eq. (5) is

Ldata = − log P(x) = − log(dxN)−
K∑
k=1

Nk log(fk). (7)

The maximum-likelihood solution of Eq. (6) maximizes the likelihood P(x) of Eq. (5) and equivalently the loglikelihood
log P(x). Therefore, the solution of Eq. (6) also minimizes the code length Ldata = − log P(x) of Eq. (7). The solution of Eq. (6)
selects from the data, the K parameters fk of the probability density modelM, so that the optimal code designed for the
data from this density model, achieves the minimal code length. This is the rationale of the MDL principle: to select the
parameters of the model that allow the shortest coding of the complete data. This guarantees that the selected model is the
best (within its class) at capturing the structures and regularities in the data.
We can add here, that the minimum of the description length (7) achieved by the solution of Eq. (6) can be expressed as

Lmin = NH({̂pk})− N log(K)+ N log
(
1x
dx

)
, (8)

where we have introduced the entropy

H({̂pk}) = −
K∑
k=1

p̂k log(̂pk) (9)

of the empirical probabilities p̂k = f̂kδx = Nk/N deduced from Eq. (6).
Here, when the number of bins K of the histogrammodel is fixed in an a priori way, the MDL solution coincides with the

maximum-likelihood solution of Eq. (6). However, the MDL principle can be extended to also optimally select the number
of bins K of the model from the data, along with the K parameter values fk for k = 1 to K . This extension proceeds in the
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following way. The complete coding of the data should here include two parts. The first part is the coding of the data based
on a definite probability density model to assign the code lengths. For a given data set x, the description length needed by
this first part is Ldata of Eq. (7), that we can alsowrite Ldata , L(x|M), the description length of the data given a definitemodel
M of probability density. The second part needed for a complete coding of the data is the description of the parameters that
completely specify the underlying probability density modelM. These parameters include the number of bins K along with
the K values fk for k = 1 to K . The description length needed by this second part in charge of coding the parameters of the
modelM is denoted Lmodel , L(M); and we shall soon see how to explicitly quantify this description length L(M). Now the
complete coding of the data set x has a total description length Ltotal which sums up the two parts as

Ltotal , L(x|M)+ L(M), (10)

signifying that the total description length of the data is the description length of the data given the model plus the
description length of the model.
For a given data set x, the MDL principle then dictates to select the model parameters {K ; fk, k = 1, . . . K} so as to

minimize the total description length Ltotal of Eq. (10), i.e.

{K̂ ; f̂k, k = 1, . . . K̂} = arg min
{K ;fk}

Ltotal = arg min
{K ;fk}

[L(x|M)+ L(M)] . (11)

This is an optimization principle based on optimal coding and information theory. In a prescribed class ofmodels (histograms
with regular bins here), the best model for the data is the model that, when known, enables the most efficient (shortest)
coding of these data.

5. Description length for the data

As already stated, the description length L(x|M) for the data given the model is supplied by Eq. (7). The term− log(dxN)
in Eq. (7) is a constant common to all models. For the purpose of discriminating among models, it is often chosen to omit
this constant− log(dxN) in the description length, with no impact on the final result concerning themodel choice. However
here, we prefer to maintain this term, in order to keep track of the complete value of the description length, and convey
some additional insight into the modeling process beyond the choice of the model itself. So equivalently, the description
length of Eq. (7) for the data given the model is written as

L(x|M) = −

K∑
k=1

Nk log(fkdx). (12)

Next, we have to address the quantification of the description length L(M) for the model.

6. Description length for the model parameters as independent real variables

To quantify the description length L(M) of the model, a possibility is to use a procedure derived from Ref. [28]. The
approach from Ref. [28] to quantify the description length L(M) of the model, considers the K model parameters fk as K
independent real (continuously-valued) variables, which need to be quantized to finite precision in order to allow their
coding. The histogram model for the density of the data assigns a probability pk = fkδx to bin k with width δx. Under this
model also, the number Nk of data points falling in bin k has expected value E(Nk) = Npk = Nfkδx and standard deviation
σ(Nk) = [Nfkδx(1−fkδx)]1/2, according to the properties of the binomial distribution [40]. Therefore, since fk = E(Nk)/(Nδx),
for all k, estimating fk is equivalent to estimating the mean E(Nk) of random variable Nk with standard deviation σ(Nk). The
value σ(fk) = σ(Nk)/(Nδx) = [fk(1−fkδx)/(Nδx)]1/2 fixes a natural precisionwithwhich fk can be estimated and need to be
coded. This determines σ(fk) as the quantization step relevant for coding the model parameters fk. One has the probability
pk ∈ [0, 1] and the density fk = pkδx−1 ∈ [0, δx−1]. The parameter fk therefore can take its values in the interval [0, δx−1]
and is estimated and quantizedwith the precision σ(fk). Accordingly, a total number δx−1/σ(fk) of different values for fk can
be distinguished and need to be coded separately, at a code length log[δx−1/σ(fk)]. For the K parameters fk the code length
results as

L({fk}) =
K∑
k=1

log
[
δx−1

σ(fk)

]
=
K
2
log(N)−

1
2

K∑
k=1

log[fkδx(1− fkδx)]. (13)

An alternative, comparable, approach to quantify the cost of coding continuously-valued parameters is described in
Ref. [1], based on a slightly more involved mathematical formulation. It turns out that quantifying the coding cost of
continuously-valued model parameters is an important and recurrent step when applying the MDL principle. We review
this alternative approach from Ref. [1] in the Appendix, for better appreciation of different existing variants for applying the
MDL principle. With the present approach derived from Ref. [28] and proceeding through Eq. (13), the description length
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for the model is L(M) = L({fk}), which is then added to the description of the data given the model L(x|M) of Eq. (12). The
total description length Ltotal = L(x|M)+ L(M) of Eq. (10) then results as

