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Multiscale Analysis of Microvascular Blood Flow:
A Multiscale Entropy Study of Laser Doppler

Flowmetry Time Series
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Abstract—Processes regulating the cardiovascular system (CVS)
are numerous. Each possesses several temporal scales. Their inter-
actions lead to interdependences across multiple scales. For the
CVS analysis, different multiscale studies have been proposed,
mostly performed on heart rate variability signals (HRV) reflect-
ing the central CVS; only few were dedicated to data from the
peripheral CVS, such as laser Doppler flowmetry (LDF) signals.
Very recently, a study implemented the first computation of multi-
scale entropy for LDF signals. A nonmonotonic evolution of multi-
scale entropy with two distinctive scales was reported, leading to a
markedly different behavior from the one of HRV. Our goal herein
is to confirm these results and to go forward in the investigations on
origins of this behavior. For this purpose, 12 LDF signals recorded
simultaneously on the two forearms of six healthy subjects are
processed. This is performed before and after application of phys-
iological scales-based filters aiming at isolating previously found
frequency bands linked to physiological activities. The results ob-
tained with signals recorded simultaneously on two different sites of
each subject show a probable central origin for the nonmonotonic
behavior. The filtering results lead to the suggestion that origins of
the distinctive scales could be dominated by the cardiac activity.

Index Terms—Laser Doppler flowmetry (LDF), microvascular
blood flow, multiscale analysis, multiscale entropy.

I. INTRODUCTION

THE CARDIOVASCULAR system (CVS) is regulated by
multiple processes. Each of these processes has its own

temporal scales and their interactions lead to a multiscale be-
havior for the CVS. This is true both for the central and the
peripheral CVSs. The central CVS corresponds to the activities
at the heart itself and can be analyzed with heart rate variability
(HRV) data. The peripheral CVS can be studied through laser
Doppler flowmetry (LDF) time series [1], [2]. LDF signals cor-
respond to the microvascular blood flow and are commonly used
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Fig. 1. LDF signal recorded on the forearm of a healthy subject. The sampling
period T is 0.05 s and the acquisition duration is 19.16 min.

in clinical research to monitor the microvascular function that
controls the peripheral resistances. LDF signals exhibit complex
fluctuations (see Fig. 1) that have been the subject of many re-
cent studies to understand their underlying biophysical origins
(see, e.g., [3]–[5]).

Different multiscale studies have been performed on data
from the central CVS (HRV data). Some of them used a multi-
fractal analysis, others a scale-dependent Lyapunov exponents
study (see, for example, [6]–[8]). Recently, some authors have
proposed a multiscale entropy analysis of HRV data [9], [10].
Multiscale entropy aims at quantifying irregularity of processes
taking into account their multiple time scales. It has been shown
that multiscale entropy of HRV data is able to separate healthy
and pathologic groups [9], [10]. A very recent study has im-
plemented the first computation of the multiscale entropy for
signals of the peripheral CVS (LDF signals) [11]. A nonmono-
tonic evolution of the multiscale entropy for LDF signals has
been reported. This behavior is markedly different from the one
of HRV data, displays a monotonic increase with scales. The
multiscale entropy of LDF signals observed in [11] presents
two distinctive scales with two extrema: the multiscale entropy
first reaches a maximum and then decreases to reach a minimum.
This suggests that the underlying processes present maximum
and then minimum irregularities at the corresponding scales.
Our goal herein is to propose both theoretical and experimental
investigations to confirm the results previously reported on the
multiscale entropy for LDF signals and to go forward on the un-
derstanding of the bimodal pattern observed. For this purpose,
we first introduce in what follows the multiscale entropy con-
cept. Then, based on previous spectral analyses of LDF signals
where characteristic frequency bands linked to physiological
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processes were reported, LDF signals are filtered to remove the
spectral bands linked to some of these physiological processes.
The results are analyzed, discussed, and finally interpretations
for the origin of the distinctive scales observed on the multiscale
entropy of LDF signals are deduced.

