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Optimization of Quantum States for Signaling
Across an Arbitrary Qubit Noise Channel

With Minimum-Error Detection
François Chapeau-Blondeau

Abstract— For discrimination between two signaling states of a
qubit, the optimal detector minimizing the probability of error is
applied to the situation where detection has to be performed from
a noisy qubit affected by an arbitrary quantum noise separately
characterized. With no noise, any pair of orthogonal pure
quantum states is optimal for signaling as it enables error-free
detection. In the presence of noise, detection errors are in general
inevitable, and the pairs of signaling states best resistant to such
noise are investigated. With an arbitrary quantum noise, modeled
as a channel affecting the qubit, and when minimum-error
detection is performed from the output, a characterization of the
optimal input signaling pairs and of their best detection perfor-
mance is obtained through a simple maximization of a quadratic
scalar criterion in three constrained real variables. This general
characterization enables to establish that such optimal signaling
pairs are always made of two orthogonal pure quantum states,
but that they must be specifically selected to match the noise
properties and prior probabilities. The maximization is explicitly
solved for several generic quantum noise processes relevant to the
qubit, such as the squeezed generalized amplitude damping noise
which describes interaction with a thermal bath representing
a decohering environment and which includes as special cases
both the generalized and the regular amplitude damping noise
processes, and such as general Pauli noise processes which
include for instance the bit-flip noise and the depolarizing noise.
Also, examined is the situation of one imposed (pure or mixed)
signaling state, for which the other associated signaling state
optimal for noisy detection is determined as a pure state, yet not
necessarily orthogonal.

Index Terms— Quantum state discrimination, quantum
detection, quantum noise, noisy qubit, decoherence.

I. INTRODUCTION

THE discrimination between two alternative quantum
states, referred to here as quantum state detection, is

a fundamental process of quantum information, relevant for
instance to quantum communication, quantum cryptography,
quantum measurement [1]–[3]. Except in the special case
of two orthogonal quantum states, generally state discrim-
ination cannot be achieved perfectly and has to cope with
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inevitable error; and such a general situation is frequent since
quantum noise and decoherence are prone to break the orthog-
onality of two initial quantum states. A meaningful general
approach then is to seek the optimal quantum measurement
protocol, or the optimal detector, enabling discrimination with
minimum error. For a given pair of signaling states between
which to discriminate, the optimal detector achieving minimal
probability of error was characterized in [4]–[6].

The theory of quantum detection introduced in [4]–[6] has
been developed in several directions [7]–[15]. We shall use
here this theory of optimal quantum detection from [4]–[6],
yet within a distinct specific perspective. Most approaches
to quantum detection operate with quantum states which
are given, as pure or mixed states, and optimal processes
are determined directly matched to these given states. As a
distinctive specificity, we take here explicitly into account
the intervention of some quantum noise, which is separately
characterized, and whose characteristics are included as such
in the determination of the optimized detection process. This
is a common approach in classical signal and information
processing, where the optimal processors are usually derived to
match a noise which is separately characterized. This perspec-
tive is taken here for quantum detection. Instead of two given
quantum states directly accessible to the measurement protocol
for discrimination, we consider two initial signaling states
which can be prepared for a qubit, which are then altered by
some quantum noise process before they become accessible to
the measurement protocol for discrimination. Such a scenario
is specifically relevant to quantum communication, and more
broadly to any situation where a quantum system is not
directly accessible to measurement but only after alteration
by some noise, often representing the action of decoherence
through interaction with an uncontrolled environment. The part
which is given is the quantum noise process. It describes
the unavoidable action of some noise, modeled as channel
altering a qubit initially prepared in either of the two states
forming the input signaling pair. It is from this noisy version
of the qubit, accessible as the output of the noise channel, that
state discrimination or binary detection has to be performed
efficiently. For a given noise process, we will be interested
in determining the optimal initial or input signaling pair
of quantum states yielding the best detection performance
when minimum-error detection is performed from the noisy
qubit. This represents a distinct optimization perspective,
stemming from the explicit consideration of a definite quantum
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noise process characterized separately of the states to be
discriminated.

Still another optimization perspective is considered in [16],
where this time the quantum measurement protocol is fixed
and given, and one seeks the optimal input signaling states
rendering this fixed measurement optimal, although with no
explicit reference to a quantum noise process involved in
the situation. A comparable perspective is also taken in [17],
by optimizing input signaling states for quantum communica-
tion yet with no noise or for noiseless transmission.

Here, in order to characterize optimization relative to a
definite noise process, we consider detection on a qubit. The
qubit is a fundamental system of quantum information, and for
which general models of quantum noise can be worked out in
detail. We thus address minimum-error detection from a noisy
qubit. We will first briefly review the theory of minimum-error
detection from [4]–[6] and apply it to a noisy qubit, and then
introduce the modeling of a general quantum noise on the
qubit. A characterization of the optimal signaling pairs of qubit
states and their best performance for detection with arbitrary
noise will be obtained through a simple maximization problem.
This characterization enables to exhibit generic properties
of the optimal signaling pairs. In addition, the involved
maximization will be explicitly worked out for several
quantum noise processes of general relevance to the qubit.

II. MINIMUM-ERROR DETECTION FROM A NOISY QUBIT

Minimum-error quantum detection can be generally
characterized as follows [4]–[6]. A quantum system in
an N-dimensional Hilbert space HN , can be in one of
two alternative quantum states, represented by two density
operators ρ0 and ρ1, respectively with prior probabilities P0
and P1 = 1 − P0, as a result of its preparation. A general
measurement is performed on the system by means of a
positive operator-valued measure (POVM) with two elements
{M0, M1}, so as to obtain a conclusive decision on whether the
quantum system is in state ρ0 or ρ1. The overall probability
of detection error results as Per = tr(M1ρ0)P0 + tr(M0ρ1)P1.
The strategy to minimize Per uses the (Hermitian) test operator
T = P1ρ1 − P0ρ0 to define the optimal measurement as

Mopt
1 =

∑

λn>0

|λn〉 〈λn |, (1)

expressing that the optimal measurement Mopt
1 to detect

ρ1 is to project on the eigensubspace of T associated with
all its positive eigenvalues λn ; and Mopt

0 = 1 − Mopt
1 is

the complementary projection, with 1 the identity operator
on HN . The optimal POVM {Mopt

0 , Mopt
1 } achieves the

minimal probability of error expressible as

Pmin
er = 1

2

(
1 −

N∑

n=1

|λn |
)

= 1

2

[
1 − tr(|T|)

]
. (2)

This minimum-error detection strategy is now applied to
the qubit in H2. In particular, for the qubit, the properties
of the test operator T and of the minimum-error detection
of Eqs. (1)–(2) can be worked out analytically in detail.