Ltotal = −
K∑
k=1

(
Nk log(fkdx)+

1
2
log[fkδx(1− fkδx)]

)
+
K
2
log(N). (14)

The model parameters {K ; fk} are then determined by minimizing the total length Ltotal of Eq. (14), under the constraint
of Eq. (4). To simplify this minimization, it is possible to use an approximation as in Ref. [28]. In Eq. (14), the quantity fkδx is
the probability pk of bin k under the histogrammodel of the probability density. The number of bins K can often be expected
to be sufficiently large to assume this probability fkδx� 1, authorizing the approximation

log(1− fkδx) ≈ −fkδx. (15)

Under this approximation, the code length of Eq. (13) for the model parameters reduces to (in nats)

L({fk}) =
K
2
log(N)+

1
2
−
1
2

K∑
k=1

log(fkδx), (16)

and the minimization of Ltotal of Eq. (14) can be performed in two steps. First, at given K , the solution for the fk’s realizing,
under the constraint of Eq. (4), the minimum of Ltotal, is accessible in closed form as

f̂k =
Nk + 1/2
N + K/2

1
δx
, k = 1, . . . K . (17)

Then, when the f̂k’s of Eq. (17) are plugged back into Ltotal of Eq. (14), one obtains

Ltotal = −
K∑
k=1

[(
Nk +

1
2

)
log

(
Nk +

1
2

)
+
1
2
log

(
1−

Nk + 1/2
N + K/2

)]

+

(
N +

K
2

)
log

(
N +

K
2

)
+
K
2
log(N)− N log(K)+ N log

(
1x
dx

)
. (18)

A useful equivalent expression of Eq. (18) is

Ltotal =
(
N +

K
2

)
H({̂pk})−

1
2

K∑
k=1

log
(
1−

Nk + 1/2
N + K/2

)
+
K
2
log(N)− N log(K)+ N log

(
1x
dx

)
, (19)

where the entropy H(·) as in Eq. (9) is with the empirical probabilities p̂k = f̂kδx = (Nk + 1/2)/(N + K/2) deduced from
Eq. (17). Moreover, in the conditions of the approximation of Eq. (15), the sum over k in Eq. (19) evaluates to−1 nat, so as
to yield for Eq. (19),

Ltotal =
(
N +

K
2

)
H({̂pk})+

1
2
+
K
2
log(N)− N log(K)+ N log

(
1x
dx

)
. (20)

Eq. (18), or Eq. (19) or (20), defines a function Ltotal = Ltotal(K) of the sole (unknown) variable K , whose minimum can be
numerically found to determine the minimizer K̂ . Together this K̂ and the f̂k’s of Eq. (17) form the minimum description
length solution to the density estimation problem according to the approach proposed in Ref. [28]. It is to be noted that
Ref. [28] rather chooses to estimate the bin probabilities pk rather than the density values fk as we do in this Section 6,
and so the specific formulas may differ between both places; but the philosophy is the same, as far as we understand it in
Ref. [28].
An important aspect should be emphasized concerning the approach of this Section 6 to quantify the description length

L(M) of the model. The approach codes the model parameters fk, for k = 1 to K , as if they were independent and real
(continuously-valued) parameters. Because of the constraint of Eq. (4), the parameters fk are not independent. Furthermore,
any effective estimation of the fk’s will be performed from the integers Nk, which form a minimal sufficient statistic here.
Since the K nonnegative integers Nk sum to N , there are only a finite number of feasible configurations for the Nk’s, and
accordingly only a finite number of possible values for the fk’s (instead of a continuum of values as would suggest their
being considered as real variables). By taking these two features (dependency anddiscreteness) into account, amore efficient
coding could be envisaged. Also, the coding of the model parameters in this Section 6 takes the form of a lossy coding, in
connection with Eq. (13), based on the quantization at a finite precision σ(fk) of the fk’s treated as continuously-valued
parameters. Instead, a lossless coding could be envisaged. This we address now, by considering another way of quantifying
the description length L(M) of the model.
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7. Description length for the model with joint parameters

As in the previous Section 6, the aim is to code the parameter values fk, for k = 1 to K , that instantiate the histogram
model for the probability density of an observed data set x of Eq. (1). These fk’s to be coded are matched to the data set x
and in actuality are estimated from this data set x. Any effective estimation of the fk’s from xmust be based on the counts
Nk of data points per bin, which form aminimal sufficient statistic here. Therefore, coding the model parameters fk amounts
to coding the integers Nk, for k = 1 to K . Each integer Nk can assume N + 1 distinct values, between 0 and N . As a simple
proposal then, lossless coding of an Nk can be realized with a code length of log(N + 1). There are K of these integers Nk,
however they always sum to N , so only K − 1 of them need be coded explicitly, the last one being recoverable since N is
assumed known by the decoder (at a coding cost common to all models and not included in the description length L(x)). So
the code length L({fk}) to code the K parameters fk can be taken as

L({fk}) = (K − 1) log(N + 1). (21)

If one forms the description length of the model as L(M) = L({fk}) and then adds it to the description L(x|M) of the data
given the model in Eq. (12), the total description length Ltotal = L(x|M)+ L(M) of Eq. (10) follows as

Ltotal = −
K∑
k=1

Nk log(fkdx)+ (K − 1) log(N + 1). (22)