II. MATERIALS AND METHODS

A. Measurement Procedure

Six healthy subjects (29.0 ± 6.6 years old) participated in the
study. They were asked to refrain from consuming caffeine in the
2 h preceding the test and from moving during the acquisitions
(to avoid outliers in the signals). A laser Doppler flowmeter was
used (Perimed, Stockholm, Sweden). As suggested by the man-
ufacturer, the time constant of the laser Doppler flowmeter was
set to 0.2 s to avoid aliasing. Two LDF probes were positioned
on the two forearms of each subject (one probe on each volar
surface of the forearm). Two LDF signals were, thus, recorded si-
multaneously on each subject. The acquisitions were performed
in a room with an ambient temperature set at 23 ± 1 ◦C, between
9.00 A.M. and 6.00 P.M. The 12 LDF signals were recorded in
arbitrary units (a.u.) [12] on a computer via an A/D converter
(Biopac system, Santa Barbara, CA). The sampling period T
was chosen equal to 0.05 s. For each signal 23 000 samples
were stored (19.16 min). These signals were then processed, as
described later (no preprocessing to remove the possible outliers
was performed).

B. Multiscale Entropy Analysis

Entropy is a measure of the uncertainty associated
with a random variable. For a time series of n ran-
dom variables {Xi} = {X1 , . . . , Xn} with set of values
θ1 , . . . , θn , respectively, the joint entropy is defined as
Hn = −

∑
x1 ∈θ1

. . .
∑

xn ∈θn
p(x1 , . . . , xn ) log(p(x1 , . . . , xn ))

where p(x1 , . . . , xn ) is the joint probability for the variables
X1 , . . . , Xn . Entropy is determined on a single-scale analysis.
In order to obtain entropy values through scales, Costa et al. pro-
posed the multiscale entropy concept [9], [10]. The latter con-
sists first in constructing consecutive coarse-grained time series
{y(τ )} as y

(τ )
j = 1

τ

∑jτ
i=(j−1)τ +1 xi, 1 ≤ j ≤ N/τ, [9],

[10] where τ is the scale factor. Then, the entropy of each
coarse-grained time series is computed.

Several estimators of entropy have been described in the
literature. In order to estimate entropy of experimental data
(short and noisy times series), the sample entropy has been
proposed [13] and used in the multiscale entropy algo-
rithm [9], [10]. Sample entropy is the negative logarithm of
the conditional probability that two patterns of length m,
xm (i) = {xi, . . . , xi+m−1} and xm (j) = {xj , . . . , xj+m−1}
for which d[xm (i), xm (j)] ≤ r (where d[xm (i), xm (j)] =
maxk=1,...,m (|x(i + k − 1) − x(j + k − 1)|)), will still verify
this inequality when points xi+m and xj+m are added to patterns
xm (i) and xm (j), respectively. More precisely, let Bm

i (r) be
the product of (N − m − 1)−1 by the number of template vec-
tors xm (j) similar to xm (i) (within r) where j = 1 . . . N − m
with j �= i to exclude self-matches. The average of Bm

i (r) for

all i is computed as

Bm (r) =
1

N − m

N −m∑

i=1

Bm
i (r). (1)

In the same way, Am
i (r) is defined as the product of

(N − m − 1)−1 by the number of template vectors xm+1(j)
similar to xm+1(i) (within r) where j = 1 . . . N − m with
j �= i. The average of Am

i (r) for all i is computed in the similar
manner as in (1). Bm (r) is the probability that two sequences
will match for m points and Am (r) is the probability that two
sequences will match for m + 1 points. The sample entropy is
then defined as SampEn(m, r) = limn→∞ − ln Am (r)

B m (r) which is
estimated by the statistic SampEn(m, r,N)

SampEn(m, r,N) = − ln
Am (r)
Bm (r)

. (2)

Sample entropy provides a quantification of the irregularity
of a temporal series. In the multiscale entropy algorithm, the
sample entropy value is studied as a function of the scale factor
τ [9], [10].

In our whole study, we implemented the multiscale entropy
algorithm with m = 2 and r = 0.15 (as in [9]). In order to val-
idate the results given by our implementation, we first apply
the algorithm on two synthetic signals of known expression for
their multiscale entropy. The first synthetic signal is a Gaus-
sian white noise (mean: 0; variance: 1; uncorrelated noise). The
second synthetic signal is a 1/f (long-range correlated) noise.
Theoretical multiscale entropy values for white noise and 1/f
noise can be found in [9]. For both signals, 23 000 samples
are generated. Moreover, for all our LDF data, a normalization
is performed before the application of the algorithm (subtrac-
tion of the mean and division by the standard deviation). In all
our processes, we choose the shortest coarse-grained time se-
ries with 1000 samples (see, for example, [9]). Scale factors,
therefore, go from 1 to 23.