The two states for the qubit can be parameterized as [2]

ρ j = 1

2

(
1 + �r j �σ

)
, j = 0, 1, (3)

with the two real 3-dimensional Bloch vectors �r j of Euclidean
norm ‖�r j ‖ ≤ 1, and �σ a vector assembling the three 2 × 2
Pauli matrices [σx , σy, σz] = �σ . For pure states ‖�r j ‖ = 1 while
‖�r j ‖ < 1 for mixed states. The test operator T = P1ρ1 − P0ρ0
for the qubit results as

T = 1

2

[
(P1 − P0)1 + �t �σ ]

, (4)

characterized by the test Bloch vector

�t = P1�r1 − P0�r0 = [tx , ty, tz ]�. (5)

The performance of the minimum-error detector
of Eqs. (1)–(2) for the qubit then follows as

Pmin
er = 1

2

(
1 − ‖�t ‖

)
, when ‖�t ‖ ≥ |P1 − P0|, (6)

Pmin
er = min(P0, P1), when ‖�t ‖ < |P1 − P0|. (7)

This characterization of the minimum-error detection
applies on two given qubit states (ρ0, ρ1) supposed directly
accessible to measurement. By contrast, for the sequel, we will
consider that only noisy versions are accessible after alteration
of the qubit by some quantum noise. A quantum noise acting
on a qubit affects its state ρ in a way which can be generally
represented by a completely positive trace-preserving linear
map of the form [2], [3]

ρ −→ ρ′ = N (ρ) =
∑

k

�kρ�†
k , (8)

with the Kraus operators �k (which need not be more than four
for the qubit) satisfying

∑
k �†

k�k = 1. Since the transformed,
noisy, state ρ′ = N (ρ) remains a density operator of the
form of Eq. (3), the map of Eq. (8) can be associated with
a transformation of the Bloch vector �r → �r ′ characterizing
the alteration of the qubit state.

When detection from the initial noise-free states (ρ0, ρ1)
was controlled in Eqs. (6)–(7) by the input test vector �t
of Eq. (5), now detection from the noisy states
[ρ′

0 = N (ρ0), ρ
′
1 = N (ρ1)] is controlled by the transformed

test vector

�t ′ = P1�r1
′ − P0�r0

′ = [t ′x , t ′y, t ′z]�, (9)

and the performance of the minimum-error detector of
Eqs. (1)–(2) operating on the noisy qubit follows as

Pmin
er = 1

2

(
1 − ‖�t ′‖

)
, when ‖�t ′‖ ≥ |P1 − P0|, (10)

Pmin
er = min(P0, P1), when ‖�t ′‖ < |P1 − P0|. (11)

To minimize the error probability Pmin
er of Eqs. (10)–(11),

the task is then to select the two signaling states (ρ0, ρ1),
or equivalently their two Bloch vectors (�r0, �r1), in order to
maximize the norm ‖�t ′‖ of the transformed test vector of
Eq. (9). This has to be accomplished in the presence of a given
quantum noise model that specifies how the two signaling
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states (ρ0, ρ1) or their two Bloch vectors (�r0, �r1) determine
the transformed test vector �t ′.

We shall now explicitly address this optimization of the
signaling pair (ρ0, ρ1) for general quantum noise models on
the qubit.

III. GENERAL QUANTUM NOISE ON THE QUBIT

An arbitrary noise process acting on the qubit, takes the
form of a completely positive trace-preserving quantum oper-
ation as in Eq. (8), and can be associated with a transformation
of the Bloch vector under the general form [2], [18]

�r → �r ′ = A�r + �c, (12)

where A is a 3 × 3 real matrix, and �c a real vector in �3.
Equation (12) realizes an affine map in �3 mapping the
Bloch sphere (ball) into itself. Further conditions constrain
A and �c to ensure complete positivity, limiting their norm, as
discussed in [18]. Here we consider A and �c as given as the
characterization of a valid quantum noise; the required con-
ditions will usually be automatically enforced by consistency
of the physical modeling of the noise process constructing
A and �c. The transformed test vector of Eq. (9) then follows as

�t ′ = A�t + �c ′, (13)

with �c ′ = (P1 − P0)�c.
By the polar decomposition [2], one can write A = US,

where U is a real unitary matrix, and S a real symmetric
matrix. The matrix S always has, associated with three eigen-
values (s1, s2, s3), three eigenvectors {�s1, �s2, �s3} forming an
orthonormal basis of �3. The transformation of the test
vector �t in Eq. (13) is thus a deformation by S along the axes
{�s1, �s2, �s3} followed by an isometry U and a translation by �c ′.
The resulting vector �t ′ has a squared norm expressible as

‖�t ′‖2 = �t ′��t ′ = ‖A�t ‖2 + 2�v��t + ‖�c ′‖2, (14)

with the vector �v = A��c ′. Maximizing the performance
Pmin

er of Eqs. (10)–(11) in minimum-error detection, requires
then to maximize the norm ‖�t ′‖, or equivalently ‖�t ′‖2 in
Eq. (14), by proper choice of the two signaling states (ρ0, ρ1)
or equivalently of their two Bloch vectors (�r0, �r1). Since ‖�t ′‖2

in Eq. (14) depends on (�r0, �r1) only through the input test
vector �t of Eq. (5), maximization of ‖�t ′‖2 need only be
performed according to the components of �t . Also, since the
input Bloch vectors �r0 and �r1 have at most unit norm, the input
test vector �t of Eq. (5) is constrained by ‖�t ‖2 ≤ 1.

Determination of the optimal signaling pair of states for
minimum-error detection from a noisy qubit affected by the
general noise process of Eq. (12), then amounts to maximizing
‖�t ′‖2 of Eq. (14) according to the components of �t of
Eq. (5) subject to the constraint ‖�t ‖2 ≤ 1. Concerning this
maximization, we have Theorem 1:

Theorem 1 (Optimum at Two Orthogonal Pure States):
The maximum of ‖�t ′‖2 in Eq. (14) always occurs at the
saturated constraint ‖�t ‖ = 1, indicating two orthogonal pure
signaling states (ρ0, ρ1) at the optimum. �

Proof: Since in Eq. (14) the two terms ‖A�t ‖2 and ‖�c ′‖2

are nonnegative, necessarily at the maximum of ‖�t ′‖2 the third
term 2�v��t is also nonnegative; if it were negative, the change

�t → −�t would increase ‖�t ′‖2, which is not feasible at the
maximum. Consequently, at the maximum of ‖�t ′‖2 in Eq. (14),
necessarily ‖�t ‖ = 1; if it were not so, a uniform scaling of �t to
reach ‖�t ‖ = 1 would also increase ‖�t ′‖2, which is not feasible
at the maximum. For �t in Eq. (5), this necessary condition
‖�t ‖ = 1 can only be achieved by the choice �r0 = −�r1
and ‖�r0‖ = ‖�r1‖ = 1, indicating necessarily two orthogonal
pure signaling states (ρ0, ρ1) to maximize the performance of
minimum-error detection expressed via ‖�t ′‖2 of Eq. (14).