The minimization of Eq. (22) according to Eq. (11) can be solved (analytically) first for the fk’s, with the solution again given
by Eq. (6), which is also

f̂k =
NkK
N1x

, k = 1, . . . K . (23)

When these f̂k’s of Eq. (23) are plugged back into Eq. (22), one obtains the description length

Ltotal = NH({̂pk})+ (K − 1) log(N + 1)− N log(K)+ N log
(
1x
dx

)
, (24)

with the probabilities p̂k = Nk/N deduced from Eq. (23) used in the entropy H(·) of Eq. (9). Eq. (24) is seen as a function
Ltotal(K) of K alone, to beminimized (numerically) to obtain theminimizer K̂ . This K̂ together with the f̂k’s of Eq. (23) provide
a complete solution to the problem of optimal probability density estimation by a histogram with regular bins.
It is possible to suggest an improvement for the code length L({fk}) of Eq. (21) for the K parameters fk. Eq. (21) is based

on a separate coding of K − 1 values of Nk, but it does not fully exploit the dependence between the Nk’s. The fact that the
Nk’s sum to N , for instance restrains configurations with several Nk’s simultaneously close to N . Because of the dependence
of the Nk’s a global coding of the K values Nk can be achieved, which is more efficient than a separate coding. For K integers
Nk ranging between 0 and N and verifying

∑K
k=1 Nk = N , there is a number AN,K of distinct possible configurations given by

Ref. [40, p. 38] as

AN,K =
(N + K − 1)!
N!(K − 1)!

. (25)

Then, a lossless coding of the K values Nk is feasible by coding one among the AN,K distinct possible configurations. This is
achievable with a code length of log(AN,K ), leading to the replacement of Eq. (21) by

L({fk}) = log(AN,K ) = log
[
(N + K − 1)!
N!(K − 1)!

]
, (26)

which can be verified to be indeed a more efficient (shorter) code length than Eq. (21).
With this description length L({fk}) = L(M) for the model, added to the description length L(x|M) of the data given the

model in Eq. (12), one obtains the total description length Ltotal = L(x|M)+ L(M) of Eq. (10) as

Ltotal = −
K∑
k=1

Nk log(fk dx)+ log(AN,K ). (27)

At fixed K , the description length Ltotal of Eq. (27) is again minimized by the fk’s given in Eq. (23). When these values are
plugged back into Ltotal of Eq. (27), one obtains a total length expressible as

Ltotal = NH({̂pk})+ log(AN,K )− N log(K)+ N log
(
1x
dx

)
, (28)

with again the probabilities p̂k = Nk/N deduced fromEq. (23) used in the entropyH(·) of Eq. (9). Eq. (28) is seen as a function
Ltotal(K) of K alone, to be minimized to obtain the minimizer K̂ , this providing, in conjunction with the f̂k’s of Eq. (23), a
complete solution to the problem of optimal probability density estimation by a histogram with regular bins.
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Fig. 1. Redundancy Hmax(K)−H({̂pk}) in bits of the data represented over K bins, as a function of the number of bins K . The data set is formed by N = 105
points xn drawn from a Gaussian probability density f (·) with standard deviation σ = 1x/9. The dashed line is the saturation level log(1x) − Hdiff[f ]
which for the Gaussian density here is log[(2πe)−1/21x/σ ].

8. Analysis of the total description lengths

It is now interesting to analyze and compare the various total description lengths Ltotal obtainedwith the different possible
coding strategies, and which are provided by Eqs. (8), (20), (24) and (28). These total lengths show in common a term
N log(1x/dx). In this term, dx is the precision or resolutionwith which the data points xn aremeasured or defined, while1x
is the total range over which the data points xn take their values. For instance, a typical situation could be data represented
with 16 binary digits, for which1x/dx = 216. This amounts to N log(1x/dx) = 16N bits which represents the description
length associated with direct fixed-length coding of the N data points, with no attempt of optimizing the coding based on
a probability model for the data. This common term can thus be understood as the initial description length Linitial prior to
any optimized coding:

Linitial = N log
(
1x
dx

)
. (29)

In the total description lengths, another common term is N log(K). With K bins to distribute the data points, log(K) can
be interpreted as the maximum entropy Hmax(K) = log(K) achieved with uniform probability over the K bins. In these
conditions, the total description length of Eq. (8) takes the form

Ltotal ≡ L1 = Linitial − N[Hmax(K)− H({̂pk})]. (30)

We recall that this total length L1 of Eq. (30), is the optimal coding length L(x|M) = − log P(x|M) for the data set x based
on the histogram modelM of probability density, but when we omit to include any coding cost L(M) for the model itself.
In Eq. (30), H({̂pk}) is the entropy of the empirical probability distribution {̂pk} estimated from the data over the K bins. It
cannot be above the maximum entropy Hmax(K), so that in Eq. (30) the difference Hmax(K)− H({̂pk}) is nonnegative, and it
measures the information redundancy of the data represented over K bins. The nonnegative redundancy usually expresses
in Eq. (30), a reduction of the initial coding length Linitial which is afforded by nonuniform (variable-length) coding based on
a probability model for the data. This reduction is possible except when the data are distributed with uniform probability, in
which case the empirical entropy H({̂pk})matches themaximum entropy Hmax(K), the redundancy vanishes and no gain on
Linitial is achieved in Eq. (30) because the uniform (fixed-length) coding in Linitial already corresponds to the optimal coding.
On the contrary, if the departure of the data from uniform probability is strong, then H({̂pk}) is much less than Hmax(K), the
nonnegative redundancy Hmax(K)− H({̂pk}) is large, and a large reduction on Linitial is accessible in Eq. (30).
Also in Eq. (30), when the number of bins K is increased, entropy Hmax(K) = log(K) increases as well; in addition, pro-

vided K grows while adhering to K � N , the empirical entropy H({̂pk}) usually increases as a consequence of this increased
resolution K . Moreover, the redundancy Hmax(K)− H({̂pk}) usually also increases with K . This redundancy grows from 0 at
K = 1 to log(1x)−Hdiff[f ] at large K , where Hdiff[f ] = −

