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Abstract—In this paper, we investigate the noise benefits to max-
imum likelihood type estimators (M-estimator) for the robust es-
timation of a location parameter. Two distinct noise benefits are
shown to be accessible under these conditions. With symmetric
heavy-tailed noise distributions, the asymptotic efficiency of the
estimation can be enhanced by injecting extra noise into the M-
estimators. With an asymmetric contaminated noise model having
a convex cumulative distribution function, we demonstrate that
addition of noise can reduce the maximum bias of the median es-
timator. These findings extend the analysis of stochastic resonance
effects for noise-enhanced signal and information processing.

Index Terms—Noise enhancement, location, M-estimator,
asymptotic efficiency, maximum bias.

I. INTRODUCTION

AN OPTIMAL noise level, obtained by appropriately
adding extra noise to a given signal processor or by tun-

ing the existing noise level, can sometimes improve information
processing [1]–[6]. This effect was initially called stochastic res-
onance [7] but is now widely referred to as noise enhancement
[8]–[13], resulting in noise benefit—a term coined by Kosko
[14]. In recent years, noise-enhanced signal processing theory
has received significant attention [4]–[6], [8]–[33]. In the signal
estimation field, classical parameter estimation problems [6],
[11], [17], [22]–[30] and the Bayesian method [11]–[13], [16]–
[21] are of considerable current research interest. The related
results of [6], [11]–[13], [16]–[29] confirm that noise enhance-
ment can be exploited to optimize the estimator performance.

Statistical signal processing often relies on strong assump-
tions, e.g., a Gaussian distribution or a particular signal model,
under which optimal estimators or detectors are derived [34]–
[38]. Nevertheless, many areas of engineering, for instance,
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mobile communication channels, radar systems and neural net-
works, result in outliers or atypical observations that do not
obey these assumptions [38]. This fact can lead to significantly
degraded estimator performance, and also highlights the need
for robust estimation techniques that are insensitive to outliers
[34]–[38].

In this paper, we mainly focus on the noise-enhanced effect
in maximum likelihood type estimators (M-estimator) [34]–[38]
for estimating a location parameter. Under this scenario, we de-
rive two key results that demonstrate two distinct noise benefits:

(i) For the symmetric heavy-tailed noise distributions, we de-
rive the expression of the asymptotic efficiency for an array
of identical M-estimators, and show the possibility of the im-
proved asymptotic efficiency of M-estimators by injecting mutu-
ally independent noise components. For a single M-estimator, a
discriminant function, elicited from the background noise prob-
ability density and the given M-estimator function, provides the
condition of existence of the optimal additive noise. It is proven
that the optimal additive noise, when it exists, is the symmetrical
dichotomous noise given by Chen et al. [9]–[11]. When the op-
timal noise does not exist in a single M-estimator, it is observed
that the asymptotic efficiency can still be enhanced to be very
close to the upper bound of unity by an array of M-estimators
with added noise selected from a parametric class of noise. This
fact motivates us to focus on the asymptotic efficiency of an
array of identical M-estimators with more than one estimator
element. We further demonstrate that, for a given M-estimator
function and fixed noise levels, the asymptotic efficiency is a
monotonically increasing function of the M-estimator number.
Thus, the asymptotic efficiency reaches its maximum value for
an array with an infinite number of identical M-estimators. Aim-
ing to maximizing the asymptotic efficiency of an infinite num-
ber of M-estimators, the optimal probability density of the added
noise is proven to be the weighted minimum L2-norm solution
of Eq. (44). Specially, by the Cauchy-Schwarz inequality, the
upper bound of the asymptotic efficiency of an infinite number
of M-estimators is proven to be unity, and the corresponding
optimal noise density is the deconvolution of the maximum
likelihood estimator and the given M-estimator function. How-
ever, this optimal noise density is frequently unattainable, due
to absence of a solution to the deconvolution and the fact that
the infinite-size array of M-estimators can only be approached
in practice. Therefore, as an alternative to such a theoretical
optimal distribution, we can select an a priori parametric class
of noise distributions, of interest, and optimize the parameters
and variance of the added noise. The results show that, com-
pared to the method without added noise, the addition of extra
noise that obeys the optimized parametric noise distribution does
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provide an improved asymptotic efficiency. It is also noted that
the observed noise-enhanced effect for the robust estimation
of a location parameter can also be related to suprathreshold
stochastic resonance (SSR) that has been demonstrated in a par-
allel array of identical elements with the injection of independent
noise components [23]–[28], [39], [40]. In the context of SSR,
such nonlinear elements were chosen as threshold comparators
[27], quantizers [23]–[26], [31], [40] or saturating devices [28]
and have been evaluated by various performance measures such
as mean square error (MSE) [23], [26], [31], [40], Fisher in-
formation [24], [27], [28], and Cramer-Rao bound [25], [26],
[40] in the signal estimation field. By contrast here, we mainly
focus on the noise-enhanced effect in a parallel array of ro-
bust M-estimators evaluated by the measure of the asymptotic
efficiency.