To further determine the optimal �t maximizing ‖�t ′‖2

in Eq. (14), it is convenient to express the two vectors
�t = [t1, t2, t3]� and �v = [v1, v2, v3]� with their coordi-
nates referring to the orthonormal eigenbasis {�s1, �s2, �s3} of S.
Then it follows ‖A�t ‖2 = ‖S�t ‖2 = ∑3

k=1 s2
k t2

k establishing
Theorem 2:

Theorem 2 (Maximization in Eigenbasis): The maximiza-
tion problem of Eq. (14) can be expressed in the orthonormal
eigenbasis {�s1, �s2, �s3} of S as

max
�t

[
J (�t ) =

3∑

k=1

(
s2

k t2
k + 2vk tk

)]
, (15)

subject to ‖�t ‖2 =
3∑

k=1

t2
k = 1. (16)

�
A solution �t = �t opt solving the maximization of Theorem 2,

defines the optimal signaling pair of pure states (ρ
opt
0 , ρ

opt
1 )

by (�r0 = −�t opt, �r1 = �t opt), maximizing the performance in
minimum-error detection from the noisy qubit. Closed-form
solution to the maximization of Theorem 2 is not easily
accessible in general. For resolution, one can for instance use
Eq. (16) to obtain t2

3 = 1 − t2
1 − t2

2 so as to eliminate t3 in
Eq. (15) and then perform a maximization of Eq. (15) in (t1, t2)
over the unit disk t2

1 + t2
2 ≤ 1. Alternatively, one can define a

Lagrangian L for the system of Eqs. (15)–(16) as L = J (�t )+
ξ(‖�t ‖2 − 1) with Lagrange multiplier ξ . The stationarity con-
dition ∂L/∂ tk = 0 yields tk = −vk/(s2

k + ξ), for k = 1, 2, 3;
this put in the constraint ‖�t ‖2 = 1 then yields an equation
in the remaining sole unknown ξ . Yet, none of these two
approaches allows to reach closed-form solution in general.
However, special matrices A and vectors �c characterizing in
Eq. (12) specific noise processes of significant interest for the
qubit, lead to closed-form analytic solutions as we shall see in
the sequel. In addition, numerical resolution of Eqs. (15)–(16)
can always be performed for any given A and �c.

There also exist special configurations where the solution
to the maximization of Theorem 2 can be further specified
in general terms. In particular, for any noise with �c = �0
in Eq. (12), or when P0 = P1 = 1/2, the optimal �t maximizing
‖�t ′‖2 in Eq. (14), or equivalently solving Eqs. (15)–(16),
is a unit vector �t opt pointing in the direction of the eigen-
vector �sk having the eigenvalue with maximum modulus |sk |,
and it achieves the maximum ‖�t ′‖max = |sk | to be used
in Eqs. (10)–(11) to express the best detection performance.
This �t opt defines the optimal signaling pair (ρ

opt
0 , ρ

opt
1 ) by

(�r0 = −�t opt, �r1 = �t opt), modulo the change �t opt → −�t opt

for an equivalent solution, maximizing the performance in
minimum-error detection from the noisy qubit.
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IV. SQUEEZED GENERALIZED AMPLITUDE

DAMPING NOISE

A sophisticated and physically motivated noise process that
can affect a qubit is the squeezed generalized amplitude damp-
ing noise (SGAD) [19]–[21]. Such a noise process describes
the interaction, in various configurations, of the qubit with an
uncontrolled environment represented by a thermal bath. The
SGAD noise includes as special cases both the generalized
and the regular amplitude damping noise processes [2], [22].
The SGAD quantum noise can be modeled, in Eq. (8), by the
four Kraus operators [19]–[21]

�0 = √
p

[ √
1 − μ 0

0
√

1 − ν

]
, (17)

�1 = √
p

[
0

√
ν√

μe−i	 0

]
, (18)

�2 = √
1 − p

[√
1 − α 0

0 1

]
, (19)

�3 = √
1 − p

[
0 0√

α 0

]
, (20)

with the real parameters μ, ν, α and p all in [0, 1], and
	 a phase in [0, 2π), with more detail concerning the physical
parameters of the SGAD noise given in the Appendix.
The associated affine map in Eq. (12) follows with

A =
⎡

⎣
ax x axy 0
axy ayy 0
0 0 azz

⎤

⎦, (21)

and

�c = [0, 0, cz]�, (22)

with the components

ax x = p[√1 − μ
√

1 − ν + cos(	)
√

μν] + (1 − p)
√

1 − α,

(23)

ayy = p[√1 − μ
√

1 − ν − cos(	)
√

μν] + (1 − p)
√

1 − α,

(24)

axy = −p sin(	)
√

μν, (25)

azz = 1 − p(μ + ν) − (1 − p)α, (26)

cz = −p(μ − ν) − (1 − p)α. (27)

Since A in Eq. (21) is already a real symmetric matrix, then
A ≡ S, and the eigenvalues of S are s1 = s+, s2 = s− and
s3 = azz , with

s± = 1

2

(
ax x + ayy ± √

�
)
, (28)

and the discriminant of the characteristic equation
� = (ax x − ayy)

2 + 4a2
xy = 4 p2μν, from the expressions of

the components of A in Eqs. (23)–(25). Also, in this way

s± = p
(√

1 − μ
√

1 − ν ± √
μν

)
+ (1 − p)

√
1 − α. (29)

The associated eigenvectors of A ≡ S are �s1 = �s+, �s2 = �s−
and �s3 = [0, 0, 1]�, with

�s± =
[

1,
ayy − ax x ± √

�

2axy
, 0

]�
(30)

prior to normalization. From the expressions of the
components of A in Eqs. (23)–(25), one finally obtains the
two normalized eigenvectors

�s1 = �s+ = [cos(	/2),− sin(	/2), 0]�, (31)

�s2 = �s− = [sin(	/2), cos(	/2), 0]�. (32)

This demonstrates that the eigenvectors (31)–(32) of the
SGAD noise transformation A are only influenced by the
squeezing angle 	 as introduced in Eq. (A-1), simply oriented
by 	/2 in the plane (Ox, Oy), and are not influenced by its
other parameters in Eqs. (A-2)–(A-5) which on the contrary
affect the eigenvalues of Eq. (29).