∫
f log f is the differential entropy associated with the probability

density f (·) of the data. A typical evolution with K of the redundancy Hmax(K) − H({̂pk}) is shown in Fig. 1 when f (·) is a
Gaussian density. With Hmax(K) − H({̂pk}) an increasing function of K , the coding length L1 in Eq. (30) decreases with K ,
since Linitial is invariant with K . Larger K implies higher accuracy in modeling the probabilities of the data, which in turn
implies more efficiency in the nonuniform coding based on these probabilities; whence the decreasing coding length L1 in
Eq. (30) as K grows.
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However, complete coding of the data, as understood by the MDL principle, implies to count also the coding cost L(M)
of the model. This is achieved by the total lengths in Eqs. (20), (24) and (28), yet with different ways of quantifying L(M).
Eq. (24) results from a simple yet exact (lossless) coding of the model parameters {fk} according to Eq. (21). The resulting
total description length of Eq. (24) can be expressed as

Ltotal ≡ L3 = Linitial + Lmodel − N[Hmax(K)− H({̂pk})], (31)

with Lmodel = L(M) the coding length for the model, which here, from Eq. (21), is

Lmodel = (K − 1) log(N + 1). (32)

Eq. (28) results from a more efficient lossless coding of the model parameters {fk} according to Eq. (26). The resulting
total description length of Eq. (28) can be expressed in a similar form

Ltotal ≡ L4 = Linitial + Lmodel − N[Hmax(K)− H({̂pk})], (33)

with now for the model, from Eq. (26),

Lmodel = log(AN,K ). (34)

Eq. (20) results from an approximate (lossy) coding of the model parameters {fk} treated as independent real variables
quantized to a finite precision. The resulting total description length of Eq. (20) can also be expressed in a rather similar
form as

Ltotal ≡ L2 = Linitial + Lmodel −
[
NHmax(K)−

(
N +

K
2

)
H({̂pk})

]
, (35)

with now for the model, from Eq. (20),

Lmodel =
1
2
+
K
2
log(N). (36)

The total description lengths Ltotal of Eqs. (31), (33) and (35) are similar in formwith Eq. (30) yetwith the visible difference
that they explicitly include the coding cost Lmodel of the model, measured in one form or another according to Eqs. (32), (34)
and (36). In each case, the final step to the histogram estimation problem rests in solving

K̂ = argmin
K
Ltotal(K). (37)

The total description lengths Ltotal of Eqs. (31), (33) and (35) have in common to include the initial data length Linitial which is
independent of K , plus the model length Lmodel which usually increases with the number K of model parameters, minus the
redundancywhich usually is an increasing function of K (see Fig. 1). Ltotal(K) is then usually formed by an increasing function
of K (i.e. Linitial+Lmodel) plus a decreasing function of K (minus the redundancy). One expects then to have a uniqueminimum
andminimizer K̂ for Ltotal(K) in Eq. (37). This is at least the expected, overall behavior, for a typical data set. In practice, local
fluctuations of the estimated empirical entropy H({̂pk}) can induce small local increase of minus the redundancy with K , as
visible in the figures of Section 9. But this does not affect the methodology for solving the problem of histogram estimation.
Before explicitly solving the problem of Eq. (37) in several illustrative examples, it is interesting to compare the coding

length Lmodel assigned to the model by the various coding strategies of Eqs. (32), (34) and (36). These three coding lengths
are presented in Fig. 2 as a function of the model size K .
Fig. 2 illustrates the behavior that generally holds in the ranges of interest for N and K . In general, the coding length

Lmodel from Eq. (36) is the shortest, as it is associated with a lossy coding of the K model parameters. The coding length
Lmodel from Eq. (32) is the longest, as it is associated with a lossless coding of the K model parameters yet without taking full
advantage of the dependence among these parameters. The coding length Lmodel from Eq. (34) is intermediate, as it is asso-
ciated with a lossless coding of the K model parameters taking full advantage of the dependence among these parameters.
Further insight can be obtained in the condition 1 ≤ K � N which may frequently hold in practice; then the coding length
of Eq. (36) becomes Lmodel ≈ (K/2) log(N), while that of Eq. (32) becomes Lmodel ≈ (K − 1) log(N), and that of Eq. (34)
becomes Lmodel ≈ (K − 1) log(N) − log[(K − 1)!]. If in addition one considers the condition 1 � K � N , Eq. (34) further
gives Lmodel ≈ (K − 1)[logb(N)− logb(K − 1)+ 1/ ln(b)], where b is the logarithm base. These approximate expressions for
Lmodel are also shown in Fig. 2, while we keep in mind that it is the dependence in K of Lmodel at given N which is relevant to
solve the problem of Eq. (37).
The model description length Lmodel is thus shorter with the lossy coding associated with the total length Ltotal = L2 of

