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Noise-Improved Bayesian Estimation
With Arrays of One-Bit Quantizers

David Rousseau and Francgois Chapeau-Blondeau

Abstract—A noisy input signal is observed by means of a paral-
lel array of one-bit threshold quantizers, in which all the quantizer
outputs are added to produce the array output. This parsimonious
signal representation is used to implement an optimal Bayesian
estimation from the output of the array. Such conditions can
be relevant for fast real-time processing in large-scale sensor
networks. We demonstrate that, for input signals of arbitrary
amplitude, the performance in the estimation can be improved by
the addition of independent noises onto the thresholds in the array.
These results constitute a novel instance of the phenomenon of
suprathreshold stochastic resonance in arrays, by which nonlinear
transmission or processing of signals with arbitrary amplitude can
be improved through cooperative coupling with noise.

Index Terms—Estimation, noise, nonlinear arrays, quantizer,
sensor arrays, stochastic resonance (SR).

I. INTRODUCTION

ULTISENSOR arrays are currently an area of active

research: Nonlinear arrays, microarrays or nanoarrays,
intelligent sensing arrays incorporating preprocessing of data,
and arrays drawing inspiration from sensory neurons constitute
interesting lines of research in this area [1], [2]. In the present
paper, we consider parallel arrays of threshold comparators
or one-bit quantizers. Such simple devices can be useful in
building large-scale arrays that are very efficient in terms of
resources and time for data processing, storage, and commu-
nication, and in terms of energy supply, with a possibly high
density of integration in solid-state realizations. Such arrays of
comparators have similarities with flash analog-to-digital con-
verters or with digital sonar arrays [3]. Such arrays of threshold
devices also mimic, in a crude way, the nonlinear behavior,
which can be present in networks of sensory neurons [4].
These arrays are therefore specially appealing in devising novel
strategies based on multisensor networks for nonlinear signal
and information processing.

A specific interest of such parallel arrays of comparators is
that they have recently been shown to lend themselves to the
phenomenon of suprathreshold stochastic resonance (SR). SR
is a nonlinear phenomenon by which the action of noise can
improve the performance of signal-processing or measurement
systems [5]-[12]. Since its introduction some 20 years ago, SR
has gradually been shown to be feasible under several different
forms, with various types of systems, signals, and indexes
of performance receiving improvement from the noise [10],
[13]-[21]. Most occurrences of SR known today involve a
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signal which is, by itself, too small or ill-conditioned to elicit
a strong response from a nonlinear system. Injection of noise
then, through a cooperative interaction, brings assistance to
the small signal in eliciting a more efficient response from the
nonlinear system, for instance, by overcoming a threshold or a
potential barrier.

Recently, an interesting new form of SR has been intro-
duced under the name of suprathreshold SR since it is not
restricted to a small, subthreshold, or ill-conditioned signal
[22], [23]. Suprathreshold SR relies on a parallel array of
identical nonlinear devices. At the location of each device,
an independent noise is injected in the process. The result
is to make each one of the identical devices elicit a distinct
output in response to a same common input signal. When the
individual outputs are collected or averaged over the array to
produce a global response, it turns out that a net improvement
can be obtained compared to the response of a single device
with no noise injected. Qualitatively, its benefit comes from the
diversity induced by the injected noises in the responses of the
individual nonlinear devices over the array. This suprathreshold
SR does not involve a small signal receiving assistance from the
noise to elicit a more efficient response from a single isolated
nonlinear system. As such, suprathreshold SR can be viewed as
a specifically distinct mechanism under which an improvement
by noise can take place.

Since its recent introduction in [22], suprathreshold SR has
been shown to be possible in various conditions, with different
types of signals and indexes of performance, including Shannon
mutual information [3], [22], [23], input—output cross corre-
lation [24], Fisher information [25], or signal-to-noise ratio
[26]. Suprathreshold SR has also been applied to arrays of
sensory neurons [27], to motion detectors [28], and to cochlear
implants [29]. The most simple systems which have been
reported to give way to suprathreshold SR and which have been
exploited to investigate its properties are the parallel arrays of
threshold comparators or quantizers mentioned earlier. A very
recent study [30] demonstrates that such arrays can show detec-
tion capabilities that are improved by noise via suprathreshold
SR. In the present paper, we extend the investigation of the
capabilities of these arrays for noise-improved information
processing or measurement via suprathreshold SR. We use
these arrays for a Bayesian estimation task, and we demonstrate
the possibility of conditions where the estimation performance
is augmented by injection of noise in the array.