For the SGAD quantum noise performing the affine trans-
formation of Eq. (13) with (A, �c) given from Eqs. (21)–(22),
the solution to Eqs. (15)–(16) can be obtained through a
geometric characterization as follows. The Bloch sphere
assimilated in �3 to the points �t satisfying ‖�t ‖ = 1 is
deformed by A into an ellipsoid, by compression along the
Oz axis and along the two orthogonal directions defined by
(�s1, �s2) of Eqs. (31)–(32) in the plane (Ox, Oy); then this
ellipsoid is translated by c′

z = (P1 − P0)cz along the Oz axis.
The resulting transformed points denoted by �t ′ will lead to the
maximum norm ‖�t ′‖ according to the following conditions.

When the eigenvalue s3 = azz has the maximum modulus,
i.e. |s3| = max(|s1|, |s2|, |s3|), then the extension is maximum
in the Oz direction for the ellipsoid after compression by
A of Eq. (21). The maximum extension |s3| = |azz| of the
ellipsoid added to the translation c′

z in the Oz direction, defines
the �t ′ with maximal norm, occurring in the Oz direction
with ‖�t ′‖max = |azz| + |c′

z|. Such a �t ′ in the Oz direction
with maximal norm ‖�t ′‖max = |azz| + |c′

z|, is achieved by
transforming �t = [0, 0, 1]� when azzc′

z > 0 or �t = [0, 0,−1]�
when azzc′

z < 0. This determines a unique optimal input test
vector �t = �t opt characterizing a unique optimal signaling
pair (ρ

opt
0 = |1〉 〈1| , ρopt

1 = |0〉 〈0|) when azzc′
z > 0 or

(ρ
opt
0 = |0〉 〈0| , ρopt

1 = |1〉 〈1|) when azzc′
z < 0. This optimal

signaling pair maximizes the performance of Eqs. (10)–(11)
in minimum-error detection from the noisy qubit altered by
the SGAD noise, with |azz| large enough.

However, a more generic situation for the SGAD noise is
with smaller |azz|. When s3 = azz is not the eigenvalue of A
with maximum modulus, then it is necessarily s1 = s+ > 0
from Eq. (29) which is the eigenvalue with maximum modulus.
In the compression by A of the Bloch sphere, the resulting
ellipsoid has thus a maximal extension s1 = s+ > 0 occurring
in the direction defined by the eigenvector �s1 = �s+ in Eq. (31).
When the translation by c′

z along the Oz axis is performed on
the ellipsoid, the point �t ′ resulting with maximal norm ‖�t ′‖max
is necessarily obtained by transforming through Eq. (13) an
input unit vector �t lying in the plane defined by �s1 and Oz,
and that can be parameterized in the orthonormal eigenbasis
{�s1, �s2, �s3 ‖ Oz} as �t = [t1, 0, t3 = tz]�. Any �t outside
this plane (�s1, Oz) would be transformed by A into a vector
with a component of shorter norm in the plane (Ox, Oy),
and finally into a �t ′ with shorter global norm ‖�t ′‖ when the
component along Oz (carrying the effect of the translation
along Oz) is included. Now for �t = [t1, 0, t3 = tz]�,
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since �v = [0, 0, azzc′
z]�, one obtains from Theorem 2 the

maximization problem

max
�t

[
J (�t ) = s2

1 t2
1 + a2

zzt2
z + 2azzc′

z tz
]
, (33)

subject to ‖�t ‖2 = t2
1 + t2

z = 1. (34)

The maximization of Eqs. (33)–(34) can be
solved by a Lagrange multiplier approach; or by
substitution of t2

1 = 1 − t2
z in Eq. (33) one obtains

J (�t ) = J (tz) = −(s2
1 − a2

zz)t
2
z + 2azzc′

z tz + s2
1 having a

maximum at tz = azzc′
z/(s

2
1 − a2

zz), which is sufficient for
an unconstrained maximization of J (tz) but not necessarily
the solution to Eqs. (33)–(34) since also tz ∈ [−1, 1]
is required. When tz = azzc′

z/(s
2
1 − a2

zz) ∈ [−1, 1],
this defines the solution to Eqs. (33)–(34) together with

t1 = ±
√

1 − t2
z determining two equivalent maxima of J (�t );

in this configuration, over the circle defined by t2
1 + t2

z = 1,
J (t1, tz) in Eq. (33) describes a closed loop with a saddle
profile with the two equivalent maxima described above,
and also two local minima at (t1 = 0, tz = ±1). When
tz = azzc′

z/(s
2
1 − a2

zz) �∈ [−1, 1], J (t1, tz) in Eq. (33)
describes a closed loop with the profile of a tilted ring, with
a single maximum at (t1 = 0, tz = 1) if azzc′

z > 0 or at
(t1 = 0, tz = −1) if azzc′

z < 0, and a single minimum
respectively at (t1 = 0, tz = −1) or (t1 = 0, tz = 1). This
solves the maximization of Eqs. (33)–(34) with solutions
�t = �t opt characterized in the parameterization
�t = [t1, 0, t3 = tz]� referring to the eigenbasis
{�s1, �s2, �s3 ‖ Oz} from Eqs. (31)–(32), from which a
parameterization �t = [tx , ty, tz = t3]� referring to the original
computational basis can readily be deduced.

In this way, as summarized by Theorem 3, the optimal
input test vector �t = �t opt solving Eqs. (15)–(16) or equiva-
lently maximizing ‖�t ′‖2 in Eq. (14), is determined for any
configuration of the SGAD quantum noise. The resulting
maximum ‖�t ′‖ = ‖�t ′‖max guarantees the best performance
in Eqs. (10)–(11) for minimum-error detection. Each solu-
tion �t = �t opt determines a unique optimal signaling pair
(ρ

opt
0 , ρ

opt
1 ) of two orthogonal pure states maximizing the

performance in minimum-error detection from a noisy qubit
altered by the SGAD noise in the corresponding configuration.

Theorem 3 (Optimal States for the SGAD Noise):

s1 = p
(√

1 − μ
√

1 − ν + √
μν

)
+ (1 − p)

√
1 − α.

When s1 > |azz|,
if tz = topt

z = azzc′
z/(s

2
1 − a2

zz) ∈ [−1, 1],
then topt

1 = ±
√

1 − t2
z ,

and ‖�t ′‖max = s1

√
1 + c′2

z/(s
2
1 − a2

zz).

if tz = azzc′
z/(s

2
1 − a2

zz) �∈ [−1, 1],
then topt

z = sign(azzc′
z) = ±1, topt

1 = 0,

and ‖�t ′‖max = |azz| + |c′
z |.