Eq. (35), and by comparison the model description length Lmodel is longer with the lossless coding associated with the total
length Ltotal = L4 of Eq. (33) (and still even longer with Ltotal = L3 of Eq. (31)).
The other term in the total description length Ltotal formed by minus the redundancy behaves in the opposite way. The

entropy H({̂pk}) in Eqs. (31) and (33) is based on the empirical probabilities p̂k = Nk/N , while in Eq. (35) entropy H({̂pk}) is
based on the probabilities p̂k = (Nk+ 0.5)/(N + K/2). In general, for a given set of counts {Nk}, the probability distribution
{(Nk + 0.5)/(N + K/2)} in Eq. (35) is closer to uniformity than the distribution {Nk/N} in Eqs. (31) and (33). As a result, the
entropyH({̂pk}) is closer to themaximumHmax(K) in Eq. (35) than in Eq. (33). The redundancyNHmax(K)−(N+K/2)H({̂pk})
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Fig. 3. Panel A: Total description length Ltotal in bits, as a function of the number of bins K , for a data set with N = 104 points, and Linitial = 16N =
160 000 bits, drawn from probability density f (·) which is the Gaussian N (0, σ = 1) with zero mean and standard deviation σ = 1: (1) L1 from Eq. (30)
with nomodel coding, (2) L2 fromEq. (35)with lossy coding of themodel, (3) L3 fromEq. (31)with lossless coding of themodel, (4) L4 fromEq. (33)withmore
efficient lossless coding of the model. The inset magnifies the region where the minimum of Ltotal is shown by marker (◦): (̂K = 20, L2(K̂) = 150 695 bits),
(4): (̂K = 18, L3(K̂) = 150 749 bits), (�): (̂K = 23, L4(K̂) = 150 692 bits). Panel B: Histogram model at the optimum number of bins K̂ = 23 minimizing
L4 of Eq. (33), superimposed to the true Gaussian probability density f (·).

in Eq. (35) is therefore smaller than the redundancy NHmax(K) − NH({̂pk}) in Eq. (33); the effect in this direction is even
accentuated by the prefactor (N + K/2) which is stronger in Eq. (35) than the prefactor N in Eq. (33), contributing to the
smaller redundancy in Eq. (35).
To summarize, both themodel length Lmodel and the redundancy increasewithK and are smaller for the lossy coding of Eq.

(35) than for the lossless codings of Eqs. (31) and (33). The difference of these two functions ofK controls the total description
length Ltotal, and one can expect well-defined minimum and minimizer K̂ for Ltotal(K) in Eq. (37). We now explicitly solve
the minimization of Eq. (37) in several illustrative examples.

9. Examples

As a first example, N = 104 data points xn were drawn from the probability density f (·) taken as the Gaussian density
N (0, σ = 1)with zeromean and standard deviation σ = 1. The total description length Ltotal has been computed according
to the four strategies compared in Section 8, and is shown in Fig. 3A as a function of the number of bins K .
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Histogram model at the optimum number of bins K̂ = 62 minimizing L4 of Eq. (33), superimposed to the true bi-Gaussian probability density f (·).

In Fig. 3A, the total description length L1 from Eq. (30), steadily decreases with K , as announced, because L1 does not
incorporate the model description length. On the contrary in Fig. 3A, the total description lengths L2, L3 and L4, which
incorporate the model description length, exhibit a minimum for an optimal value of K . In Fig. 3A, the length L3, which
comes from a relatively poor coding strategy for the parameters, is, as a rule, always larger than the lengths L2 and L4. In the
region of the minimum in Fig. 3A, the lengths L2 and L4, although they are based on distinct coding strategies, assume very
close values. L2 from Eq. (35) is based on a lossy approximate coding of the parameters: this provides a shorter code length
for the parameters associated with a less accurate (longer) coding for the data. On the contrary, L4 from Eq. (33) is based
on an exact lossless coding of the parameters: this costs a longer code length for the parameters associated with a more
accurate (shorter) coding for the data. These two complementary situations of L2 and L4 tend to compensate in the region
of the minimum in Fig. 3A, to lead to close values of the total description length. However, there is a slight superiority of
L4 over L2 in Fig. 3A, in the sense that L4, at the optimal setting (̂K = 23, L4(K̂) = 150 692 bits), achieves a slightly shorter
minimal total length L4(K̂) = 150 692 bits and at the same time a higher resolution in the histogram definition with an
optimal number of bins K̂ = 23. Fig. 3B shows the optimal histogrammodel estimated for the probability density f (·) of the
data set, at K̂ = 23.
A second example is presented in Fig. 4, for data points drawn from aGaussianmixture density. A similar overall behavior

is observed in Fig. 4 for the total description lengths L2, L3 and L4 as in Fig. 3. The length L3 is always larger, while L2 and
L4 take close values in the region of the minimum. Also in Fig. 4, the shortest description length and at the same time the
highest histogram resolution K̂ , are achieved by L4 at the optimal setting (̂K = 62, L4(K̂) = 1 516 477 bits). This is a double
benefit associated with L4: shortest minimal code length and at the same time highest optimal resolution K̂ . Although the
length L2 is close to L4 in the region of the minimum, and both L2 and L4 fluctuate in these regions from one data set to
another with same size N , this double benefit observed with L4 in Fig. 4, was never exchanged between L4 and L2. This was
the rule for all the configurations we tested, for all the densities in this Section 9.
We also tested probability densities that accept a very small number of regular bins for accurate estimation. For uniform

densities for which a single bin is adequate, the estimation based on the total lengths L2, L3 and L4, all generally yield the
optimal number of bins K̂ = 1, with in general the shortest code length afforded by L4(K̂). Comparable conditions are
presented in Fig. 5 with a density which is constant over two separate intervals of equal width, separated by an interval
with zero probability.
As visible in Fig. 5, the total lengths L2, L3 and L4, all yield the appropriate number of bins K̂ = 3, while the shortest code

length is afforded by L4(K̂) = 15 434 bits.
Fig. 6 presents the example of a density which is constant over two separate intervals of unequal widths, separated by an

interval with zero probability. The total lengths L2, L3 and L4, all yield the appropriate number of regular bins K̂ = 4, while
the shortest code length is afforded by L4(K̂) = 15 531 bits.