C. Physiological Scales-Based Filtering Process

By analyzing LDF oscillations with wavelets, some authors
found six spectral components within the frequency range
[0.0095, 2] Hz (see, for example, [5], [14]). The physiolog-
ical origins of these spectral components have been studied
through different works. The authors reported that the spectral
component around 1 Hz (frequency band [0.6, 2] Hz) corre-
sponds to the cardiac activity. The spectral component in the
frequency band [0.145, 0.6] Hz is related to the respiratory
activity. The four other spectral components in the lowest fre-
quency bands ([0.052, 0.145] Hz, [0.021, 0.052] Hz, [0.0095,
0.021] Hz, and [0.005, 0.0095] Hz) correspond, respectively, to
the myogenic, neurogenic, nitric oxide (NO)-related endothe-
lial, and NO-independent endothelial activities [5], [14]. Based
on these findings, we filtered our LDF signals in three ways:
1) we performed a low-pass filter to remove the frequencies
higher than 0.6 Hz. The cardiac activity was, therefore, sup-
pressed from the signals; 2) a bandpass filter was applied on the
original LDF time series to keep only the frequencies within the
[0.6, 2] Hz band (only the cardiac activity); and 3) a high-pass
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Fig. 2. Multiscale analysis of one realization of a Gaussian white noise (mean
0 and variance 1) and one realization of a 1/f noise. Symbols represent results
of simulations and lines correspond to analytic results [9].

filter was performed on the original LDF time series to keep
only the frequencies higher than 2 Hz (to remove all the previ-
ously mentioned physiological activities). The filters used are
Butterworth filters with an attenuation of 20 dB in the stopbands
(aforementioned frequency bands where characteristic frequen-
cies of physiological activities have been reported). On each
corresponding filtered signal, the multiscale entropy was deter-
mined. The resulting values were finally compared to the ones
of original LDF signals.

III. RESULTS AND DISCUSSION

The results for the multiscale entropy of Gaussian white and
1/f noises are shown in Fig. 2. We note that, for the two syn-
thetic signals, theoretical and numerically estimated multiscale
entropies are close to each other for each scale factor τ stud-
ied. Moreover, we observe that the white noise possesses higher
multiscale entropy values than the 1/f noise for scale factors
below τ = 5. However, the opposite is observed for scale factors
larger than τ = 5. This can be explained by the fact that for 1/f
noise, the fluctuations amplitudes of the coarse-grained time se-
ries stay to high levels when the scale factor τ increases. For
white noise, variance of coarse-grained time series decreases
with scale factor τ . The coarse-grained time series of 1/f noise
are therefore, in this respect, more irregular than coarse-grained
time series of white noise at the corresponding scale factors.

From Fig. 3 we observe that the multiscale entropy values for
representative LDF signals present a nonmonotonic behavior.
Multiscale entropy increases from scale factor τ = 1 to a scale
factor around τ = 6, where a maximum is reached. It then pro-
gressively decreases until a scale factor around τ = 15, where
a minimum is observed. Two distinctive scales are, therefore,
identified. This nonmonotonic pattern is observed on our 12 LDF
signals. The two singled out scales vary slightly between sub-
jects, but are similar for the time series recorded simultaneously
on the two forearms of each subject. LDF signals represent lo-
cal microvascular blood flow and are probe-position dependent.
Therefore, for a given subject, two LDF signals acquired at dif-
ferent locations, even if recorded simultaneously, may present
different amplitude in their entropy. The results show a non-
monotonic evolution of the multiscale entropy for the 12 LDF

Fig. 3. Multiscale entropy values for two LDF signals recorded simultaneously
on the two forearms of a healthy subject. The sampling period for the LDF signals
is T = 0.05 s, which gives, for scale factors going from τ = 1 to τ = 23, time
scales ranging from τT = 0.05 s to τT = 1.15 s.

signals. We therefore confirm the results obtained in [11] and
show that the singled out scales are similar for signals recorded
simultaneously at different locations on a given subject. This
also shows that the observed amplitude changes in the LDF
signals (amplitude changes due to physiological variations, e.g.,
modifications in vascular tone) do not influence much the multi-
scale entropy pattern. By contrast, the multiscale entropy found
for HRV data increases on small time scales and then stabi-
lizes to a constant value [10]. The nonmonotonic evolution of
the multiscale entropy observed for LDF signals is, therefore,
markedly different from the one of HRV data for which multi-
scale entropy presents a monotonic increase through scales. We
note that by opposition to ECG signals from which HRV data are
extracted, LDF signals do not possess any periodic pulsations.
All the samples of LDF recordings are, therefore, considered in
our computation.