When s1 ≤ |azz|,
then �t opt = [0, 0, sign(azzc′

z) = ±1]� ‖ Oz,

and ‖�t ′‖max = |azz| + |c′
z |.

�

Fig. 1. For minimum-error detection from a qubit altered by a SGAD
quantum noise, with prior P0 = 0.7, as a function of the temperature T of
the squeezed thermal bath at three values of the squeezing magnitude r = 0,

0.5 and 1, the optimum determined by Theorem 3 for (A) the component t
opt
z

of the optimal input test vector �t opt , and (B) the associated best performance
Pmin,opt

er from Eqs. (10)–(11).

Theorem 3 demonstrates that for minimum-error detection,
in general, both the optimal signaling pair (ρ

opt
0 , ρ

opt
1 )

and the resulting best performance controlled by ‖�t ′‖
in Eqs. (10)–(11), are dependent upon the SGAD noise
parameters and upon the prior probabilities (P0, P1). For
illustration, Figs. 1–3 present a characterization of the optimal
signaling pair and its best performance for minimum-error
detection, as resulting from Theorem 3, for a SGAD noise
in different configurations. In Figs. 1–3, the range of values
chosen for the SGAD noise parameters, as detailed in the
Appendix, are comparable to those of [19]–[21].

Figure 1 shows a characterization of the optimal signaling
pair and its best performance, as a function of the temper-
ature T of the bath, at different values of the squeezing
magnitude r . Figure 1A represents the component tz = topt

z of
the optimal input test vector �t opt, showing that topt

z is different
at each temperature T , indicating a distinct optimal signaling
pair (ρ

opt
0 , ρ

opt
1 ) for each temperature T of the thermal bath.

As T increases in Fig. 1A, the optimal component topt
z goes
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Fig. 2. For minimum-error detection from a qubit altered by a SGAD
quantum noise, with prior P0 = 0.7, as a function of the squeezing
magnitude r of the squeezed thermal bath at three values of the temperature
T = 0, 1 and 2, the optimum determined by Theorem 3 for (A) the
component t

opt
z of the optimal input test vector �t opt , and (B) the associated

best performance Pmin,opt
er from Eqs. (10)–(11).

to zero, because in the high-temperature regime the SGAD
noise evolves into a depolarizing noise, for which there is no
longer a specific optimal �t opt, with any unit-norm �t and any
pair of orthogonal pure states (ρ0, ρ1) indifferently achieving
the same performance. Figure 1B depicts the corresponding

best (smallest) probability of error Pmin,opt
er in minimum-error

detection, with Pmin,opt
er which is found generally to increase

as the temperature T of the bath increases, as a mark of a more
detrimental effect of the noise at higher temperature. Figure 1
also demonstrates that the performance in detection improves
at larger squeezing magnitude r . This is a mark of the ability
of squeezing of the thermal bath to counteract the detrimental
effect of temperature, as also noted in [19], [20], and [23]
with other performance measures. A complementary picture
is given by Fig. 2 displaying topt

z and Pmin,opt
er as a function

of the squeezing magnitude r , at different temperatures T .
Figure 2A also indicates distinct �t opt and optimal signaling
pair (ρ

opt
0 , ρ

opt
1 ) for each squeezing r of the thermal bath, and

the corresponding performance Pmin,opt
er in Fig. 2B which gen-

erally improves as the squeezing r increases. Also in Fig. 2A,

Fig. 3. For minimum-error detection from a qubit altered by a SGAD
quantum noise, with squeezing magnitude r = 0.5, as a function of the prior
probability P0, for three values of the temperature T = 0, 1 and 2 of the
squeezed thermal bath, the optimum determined by Theorem 3 for (A) the
component topt

z of the optimal input test vector �t opt , and (B) the associated

best performance P
min,opt
er from Eqs. (10)–(11).

at increasing squeezing magnitude r , the optimal component
topt
z gradually returns to zero, yielding an optimal input test

vector �t opt tending to �s1 in Eq. (31), with �t opt becoming
essentially influenced by the squeezing angle 	 of the bath and
no longer by the temperature T . Such behaviors, as illustrated
in Figs. 1–2, offer a novel characterization of the SGAD
noise, based here on the optimal conditions in minimum-error
quantum detection, and conveying a complementary viewpoint
on the effect of squeezing of a thermal bath and its ability to
counteract the detrimental effect of temperature.

Figure 3 shows the impact of the prior probability P0,
which is found to influence both the optimal signaling pair
and its best performance Pmin,opt

er for detection. Figure 3A
indicates a distinct topt

z and therefore a distinct �t opt fixing
a distinct optimal signaling pair (ρ

opt
0 , ρ

opt
1 ) for each prior

probability P0. At P0 = 1/2 in Fig. 3A, one has topt
z = 0

yielding �t opt = �s1 the eigenvector of Eq. (31), as ruled by
the conditions addressed in the last paragraph of Section III.
Meanwhile the probability of error Pmin,opt

er is the highest
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at P0 = 1/2, as visible in Fig. 3B, with also in general Pmin,opt
er

varying with P0.

V. GENERALIZED AMPLITUDE DAMPING NOISE

With no squeezing of the thermal bath, at r = 0, the
parameters in the Appendix yield μ = 0 and ν = α.
The SGAD quantum noise is then reduced to a generalized
amplitude damping (GAD) noise [2], [22], of damping para-
meter α ∈ [0, 1], describing the dissipative interaction of the
qubit with a standard thermal bath at temperature T , with
a relaxation controlled by α towards the equilibrium mixed
state p |0〉 〈0| + (1 − p) |1〉 〈1| with the probability p ∈ [0, 1]
determined by T . The GAD noise transforms the qubit state
via Eq. (12) and the parameters of Eqs. (21)–(22) according to

�r ′ = A�r + �c =
⎡

⎣

√
1 − α 0 0
0

√
1 − α 0

0 0 1 − α

⎤

⎦ �r

+
⎡

⎣
0
0

(2 p − 1)α

⎤

⎦. (35)

We have azz = 1−α and s1 = √
1 − α, so that by Theorem 3,

for the optimal input test vector, topt
z = (P1 − P0)(2 p − 1) ∈

[−1, 1]. The two eigenvalues s1 = s2 = s± = √
1 − α in

Eq. (29) get degenerate, so any vector in the plane (Ox, Oy)
is an eigenvector of A in Eq. (35), offering freedom for the
two components (tx , ty) of the optimal �t in plane (Ox, Oy).
Theorem 3 then determines for the GAD noise, an optimal
input test vector �t opt defined by the components

tz = topt
z = (P1 − P0)(2 p − 1), t2

x + t2
y = 1 − t2

z , (36)

and the solution of Eq. (36) achieves the maximum

‖�t ′‖2
max = 1 − α[1 − (P1 − P0)

2(2 p − 1)2] (37)

to be used in Eqs. (10)–(11) to express the resulting best
detection performance.