10. Application to measured data

This section presents an application of histogram estimation by MDL on measured data. The data xn are formed by the
intensities of gray-level images with size N = 512 × 512 pixels. These intensities are initially measured over 256 levels,
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Fig. 5. Panel A: Total description length Ltotal in bits, as a function of the number of bins K , for a data set with N = 103 points, and Linitial = 16N = 16 000
bits, drawn from probability density f (·) ∼ 0.5U([0, 1]) + 0.5U([2, 3]) which is the mixture of two uniform densities over [0, 1] and [2, 3]: (2) L2 from
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Histogram model at the optimum number of bins K̂ = 3.
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across a range from xmin = 0 to xmax = 1,withmeasurement resolution dx = 1/256. For two standard images,minimization
of the description length Ltotal(K) from Eq. (28) leads to the optimal MDL histograms shown in Fig. 7.
The results of Fig. 7 show that the optimal trade-off between accuracy and parsimony according to the MDL principle, is

achieved by histograms that employ a number of bins K̂ which is less than the initial 256 levels overwhich the intensities are
initially measured. These optimal values of K̂ derived from an information-theoretic principle, are also consistent with the
qualitative appreciation resulting from visual inspection: Image ‘‘Lena’’ displays comparatively less variability and richness
of details across the gray levels, and consistently can be adequately represented over a relatively small number K̂ = 83 of
levels. Meanwhile, image ‘‘Boats’’ displays more variability and richness of details across the gray levels, and consistently
requires a larger number K̂ = 160 of levels for adequate representation.
In addition, the optimal MDL histograms of Fig. 7 realize what can be viewed as an automatic subquantization of the

intensities of the initial images. This subquantization is optimal in an information-theoretic sense expressed by MDL. At
the same time, by visual inspection of the images at the optimal subquantization in Fig. 7, no essential features and details
concerning the informational content of the images appear to be lost.Wehavehere twoproperties simultaneously registered
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Fig. 7. Top row: Two gray-level images with size N = 512× 512 pixels initially measured over 256 levels of intensity. Middle row: Images subquantized
over the optimal number of bins K̂ minimizing the description length Ltotal(K) of Eq. (28): K̂ = 83 (Lena), K̂ = 160 (Boats). Bottom row: Optimal MDL
histograms over the K̂ bins.

at two distinct levels (optimal MDL subquantization and visual perception). No connection is explicitly introduced by the
MDL procedure between these two properties. However, their simultaneous occurrence could be a mark of some deeper
connection originating in the fact that both properties have in common to relate to the informational content of the images.

11. Discussion

As we already mentioned, the approach of Section 6 is based on Ref. [28], and it treats the K model parameters as
continuously-valued independent variables, which are approximated to a finite precision and coded separately through a
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lossy coding. By contrast, the approach of Section 7 treats theK model parameters as discrete dependent variables, which are
jointly coded through an exact lossless coding. These two distinct approaches are best represented by the total description
lengths L2 from Eq. (35) and L4 from Eq. (33). It is remarkable to observe, based on the examples of Section 9, that these two
distinct approaches lead nevertheless to results which are close for the optimal histogrammodels. This may be interpreted
as a mark of robustness of the optimal solutions resulting from the MDL principle, which are not strongly affected by the
specific ways used to describe or code the data, provided reasonable and efficient coding methods are confronted. This
contributes to confirm that an essential significance of this principle is at a general informational level, and for a part it
transcends the quantitative details of the descriptions. From the results of Section 9, a slight superiority though can be
granted to the approach via L4 of Eq. (33) when, for a shorter minimum description length, it affords at the same time a
larger resolution of the histogram. There is however another important aspect relevant for a differentiated assessment of
the two approaches.
A specificity of the approach from Ref. [28] and Section 6 is that it uses for the model parameters {fk}, a code which is

not decodable by the receiver. The reason is that this approach is based on a coding procedure, as described in Section 6,
which arranges for each parameter fk a code length which is dependent upon the value of this parameter, instantiated at
f̂k from the data. This is expressed by the parameter code length of Eq. (13), or under Eq. (15), the approximation of Eq.
(16), both bearing explicit dependence on the parameters {fk}. The coder, as it knows the data, knows the parameter values
f̂k estimated from the data, and can therefore arrange the code for these parameters, which is a variable-length code as
implied by Eq. (13) or Eq. (16). The receiver receives first the coded parameters, and it needs to decode these parameters to
be in a position then to decode the data coded with the variable-length coding based on the probability model specified by
the decoded parameters. Therefore, when the coder uses for the parameters a code which depends on the values of these
parameters as established by the data, the receiver is unable to decode the parameters since it does not know the data yet.
Such a nondecodable coding procedure, however, can still be employed as a benchmark for probability density estimation: It
provides a definite coding strategy for which the best achievable coding parsimony (minimum description length) serves to
determine an optimalmodel for the probability density. The approach can thus be felt adequate, because the problemwhich
is tackled at the root is the estimation of a probability density not the actual transmission of data to a putative receiver.
Yet, if the code for the complete data is decodable only by a receiver which already knows the data, one can feel that