The two distinctive scales observed show that LDF coarse-
grained time series undergo specific changes from high to low
irregularity: around 6T = 0.30 s and 15T = 0.75 s in Fig. 3.
In Fig. 3, the multiscale entropy is the lowest around 0.75 s;
the processes acting around this scale are, therefore, identi-
fied as having the lowest irregularity. The time scale around
0.75 s is close to the period of the heart beats. The regularity of
this strong rhythmic activity could be the origin of the low mul-
tiscale entropy recorded around 0.75 s in the LDF signal. That
could also explain why the singled out scales are similar for sig-
nals recorded simultaneously at different locations on a subject
(central activity). In order to confirm this hypothesis, we re-
moved one by one, with filters, the frequency bands containing
the aforementioned physiological activities in order to isolate
some of them. We then computed the multiscale entropy of the
resulting signals (filtered signals). Representative examples of
results are presented in Fig. 4. We observe that the bandpass
filtered LDF signals are the ones that show a behavior with
scales that is the closest to the one obtained with the original
LDF signals. This is true for our 12 LDF signals. Moreover, we
observe that the value of the multiscale entropy for the low-pass
filtered signals increases with scales. This is also true for our 12
LDF signals. For the high-pass filtered signals, the multiscale
entropy shows a decreasing pattern that reaches values near to
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Fig. 4. Multiscale entropy values for: two LDF signals recorded simultane-
ously on the two forearms of a healthy subject (circles); the low-pass filtered
signals (crosses); the bandpass filtered signals (squares); and the high-pass fil-
tered signals (hexagrams). Same as in Fig. 3 for the sampling period.

Fig. 5. (a) LDF signal recorded in a motility standard solution [12]. (b) Mul-
tiscale entropy values for the LDF signal presented in (a). Same as in Fig. 3 for
the sampling period.

0 for the highest scales studied. This is also true for our 12 LDF
signals.

From these results, we can suggest that the pattern of the
multiscale entropy observed for LDF signals on scales rang-
ing from 0 to 1.15 s is probably of central origin and prob-
ably mainly due to the activities acting in the scale range
[0.5, 1.66] s (frequency band [0.6, 2] Hz). The heart rate being in
this range of scales and being a central activity, we can hypoth-
esize that the pattern of the multiscale entropy for LDF signals
may be dominated by the regularity of the heart beats. The
other physiological activities (in the frequency range lower than
0.6 Hz) lead to growing multiscale entropy values with scales
(see Fig. 4). This behavior is also the one recorded in a solution
of polystyrene particles dispersed in water where a Brownian
motion can be hypothesized (motility standard solution [12])
for the underlying physical process producing the backscattered
light, and resulting in a measured LDF signal which is analyzed
in Fig. 5. The high-pass filtered signals present a multiscale en-
tropy with a decreasing pattern that reaches values near to 0 for
the highest scales studied. This decreasing behavior is close to
the one observed with Gaussian white noise (see Fig. 2). These
findings may be due to the role played by low frequencies in the

entropy at large scales. Further work is needed to explain these
latter behaviors.

IV. CONCLUSION

Multiscale entropy analysis is herein proposed to quantify the
irregularity of microvascular blood flow signals. The multiscale
entropy of LDF signals shows a nonmonotonic behavior. This is
markedly different from the results found for HRV data where
multiscale entropy increases with scales. Multiscale entropy of
LDF signals presents two distinctive scales where LDF signals
undergo specific changes from high to low irregularity. These
two distinctive scales are similar for signals recorded simulta-
neously at different locations on a given subject, suggesting the
implication of a common central activity. These results with the
ones given by physiological scales-based filtered signals com-
plement previous ones (e.g., [15]) and provide ground to support
that the behavior of the multiscale entropy for LDF signals is
dominated by the cardiac activity.
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