The analysis shows that ‖�t ′‖max from Eq. (37) achieves
in Eqs. (10)–(11) an optimal performance Pmin,opt

er which is
dependent upon both noise parameters α and p. Meanwhile,
the optimal signaling pair (ρ

opt
0 , ρ

opt
1 ) determined by Eq. (36)

is dependent upon the noise parameter p alone. Although this
optimal pair is not unique, due to the degrees of freedom from
tx and ty in Eq. (36), the set of optimal signaling pairs is
strictly limited, and an arbitrary pair of orthogonal pure states
is usually nonoptimal for detection with GAD noise.

For an illustration with a GAD noise according to Eq. (35),
Fig. 4 presents the performance Pmin

er of the minimum-error
detector, operating in various noise conditions and with
various choices, optimal and nonoptimal, for the signaling
pair (ρ0, ρ1).

It is clearly visible in Fig. 4 that in the presence of GAD
noise, an arbitrary pair (ρ0, ρ1) of orthogonal pure states,
like for instance (ρ0 = |0〉 〈0| , ρ1 = |1〉 〈1|), is not optimal
for signaling. The optimal signaling pair (ρ

opt
0 , ρ

opt
1 ) has to

be selected according to Eq. (36) so as to reach the overall
minimum Pmin,opt

er of the probability of error, as shown in
Fig. 4. In addition, the optimal signaling pair (ρ

opt
0 , ρ

opt
1 )

Fig. 4. For minimum-error detection from a qubit altered by a GAD noise
according to Eq. (35), with prior P0 = 0.7, the performance Pmin

er as a
function of the damping parameter α, for three values of the noise probability
p: (◦) p = 0, (∗) p = 0.5, (no mark) p = 0.2. The solid lines show the overall
best performance P

min,opt
er of Eqs. (10)–(11) when the detector operates with

the optimal signaling pair (ρ
opt
0 , ρ

opt
1 ) determined by Eq. (36). Associated

with each solid line is a dotted line showing Pmin
er with the fixed nonoptimal

signaling pair (ρ0 = |0〉 〈0| , ρ1 = |1〉 〈1|).

achieving Pmin,opt
er in Fig. 4 is distinct for each value of p,

following Eq. (36). This, in practice, means a distinct optimal
signaling pair for each temperature T of the thermal bath
representing the environment. Yet, for a given p the optimal
signaling pair is invariant with the damping parameter α.
In a quantum communication framework, the signaling and
detection stages can thus be kept fixed at given p for any α.

The optimal performance Pmin,opt
er however degrades with

increasing damping α, as visible in Fig. 4.

VI. QUANTUM PAULI NOISE

Another broad class of quantum noise which can affect a
qubit and that is not represented by the SGAD noise model of
Section IV is the Pauli noise [2], [3]. It acts through random
applications of the four Pauli operators {σ0 = 1, σx , σy, σz},
which form an orthogonal basis for operators on H2. It can be
described by a Kraus representation according to Eq. (8) as

ρ′ = N (ρ) =
∑

k=0,x,y,z

pkσkρσ †
k , (38)

with the {pk} a probability distribution. The linear transfor-
mation of Eq. (38) always satisfying N (1) = 1 belongs to
the class of unital noise channels for the qubit, with specific
interesting properties [24], [25]. The resulting transformation
of the qubit Bloch vector in Eq. (12) follows as

�r ′ = A�r =
⎡

⎣
ax 0 0
0 ay 0
0 0 az

⎤

⎦ �r , (39)

with the real scalar coefficients

ax = p0 + px − py − pz, (40)

ay = p0 − px + py − pz, (41)

az = p0 − px − py + pz. (42)
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Since A in Eq. (39) is in diagonal form, then A ≡ S, and
according to Theorems 1 and 2, maximization of ‖�t ′‖2 in
Eq. (14) is achieved by placing in �t = �t opt a single unit
component |tk | = 1 in the direction k such that

|ak| = max(|ax |, |ay|, |az|), (43)

so as to achieve the maximum ‖�t ′‖max = |ak| to be used in
Eqs. (10)–(11) to express the best detection performance.

For an illustration with a Pauli noise process according to
Eq. (38), we consider the Kraus representation in Eq. (38)
under the form

N (ρ) = (1 − p)ρ + p

(
1 − 2

3
q

)
σxρσ †

x

+ 1

3
pq

(
σyρσ †

y + σzρσ †
z

)
, (44)

with a parameter q ∈ [0, 1]. The noise model of Eq. (44) is
a convex combination interpolating between a bit-flip noise
at q = 0, and a depolarizing noise at q = 1. For any q
between 0 and 1, Eq. (44) gives access to a valid quantum
noise, enabling to represent a whole range of quantum noises
in a tunable way, as exploited for instance in [26] and [27].
In Eq. (44), with probability 1− p the state ρ is left unchanged,
while ρ is changed with probability p by application of one
or the other of the three Pauli operators. The corresponding
coefficients of Eqs. (40)–(42) become

ax = 1 − 4

3
pq, (45)

ay = az = 1 − 2 p + 2

3
pq. (46)

For a given q fixing the noise type in Eq. (44), the condition
of Eq. (43) determines a specific optimal pair (ρ

opt
0 , ρ

opt
1 ) of

signaling states according to the probability p of action of the
quantum noise.

For 0 ≤ p ≤ 3/(3 + q), the solution of Eq. (43) is
|ak| = |ax | with an optimal �t which is �t opt = [tx = 1,
ty = 0, tz = 0]�. This defines the optimal signaling pair
(ρ

opt
0 = |−〉 〈−| , ρopt

1 = |+〉 〈+|) with the two orthogonal
pure states |+〉 = (|0〉 + |1〉)/√2 and |−〉 = (|0〉 − |1〉)/√2.
Note that �t opt = [tx = −1, ty = 0, tz = 0]� defines
the other optimal solution, with the optimal signaling pair
(ρ

opt
0 = |+〉 〈+| , ρopt

1 = |−〉 〈−|), and equivalent performance
controlled by ‖�t ′‖max = |ax | in Eqs. (10)–(11).

For 3/(3 + q) ≤ p ≤ 1, a solution of Eq. (43) is |ak | = |az|
with an optimal �t which can be taken as �t opt = [tx = 0,
ty = 0, tz = 1]�. This defines the optimal signaling pair
(ρ

opt
0 = |1〉 〈1| , ρopt

1 = |0〉 〈0|). Note that any �t = [tx = 0,

ty �= 0, tz �= 1]� with t2
y + t2

z = 1 defines another opti-
mal solution �t opt with equivalent performance controlled by
‖�t ′‖max = |az| in Eqs. (10)–(11).