II. ESTIMATION FROM A NONLINEAR PARALLEL ARRAY

A signal z,(t) is dependent upon parameter a, whose pos-
sible values are distributed according to the prior probability
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density function (pdf) p, (u). This signal z,(t) is observed by
means of a parallel array of NV threshold comparators or one-bit
quantizers, following the setting of [3] and [22]. We arrange for
the possibility of a noise n;(¢), which is independent of x,(t),
to be added to z,(t) before quantization by quantizer i. The N
threshold noises 7;(t) are taken as white, mutually independent,
and identically distributed with cumulative distribution function
F,(u). Quantizer 4, with a threshold 6;, delivers the output

yi(t) = U [za(t) +mi(t) — 4],

where U (u) is the Heaviside function, i.e., U(u) =1ifu >0
and is zero otherwise. The response Y (¢) of the array is
obtained by summing the outputs of all the quantizers, as

i=1,2,...,N (1)

N
Y(t) = Z yi(1). )

The array output of (2) is measured at M distinct times ¢;, for
j=1to M, so as to provide M data points Y; = Y (¢;). We
then want to use the data Y = (Y7,...,Yys) to estimate the
value of a that produced the observation. Once Y is observed,
a posterior pdf p(a|Y") for parameter a can be defined. A given
estimator a(Y") for a achieves a mean-square estimation error
defined [31] as the expectation (conditioned by observation Y')

)= Ela-a¥] = [la-a(¥)Fpa¥)da G

It is easy to show that £(Y) of (3) can equivalently be
expressed as

E(Y) =[a—E(a|]Y)]? + var(a]Y) 4)

with E(a|Y) = [~ _ap(a|Y)da and var(a]Y)= [
E(alY)2p(a] Y )da,

Since var(a|Y") in (4) is nonnegative and independent of @,
the optimal Bayesian estimator that minimizes error £(Y"), for
any given observation Y, comes out as

o —

o

a(Y) = B(aY) = [ aplalY)da )

—00

and its performance is measured by the minimal error
E(Y) =var(alY) = / [a — E(a|Y)]? p(a]Y)da. (6)

—00

A model that shows how x,(t), and then Y via (1) and (2),
are related to parameter a allows one to define the conditional
probabilities Pr{Y |a} of observing one specific Y among the
(N + 1)M accessible states, given a. With the prior information
summarized by p,(a), the Bayes rule then provides access to
the posterior pdf under the form

Pr{Yla}pa(a)

plaly) = gk

(7

with the total probability Pr{Y} = [~ Pr{Y|a}p,(a)da.
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For any given observation Y, the optimal Bayesian estimator
ap(Y) from (5) achieves the minimum Eg(Y) from (6) of
the error £(Y) from (3). Consequently, ag(Y") also achieves
the minimum Eg of error £(Y") averaged over every possible
observation Y, i.e., ag(Y’) minimizes ) .y £(Y) Pr{Y}, and
the minimum that is reached is

Ep =) var(a]Y)Pr{Y} (8)

Y

where the sums on Y run over the (N + 1) accessi-
ble states, from ¥ = (Y1 =0,...,Ypy =0) to Y = (Y1 =
N,....,.Yy =N).

To proceed, at any time ¢;, for a fixed given value z, of
the input signal z,(t;), we have the conditional probability
Pr{y;(t;) = 0|z, } which is also Pr{z, + n;(t;) < 6;}. This
amounts to

Pr{yi(tj) = O|£L’a} = Fn(gz — iL’a). (9)

In the same way, we have Pr{y;(t;) = 1|z, } =1—F,(0; —x,).