an adequate model for the data has not been obtained through the coding process. The alternative approach of Section 7 is
not limited in this way. It provides a code for the complete data which is perfectly decodable by a receiver which knows
nothing about the data. This is obtained based on a coding of the model parameters {fk}, which is independent of the actual
values of the parameters being coded, as expressed by the parameter code length of Eq. (26) or Eq. (21). In this respect, the
approach based on L4 of Eq. (33) can be preferred as a more appropriate way of applying the MDL principle to probability
density estimation by regular histograms.
We add that in principle, the optimal value of K̂ selected by the MDL process should also be coded. This would incur a

small additional cost to the total description length Ltotal. An estimate for the code length of K̂ is of order log(K̂). This, as
soon as the number N of data points is not too small, becomes negligible when compared to the parameters code length
L({fk}) or the data code length L(x|M). As a consequence, this additional cost is not included here, with no sensible impact.
Finally, for a thorough coding of the complete data set, a few additional informations may also need to be coded, like the
number N of data points or the two limits xmin and xmax of the histogram. This would incur another small extra cost to the
total description, but this cost is fixed and common to all models so it plays no role in the model selection and is therefore
omitted in the MDL process.
The MDL principle for probability density estimation by histograms, can be extended in several directions. A possible

direction can consider a wider model class of parametric histograms, consisting of nonregular histograms with a variable
number K of bins of unequal widths δxk, for k = 1 to K . At a general level theMDL principle still applies, with all the different
widths δxk which need to be coded at a cost to be included in the description length L(M) of the model. The resulting total
description length Ltotal then has to be minimized also as a function of the adjustable variables δxk. In practice, this leads to
a much more computationally demanding multivariate minimization process, in comparison to the approach with equal-
width binswhich ultimately requires only aminimization according to the single variableK according to Eq. (37). Nonregular
histograms are considered in this way in Refs. [29,33,34].
In another direction, the MDL principle for histogram estimation, especially under the form of Section 7 and Eqs.

(26)–(28), can be easily extended to histograms in higher dimensionality. For instance in three dimensions, a single data
point xn in Eq. (1) is replaced by a triplet coordinate (xn, yn, zn) representing a joint realization of the random variables
(X, Y , Z) distributed according to the three-dimensional probability density f (x, y, z) that one seeks to estimate by a three-
dimensional histogram. Each coordinate axis can be divided into, respectively, Kx, Ky and Kz bins with three distinct widths
δx, δy and δz. The total number of bins (cells) in three dimensions is K = KxKyKz . With this K , the code length for the K
model parameters (the K constant values for the density over the K cells) is as before L(M) = log(AN,K ) as in Eq. (26). The
total description length Ltotal is given by an expression similar to Eq. (28), controlled by an entropy H({̂pk})which is now the
entropy in three dimensions estimated from the empirical probabilities p̂k = Nk/N over the K three-dimensional cells. One
then scans the bin numbers (Kx, Ky, Kz) and associated empirical entropy, searching for the minimum of Ltotal as in Eq. (28).
The same process can be performed in arbitrary dimension D. Of course, the search process for theminimization of Ltotal will
get more computationally demanding as the dimensionality D of the data space increases, but the principle of the method
remains the same. Alternatively, all D coordinate axes can be divided into a unique similar number K0 of bins, the same for
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each axis, leading to a total number K = KD0 of cells in D dimensions. The search for the minimization of Ltotal is then now
reduced to a one-dimensional search in K0. A much simpler minimization process results, at the price of reduced resolution
in theD-dimensional histograms. Other strategies can be envisaged to organize the division of the coordinate axes associated
with the MDL criterion. In this same direction of multidimensional histograms with MDL, a recent study [41] introduces a
new family of multidimensional histograms in the context of data mining for query answering. A local parametric model is
employed to describe each multidimensional bin of the histogram, and local application of MDL is performed to optimize
the parameterization. This approach of Ref. [41] is reminiscent of kernel methods, which form a different methodology
for probability density estimation based on a definite choice of parametric kernel functions, and which although quite
distinct from histograms, can also be handled with MDL for optimal parameterization. Beyond histogram estimation, such
extensions of theMDL principle naturally offer, as suggested by the examples of Fig. 7, flexible and optimal subquantizations
of multidimensional data based on an informational principle. This can be very useful for reduction of the complexity of
multidimensional data sets, which are more andmore pervasive in many areas of observational sciences, and with a control
of the procedure obtained in an informational framework.

Appendix. Quantization of continuously-valued parameters

In this Appendix, we describe an alternative but comparable approach to Section 6, for quantifying the cost of coding
continuously-valued model parameters, based on Ref. [1, p. 55]. The K model parameters fk take their values in [0, δx−1].
When considered as continuously-valued, each parameter fk has to be quantized to a finite precision to make its coding
possible. A quantization step or precision hk is assumed for the quantization of parameter fk, for k = 1 to K . It results in a
total number δx−1/hk of different values for fk which can be distinguished and need to be coded separately, at a code length
log(δx−1/hk). For the K parameters fk the code length results as

L({fk}) =
K∑
k=1

log
(
δx−1

hk

)
= K log(δx−1)−

K∑
k=1

log(hk). (A.1)

Given the model parameters {fk}, the data x are coded as in Eq. (7) at the cost − log P(x|{fk}), which is added to the model
cost of Eq. (A.1) to yield the total description length