Figure 5 illustrates some generic properties of the optimal
configurations for minimum-error detection with Pauli noise.
Usually, both the optimal signaling pair (ρ

opt
0 , ρ

opt
1 ) deter-

mined by �t opt and its performance Pmin,opt
er are dependent

upon the Pauli noise type and noise level, as represented

Fig. 5. For minimum-error detection from a qubit altered by a Pauli
quantum noise of Eq. (44), with prior P0 = 1/2, the performance Pmin

er
as a function of the probability p of action of the noise, for three values
of q fixing the type of the noise. For each q, the thick (black) line is
the overall best performance P

min,opt
er of Eqs. (10)–(11) when the detector

operates with the optimal signaling pair (ρ
opt
0 , ρ

opt
1 ) defined from Eq. (43).

Associated with each thick line are two thin lines showing Pmin
er with the

fixed signaling pair (ρ0 = |−〉 〈−| , ρ1 = |+〉 〈+|) (dotted (blue) line), and
(ρ0 = |1〉 〈1| , ρ1 = |0〉 〈0|) (solid (magenta) line), each of these two pairs
ceasing to be optimal respectively for p below or above 3/(3 + q).

by q and p in Fig. 5. By contrast, the optimality condition of
Eq. (43) shows that the optimal signaling pair (ρ

opt
0 , ρ

opt
1 ) is

independent of the prior probabilities (P0, P1), while the asso-
ciated overall best performance Pmin,opt

er depends on (P0, P1)
only via the position of ‖�t ′‖max = |ak | relative to |P1 − P0| in
Eqs. (10)–(11). As a result, for P0 �= 1/2, the curves of Pmin

er
of Fig. 5 still apply but have to be limited at min(P0, P1)
according to Eq. (11) when ‖�t ′‖max = |ak| < |P1 − P0|, in
which condition the minimum-error detector characterized in
Section II need not use any measurement and always decides
for the the state with maximum prior probability. Beyond the
illustrative conditions of Fig. 5, the solution of this Section
allows one to track the optimal signaling pair (ρ

opt
0 , ρ

opt
1 )

matched to any noise level and any Pauli noise according to
Eq. (38), so as to optimize minimum-error detection from the
noisy qubit.

VII. ONE IMPOSED SIGNALING STATE

Another situation is when one of the signaling state, say ρ0,
is fixed and imposed. One then seeks the other signaling
state ρ1 in order to maximize the performance in minimum-
error detection as before. The transformed test vector of
Eq. (13) can then be written as �t ′ = P1A�r1 + �c ′′, and its
squared norm of Eq. (14) can conveniently be expressed as

‖�t ′‖2 = ‖P1A�r1‖2 + 2 �w��r1 + ‖�c ′′‖2, (47)

with the vectors �c ′′ = �c ′ − P0A�r0 and �w = P1A��c ′′
both given when ρ0, i.e. �r0, is given. The task is then to
find �r1, subject to the constraint ‖�r1‖ ≤ 1, maximizing ‖�t ′‖2

of Eq. (47). The maximum of ‖�t ′‖2 in Eq. (47) occurs at
the saturated constraint ‖�r1‖ = 1, by the same argument as
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in the proof of Theorem 1. This indicates a pure signaling
state ρ1 which is optimal for minimum-error detection in
association with any, pure or mixed, imposed state ρ0. Since
Eq. (47) has a form similar to Eq. (14), further characterization
of �r1 maximizing ‖�t ′‖2 in Eq. (47), can be obtained as in
Theorem 2. For a fixed �r0, this will produce an optimal
solution �r1 = �r opt

1 not parallel to �r0 in general, therefore an
optimal pure signaling state ρ

opt
1 not orthogonal to the other

imposed signaling state ρ0.
For example, ρ0 can be imposed as the maximally mixed

state ρ0 = 1/2, of �r0 = �0, which is an invariant state for
any Pauli noise according to Eqs. (38)–(39). In this case,
with Pauli noise, the associated optimal signaling state ρ

opt
1

is determined by �r1 = �r opt
1 = �t opt, where �t opt is the optimal

test vector obtained in Section VI via Eq. (43), yet with a
performance controlled by ‖�t ′‖max in Eqs. (10)–(11) which is
reduced by the multiplicative factor P1 ≤ 1 as the cost incurred
by imposing the (non-optimal) signaling state ρ0 = 1/2.

As another example, one can impose the pure signaling
state ρ0 = |0〉 〈0|, of �r0 = [0, 0, 1]�, for detection in the
SGAD noise of Section IV. Then �c ′′ introduced in Eq. (47)
is �c ′′ = [0, 0, c′′

z = c′
z − P0azz]� and remains parallel

to Oz, preserving the geometry underlying the maxi-
mization of Eqs. (33)–(34), with a criterion becoming
J (�r1) = P2

1 s2
1r2

1,1+ P2
1 a2

zzr
2
1,z +2P1azzc′′

zr1,z to be maximized
according to �r1 under ‖�r1‖ = 1. This is the same form
of maximization which is solved by Theorem 3, allowing to
predict, in generic conditions, a solution �r opt

1 with components
both along Oz and in the plane (Ox, Oy) orthogonal to Oz,
i.e. an optimal signaling state ρ

opt
1 not orthogonal to the other

imposed signaling state ρ0 = |0〉 〈0|.

VIII. CONCLUSION

We have addressed minimum-error detection from a qubit
altered by an arbitrary quantum noise. The noise is separately
characterized and modeled as a channel performing an input–
output transformation to the qubit. Optimization of the pair
of input signaling states is addressed so as to match the noise
properties and achieve the best performance in minimum-error
detection from the noisy qubit accessible as the output of
the noise channel. This separate account of the noise is a
specificity here of the approach to detection, because usually
for quantum detection or quantum state discrimination, the
noisy states are generally treated as mixed states, but with
no explicit consideration, in the derivation of the optimal
processings, of the underlying noise producing the mixed
states.