To show the possibility of a noise-improved estimation, we
assume, as done in [23], the simplest configuration of the array,
where all the thresholds 6; share the same value 6; = 6 for
all 4. The conditional probability Pr{Y (¢;) = Yj|z,}, for any
accessible value Y; = 0 to NV, then follows, according to the
binomial distribution, as

Pr{Y (t;) =Yj|za}

=CY (1= Fy(0 — 24)]"7 Fy(0 — za)¥ 5 (10)
where C{)’j is the binomial coefficient.

For the sake of definiteness, concerning the parametric de-
pendence of x,(t) on a, we shall consider the broad class
of processes, where x,(t) is formed by the additive mixture
Za(t) = &(t) + s4(t). The signal £(¢) is a random input noise,
which is white and independent of a and of 7;s, with pdf
fe(u). Signal s,(¢) is deterministic for a fixed value of a. For
instance, s,(t) may be the constant signal s,(t) = a or the
periodic signal s, (t) = sin(at), or any other signal of known
deterministic form that is parameterized by a. At time ¢, the pdf
for the values of x,(t) given a is thus given as fe{u — s,(¢)],
and we therefore obtain the conditional probability

o]

Pr{Y(t;) = Y;la} = / O [1 = Fy(6 —u)]"

—00

X Fy (0 — u)N 7Y fe (u — sq(t5)) du. (11)

Since the noises £(t) and 7);(t) are white and mutually indepen-
dent, the conditional probability of (7) factorizes as

M
Pr{Yla} = [[Pr{¥(t;) = Vjla}.

j=1

(12)

Equations (11) and (12), through (7), will enable an explicit
evaluation of the optimal Bayesian estimator of (5) and of its
performance measured by (6) or (8). This will be obtainable,
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Fig. 1. RMS error of the optimal Bayesian estimator as a function of the rms
amplitude o, of the threshold noises 7;(t) chosen zero-mean Gaussian. The
input noise £(t) is a zero-mean Gaussian with an rms amplitude o¢ = 1. The
prior pdf pq(u) is a zero-mean Gaussian with an rms amplitude o, = 1. All
the thresholds in the array are set to & = 0, with M = 1. The solid lines are

=1/2 . L

£ B/ from the theory of (8). The dashed line is the estimation error og;,, from
(13) of the same optimal (minimal error) estimator operating directly on the
input-signal-noise mixture x4 (t).

possibly through numerical integration, for any definite condi-
tions concerning the following: 1) the input signal via s, (¢) and
Pa(u); 2) the input white noise via f¢(u), and 3) the measuring
array via 6, N, and F,(u). We shall now use this theory to
illustrate the existence of conditions where enhancement of the
threshold noises 7;(¢) results in an improved performance for
the optimal Bayesian estimator of a from Y.

III. NOISE-IMPROVED ESTIMATION

For illustration of the possibility of a noise-improved estima-
tion via suprathreshold SR, we consider the simple case of a
constant input signal s,(¢) = a. The input noise £(¢) is taken
with zero mean and rms amplitude o¢. The common threshold
in the array is set at the input mean, i.e., § = E[z,(t)], which
is known as soon as p,(u) and fe(u) are specified. Fig. 1 then

shows the evolution of the rms estimation error 2}13/ 2 from (8)
as a function of the rms amplitude o,, of the threshold noises
for various sizes N of the array when both the input noise &(¢)
and the threshold noises 7;(t) are zero-mean Gaussian.

In Fig. 1, the choice § = E[z,(t)] ensures that the input-
signal-noise mixture x,(t) is suprathreshold, in the sense that
24(t) evolves on both sides of the threshold 6 and can cross 6
without assistance from the threshold noises 7; (). As a conse-
quence, if the array is reduced to a single device (N = 1), the
added threshold noise 71 (t) does not improve the performance,
and its increase monotonically degrades the estimation error

3113/ 2, as shown in Fig. 1. When N > 1, in the absence of the
threshold noises 7;(t), all the quantizers in the array switch in
unison, acting like a single quantizer. In this case, at o, = 0,
the performance of the array does not depend on size N of
the array. At N > 1, application of the threshold noises 7);(t)
then allows for the quantizers to differently respond. This is
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the source of the richer response of the array with threshold
noises. For the estimation task performed from the array output,
this translates into a possibility of improving the performance

L =1/2 .
measured by the estimation error £ B/ , with, foreach N > 1, a
nonzero optimal amount of the threshold noises that minimizes

?]13/ 2, as shown in Fig. 1. This is the suprathreshold SR effect,
which is reported here in a Bayesian estimation task.