Ltotal({fk}) = − log P(x|{fk})+ L({fk}). (A.2)
In Eq. (A.2), the fk’s thatminimize Ltotal({fk}) alsominimize− log P(x|{fk}) and are given by the f̂k’s of Eq. (6). This is so because
in Eq. (A.2), the model code length L({fk}) does not (cannot) depend on the fk’s, since these are not known to the decoder.
However, it is not the exact f̂k’s of Eq. (6) which are used to code the data x at the minimum cost− log P(x|{̂fk}). Instead, it
is a set {fk}, which is close to {̂fk}, and which results from quantization of the f̂k’s at the finite precisions hk. This induces a
total description length Ltotal({fk}) slightly longer than the minimum Ltotal({̂fk}). Since hk measures the maximum deviation
of fk from f̂k, the maximum of the overcost Ltotal({fk}) above Ltotal({̂fk}) can be obtained through the Taylor expansion

Ltotal({fk}) = − log P(x|{̂fk})+
1
2

K∑
i=1

K∑
j=1

Jij({̂fk})hihj + L({fk}), (A.3)

with

Jij({fk}) =
∂2

∂ fi∂ fj
− log P(x|{fk}), (A.4)

and no contribution of the first derivatives since Ltotal({fk}) and − log P(x|{fk}) are at a minimum in {fk} = {̂fk}. It is then
useful to express the total length of Eq. (A.3) as Ltotal({fk}) = − log P(x|{̂fk})+ Φ({hk}). This new function Φ({hk}), defined
fromEq. (A.3), captures the dependence of Ltotal({fk})with the precisions {hk} for coding the K parameters fk. It is then natural
to select the precisions {hk} in order to minimize the cost expressed byΦ({hk}). If the quantization steps {hk} are small, long
code lengths are entailed for the parameters {fk}, but also high precision is obtained in describing the probabilities of the
data, allowing to come close to the minimum code length − log P(x|{̂fk}). On the contrary, larger quantization steps {hk}
entail shorter code lengths for the parameters {fk}, but also less accuracy in describing the probabilities of the data with a
coding performance further away from the minimum− log P(x|{̂fk}). One can thus expect an optimal configuration for the
precisions {hk} that will minimize the total description length of Eq. (A.3), and that will come by nullifying the derivatives

∂Φ

∂hk
=

∂

∂hk

[
1
2

K∑
i=1

K∑
j=1

Jij({̂fk})hihj −
K∑
k=1

log(hk)

]
. (A.5)

Due to the symmetry Jij = Jji, it follows from Eq. (A.5),

K∑
i=1

Jik({̂fk})hi −
1
hk
= 0, (A.6)

for all k = 1 to K .
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To make the Jij’s explicit, one has from Eq. (5), ∂[− log P(x|{fk})]/∂ fi = −Ni/fi, and then Jij({fk}) = Ni/f 2i if i = j, and
Jij({fk}) = 0 if i 6= j. The optimal precisions {hk} then follow from Eq. (A.6) as

hk =
f̂k
√
Nk
=

√
Nk
N
δx−1, (A.7)

for all k = 1 to K . The optimal precisions {hk} of Eq. (A.7) are dependent upon the optimal parameter values {̂fk}. For con-
sistency of their derivation, the optimal coding precisions hk’s of Eq. (A.7) are determined by the f̂k’s but would not vary for
coding other fk’s that would deviate from the f̂k’s.
At the optimal {hk} of Eq. (A.7) one finds

∑
i
∑
j Jij({̂fk})hihj = K and a minimum forΦ({hk})which is K/2+ K log(N)−∑K

k=1 log(
√
Nk), leading to a parameter code length in Eq. (A.1) as

L({̂fk}) =
K
2
log(N)−

1
2

K∑
k=1

log
(
Nk
N

)
. (A.8)

Also, in Eq. (A.3), the data code length − log P(x|{̂fk}) is provided by Eq. (8). This leads, at the optimal {hk} of Eq. (A.7), for
the total description length of Eq. (A.2), to the minimum

Ltotal({̂fk}) = −
K∑
k=1

(
Nk +

1
2

)
log(Nk)+

K
2
+

(
N +

K
2

)
log(N)+

K
2
log(N)− N log(K)+ N log

(
1x
dx

)
, (A.9)

or equivalently

Ltotal({̂fk}) =
(
N +

K
2

)
H({̂pk})+

K
2
+
K
2
log(N)− N log(K)+ N log

(
1x
dx

)
, (A.10)

with this time the entropy estimator

H({̂pk}) = −
K∑
k=1

Nk + 1/2
N + K/2

log
(
Nk
N

)
. (A.11)

Eqs. (A.8), (A.9) and (A.10) are close, respectively, to Eqs. (16), (18) and (20) from Section 6. However, this approach based
on Eqs. (A.8)–(A.10) suffers from the same limitation as the approach of Section 6, as explained in Section 11: the code it
uses for the model parameters {̂fk} is not decodable by the receiver. This is so because Eq. (A.8) arranges for the parameters
{̂fk} a code length which depends on the data through the Nk’s. Since these counts Nk are not known to the receiver when it
starts its decoding task, this first step of decoding the parameters cannot take place. To circumvent this limitation, a simpler
approach [1]would quantify the code length forK real independent parameters asK log(N)/2, specially at largeN , to replace
Eq. (A.8) or Eq. (16). But for the present histogram parameters, as we mentioned, K independent real (continuously-valued)
independent parameters is not a natural assumption, and this is not needed by the alternative approach of Section 7.
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