For an arbitrary quantum noise affecting the qubit, we have
obtained a general characterization of the optimal pairs of
signaling states and the best performance they achieve for
minimum-error detection from the noisy qubit. This charac-
terization takes the form of a simple maximization of a real
scalar quadratic criterion in three real scalar variables limited
by an equality constraint, as expressed by Theorem 2, the
solutions of which determine the optimal signaling pairs and
their best performance. This general characterization allowed
us to prove, as stated by Theorem 1, that the optimal signaling

pairs are always formed of two orthogonal pure quantum
states, but that must be specifically matched to the noise.
Also the general characterization, via the role of �c ′ and �v
in Eqs. (14) and (15), shows that the prior probabilities
of the two signaling states generally influence the optimal
signaling pairs and their best performance. These given prior
probabilities specify the detection problem and its optimal
solutions in contrast to other transmission problems where
the prior probabilities are variable parameters which can be
adjusted in the optimization process, as is the case in the
determination of various information capacities for quantum
channels [19], [28], [29]. In such cases the optimal solutions
often occur with equiprobable priors, while for detection
here the necessity of handling skewed nonequiprobable priors
usually makes more complicated the determination of the
optimum yet to also achieve usually higher performance in
detection, as for instance illustrated in Fig. 3.

For several generic quantum noise processes relevant to
the qubit, the maximization problem of Theorem 2 has been
solved explicitly. Especially, the optimal solutions have been
exhibited for the squeezed generalized amplitude damping
noise. This in particular offered a novel characterization for
this quantum noise, based on optimal detection conditions,
and materialized by increased squeezing entailing improved
detection, confirming with another approach the ability
of squeezing to counteract the detrimental action of a
thermal bath representing a decohering environment. Also the
solutions here included as special cases both the generalized
and the regular amplitude damping noises, with in addition
the Pauli noise treated separately, to cover a large class of
noise processes that can practically affect a qubit.

The present approach to quantum detection optimized for a
specific noise process can be extended in several directions.
One can consider extensions to discrimination of more than
two qubit states [30], [31], or to quantum systems with dimen-
sion higher than the dimension two of the qubit [32], [33], or
to performance measures other than the probability of error
in discrimination [10], [11], [15], [34]. Yet it is known that
such extended conditions are usually more difficult to handle
analytically, with general solutions not necessarily accessible
theoretically, especially with a separate characterization of the
quantum noise which demands broader prior determination
of the problem. By contrast, the situation of detection on
the qubit can be solved analytically in detail, as undertaken
here, and offers in this way the guideline of a basic setting
where complete theoretical resolution can be performed and
which can be useful for further development in quantum signal
processing.

APPENDIX

The SGAD quantum noise [19]–[21] acting on the qubit
through Eqs. (8) and (17)–(20), results from a qubit coupled
to an environment formed by a squeezed thermal bath at
temperature T . Squeezing of a thermal bath is obtained
by a nonlinear operation capable of introducing correlations
between the modes or thermal photons of the bath, with
possibilities of reducing the decoherence of quantum states.
The effect of the squeezed thermal bath on the qubit can be
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expressed through a squeezing operator [19]–[21]

R = σ− cosh(r) + ei	σ+ sinh(r), (A-1)

performing a squeezing transformation [35] characterized by a
magnitude r and phase 	, and acting on the standard lowering
and raising operators, respectively σ− = |0〉 〈1| = (σx −iσy)/2
and σ+ = |1〉 〈0| = (σx + iσy)/2. The squeezing operator R
of Eq. (A-1) determines the Lindblad operators acting in the
Lindblad equation governing the evolution of the state ρ of the
qubit interacting with the squeezed thermal bath. Resolution
of this Lindblad linear differential equation then leads to the
expressions of the Kraus operators of Eqs. (17)–(20) for
the evolution of the qubit state ρ. The parameters defining
the Kraus operators of Eqs. (17)–(20), and summarizing the
interaction with the squeezed thermal bath, result as [19]–[21]

ν = N

p(2N + 1)

(
1 − exp[−γ0(2N + 1)t]

)
, (A-2)

μ = 2N + 1

2 pN

sinh2(γ0at/2)

sinh[γ0(2N + 1)t/2] exp
[
−γ0

2
(2N + 1)t]

]
,

(A-3)

α = 1

1 − p

(
1 − p(μ + ν) − exp[−γ0(2N + 1)t]

)
. (A-4)

In Eqs. (A-2)–(A-4), γ0 is the spontaneous emission rate of
photons in the bath, t is the time duration of the interaction
of the qubit with the bath, N = [cosh2(r) + sinh2(r)]
Nth + sinh2(r) is related to the number of thermal photons
Nth = 1/[exp(h̄ω/kB T ) − 1] given by the Planck distribution
at frequency ω, and a = (2Nth +1) sinh(2r). There is also the
probability

p = p± = 1

(A + B − C − 1)2 − 4D

×
(

A2 B + C2 + A[B2 − C − B(1 + C) − D]
− (1 + B)D − C(B + D − 1)

± 2

√
D[B − AB + (A − 1)C + D]
×[(A − AB + (B − 1)C + D]

)
,

(A-5)

with either sign ± in Eq. (A-5) leading to a valid SGAD noise
(p− is used in the examples of Figs. 1–3), and with [19]–[21]

A = 2N + 1

2N

sinh2(γ0at/2)

sinh[γ0(2N + 1)t/2] exp[−γ0(2N + 1)t/2],
(A-6)

B = N

2N + 1

(
1 − exp[−γ0(2N + 1)t]

)
, (A-7)

C = A + B + exp[−γ0(2N + 1)t], (A-8)

D = cosh2(γ0at/2) exp[−γ0(2N + 1)t]. (A-9)

In the illustrations of Figs. 1–3, the parameters of the SGAD
noise are expressed in units where h̄ω/kB = 1, with a
spontaneous photon emission rate γ0 = 0.05, an interaction
time t = 1 of the qubit with the bath, and over ranges of
the temperature T and squeezing magnitude r , to reproduce
conditions comparable to those of [19]–[21].

Several regimes of operation have special physical
significance for the SGAD quantum noise. At large
interaction time t → ∞, the probability p → p(t = ∞) =
(N + 1)/(2N + 1), and the qubit relaxes to the asymptotic
mixed state p(t = ∞) |0〉 〈0| + [1 − p(t = ∞)] |1〉 〈1|
controlled by the temperature T and squeezing magnitude r
of the bath. Otherwise, when the squeezing magnitude r = 0,
the SGAD noise is reduced to a generalized amplitude
damping noise [2], [22] with damping parameter α ∈ [0, 1]
and a time-independent probability p ∈ [0, 1], describing the
dissipative coupling of the qubit to a standard thermal bath at
finite temperature T and relaxing to the mixed state p |0〉 〈0|+
(1 − p) |1〉 〈1|; and when in addition T = 0, the SGAD
noise is further reduced to a standard amplitude damping
noise [2], [36], with a probability p = 1, describing relaxation
of the qubit to the ground state |0〉 〈0| by equilibration with a
vacuum bath. Otherwise, at large temperature T → ∞, then
the probability p → p(T = ∞) = 1/2, and the SGAD noise
is reduced to a fully depolarizing noise [2], with a qubit
driven to the maximally mixed state 1/2.
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