For comparison of the optimal Bayesian estimation from
the array output that is addressed in Fig. 1, it is interesting
to consider the same optimal estimator (the minimal-error
estimator) that would directly operate on the input-signal-noise
mixture 2, (¢) rather than on its quantized representation by the
array. By applying on x,(t) the principles of optimal Bayesian
estimation similar to those exposed in Section II, it comes out
that, when the input noise £(t) is zero-mean Gaussian, the
optimal Bayesian estimator [31] operating directly on x,(¢) is
apin, Which achieves the rms estimation error op;y, verifying

1 1 M
2 = o + ) (13)
OBin o O—g
with the estimator itself reading
2 2
N O%: O%:
UBin = —22B(a) + M -7, (14)
o2 e
with the empirical mean of the measurements 7, =

_1 M
M Zj:l Ta(ty)-

In Fig. 1, the rms estimation error op;, from (13) is rep-
resented by the dashed line. It is shown in Fig. 1 that, in
the optimal Bayesian estimation from the array output, the

minimal value reached by the estimation error 5113/2 at the
optimal level of the threshold noises, as N increases, tends
to the performance op;, of the optimal Bayesian estimator
operating directly on the input-signal-noise mixture x,(¢). This
proves that the optimal Bayesian estimator ag from the output
of the array of one-bit quantizers, as the array becomes large, is
able to perform as efficiently as the optimal Bayesian estimator
apin operating directly on the input-signal-noise mixture x,(t).
At the same time, Fig. 1 shows that, with relatively modest
sizes IV, the performance of the array comes close to the best
performance op;, at the input. Advantages afforded by the array
lie in the parsimony of the representation and simplicity of
operation (possibly associated to rapidity), working on a few
bits collected by the comparators, as opposed to the infinite
number of bits, in principle, associated with the analog input
Z4(t). In addition, in various circumstances, it may be the case
that the analog input x,(¢) is not directly accessible when no
linear transducers are available to form a direct image of x,(t)
that is manageable by the signal-processing system.

Fig. 2 represents the evolution of the rms estimation error

3113/ ? in the same conditions as in Fig. 1, except for the number
of data points M = 2. As usual, in Bayesian estimation, the
theoretical calculation of the rms estimation error gets more
and more computationally demanding as the number of data
points M increases. This is because the rms error results from
an average (expressed by multiple sums or integrals) over all
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Fig.2. Same as in Fig. 1, except that M = 2.

possible configurations of the data, with the number of that
configurations exponentially growing with the number of data
points M. This is the computational price to pay to have
access to the theoretical performance of a Bayesian estimator.
However, the practical application of the estimator itself on
one observed data set is much more direct since this does not
require averaging over all the data configurations. This explains
why our calculation of the rms estimation error in Figs. 1
and 2 remains limited to small values of M. Nevertheless, the
important point with Fig. 2 is to verify that the possibility of
. . =1/2 .
improvement by noise of the rms error £ ~ is preserved when
the number M of data points increases. The minimal rms error
(shown in Fig. 2 in arrays with size /N > 1) is always achieved
at a nonzero level of the added threshold noises 7;(t), which is
the SR effect.

IV. DISCUSSION AND CONCLUSION

To summarize, we have considered simple threshold com-
parators for estimation in a Bayesian framework. When such
simple binary sensors are used in isolation, a rather crude
estimation capability results. We have shown that, by associ-
ating these simple sensors into arrays, an enhanced estimation
capability is obtained, owing to the action of added noises,
through the SR phenomenon. The present results contribute
to the inventory and analysis of SR, especially through the
specific mechanism of SR in parallel uncoupled arrays. They
also contain significance in the direction of novel architectures
and processes for sensing arrays.

The results that are shown in Figs. 1 and 2 represent a new
manifestation of suprathreshold SR, which is applied here for
the first time to a Bayesian estimation task. The evolutions of
the estimation error obtained in Figs. 1 and 2 are quite reminis-
cent of the evolutions of other performance indexes obtained in
different instances of suprathreshold SR, namely, the Shannon
mutual information in [23], the correlation coefficient in [24],
the Fisher information in [25], a signal-to-noise ratio in [26], or
a probability of detection error in [30]. This is an important
point to note because all these indexes of performance are
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different and relate to distinct signal-processing tasks. This
contributes to establish SR, which is understood as a possibility
of noise-improved signal processing, as a general nonlinear
phenomenon which can be obtained in many contexts under
many distinct forms, with the ability to enhance many different
performance indexes. The specific structure considered here for
Bayesian estimation, i.e., parallel arrays of one-bit quantizers,
can be considered as realizing a suboptimal estimator. The
central contribution of the present study is to demonstrate
the feasibility in this structure, for improvement by noise of
Bayesian estimation. A common feature with many other forms
of SR previously reported is the suboptimal character of the
processor which receives improvement by noise, as stressed,
for instance, in [32]. However, some optimal processors have
also been shown to lend themselves to a form of SR, with
a performance for the optimal processor which can improve
when the optimal processor operates at a higher level of noise.
This possibility of SR has been shown with optimal detectors
[33]-[35] and optimal estimators [12], and the mechanism of
SR in parallel arrays, as studied here, could be investigated for
further improvement in this direction.

The present approach is based on SR for improvement by
addition of the noises 7);(¢) to one-bit quantizers with a fixed
common threshold. The procedure can also be viewed as quan-
tization with a distribution of random thresholds. By contrast,
the common approach to quantization would be to select a
nonrandom distribution of the thresholds in order to optimize a
specific design criterion, and many studies have been conducted
along this line for optimal quantization [36]. However, finding
optimal distributions of the thresholds is, generally, a difficult
optimization problem; moreover, the solutions are likely to vary
with the properties of the input signal s, (¢) and input noise £(t).
Addition of the noises 7;(¢) with a common threshold can be
considered as an SR-based alternative that dispenses one from
facing the difficult and specific determination of the optimal
distribution of the quantization thresholds. A good performance
can, nevertheless, be obtained by this SR-based approach with
a common threshold and added noises 7;(t), as proved by
the behavior of the performance of the array compared to the
overall best performance given by op;, in Figs. 1 and 2. The
SR-based estimation might also reveal more robust to variations
in the input z,(t) with respect to the nominal conditions of
an optimal distribution of the quantization thresholds. Finally,
situations may exist due to hardware limitations, where the
thresholds 6#; are not separately adjustable; this could be the
case, for instance, with nanodevices or with sensory neurons.
However, the more complex conditions with distributed thresh-
olds 6; could be explicitly investigated through an extension of
the present approach to uncover how the specific properties and
potentialities of the noise-improved estimation evolve. Multiple
parameter estimation could also be addressed as an extension to
the present approach.

Compared to linear sensors, the present approach is based on
quite simple nonlinear devices producing a very parsimonious
one-bit representation of the signal. Estimation aided by noise
with such one-bit quantizers can be specially appealing in the
context of measurement for real-time processing with large-
scale sensor networks. In addition, in various circumstances, the
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analog input may not be accessible when no linear transducers
are available for this. It will be the case, for instance, with
sensory neurons, which form a thresholded all-or-nothing type
of representation of an analog signal from the physical environ-
ment, bearing similarities with the representation by the present
array of comparators [27], [29], [37]. This will also be the
case with nanodevices with intrinsic nonlinearities and usable
in building sensor microarrays [38]. The estimation aided by
noise that we have described in arrays can be specially relevant
in these contexts of intrinsically nonlinear sensing networks.
This can provide a basis for devising novel unconventional in-
telligent sensing arrays that are capable of exploiting the noise.
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