(ii) In an asymmetric contaminated noise model, the bias
dominates the variance component of M-estimators for a suf-
ficiently large number of observations. We theoretically prove
that, under the condition of a convex cumulative distribution
function, the maximum bias of M-estimators can be reduced by
adding extra noise. Moreover, aiming to minimize the maximum
bias of the median estimator, the dichotomous noise is proved
to be optimal. Theoretical and numerical results also show that
the maximum bias can be distinctly diminished at an optimal
dichotomous noise level.

II. M-ESTIMATOR FOR A LOCATION PARAMETER

Consider a location model of observations [34], [37]

xi = θ + wi, i = 1, 2, · · · , n (1)

where the location parameter θ is unknown and observation
errors (noise) wi are independent and identically distributed
(i.i.d.) random variables with a common probability density
fw . Then, the observations xi have the distribution fw (x− θ).
Here, we assume w = σw0 is with the scale parameter σ that
represents the noise intensity, and w0 has its probability density
fw 0 and unity scale.

Assuming that the loss function ρ satisfies certain regularities
[34], [37], we define the M-estimator θ̂ as

θ̂ = arg min
θ

n∑

i=1

ρ(xi − θ). (2)

Differentiating Eq. (2) with respect to θ yields
n∑

i=1

ψ(xi − θ) = 0, (3)

where ψ = dρ/dθ = ρ′ and the root θ̂ that corresponds to the
global minimum of the loss function in Eq. (2) is just the
M-estimator or the generalized maximum likelihood estimator
[34]–[38]. The maximum likelihood estimator is a special case
of M-estimators when ψ = −f ′w/fw � ψM and ρ = − log fw
[34]–[38].

In order to compare the approximation by θ̂ with the true
value of θ, we usually compute the MSE

MSE(θ̂) = E[(θ̂ − θ)2 ] = var(θ̂) + b2(θ̂), (4)

with the estimator variance var(θ̂) = E(θ̂2) − E2(θ̂) and the
bias b(θ̂) = E(θ̂) − θ [34]–[38]. Here, the expectation operator
E(·) =

∫ ·fw (x− θ)dx represents the expectation according to
the shifted probability density fw (x− θ) that is the density for
the noisy random signal xi in Eq. (1). According to the central
limit theorem and for a sufficiently large observation numbern, a
Fisher-consistent M-estimator θ̂ satisfies E[ψ(x− θ)] = 0 [34]–
[38], and asymptotically converges to the Gaussian distribution
with mean θ and variance

var(θ̂) ≈ 1
n

E[ψ2(x− θ)]
E2[ψ′(x− θ)]

=
1
n

Ew [ψ2(x)]
E2
w [ψ′(x)]

, (5)

by taking the first-order Taylor expansion of ψ(xi − θ̂) at θ
[34]–[38] (also see Appendix B). Here, the expectation operator
Ew (·) =

∫ ·fw (x)dx is according to the probability density of
the random noise wi . Also in Eq. (5) the change of variable
x− θ → x has been performed. It is noted that the minimum
asymptotic variance of var(θ̂) = 1/

(
nJ(θ)

)
is achieved by the

maximum likelihood estimator [37], [41], and the Fisher infor-
mation J(θ) with respect to the location parameter θ is defined
as

J(θ) = E
[
(dfw (x− θ)/dθ)2

f 2
w (x− θ)

]

= Ew

[
(dfw (x)/dx)2

f 2
w (x)

]

= J(fw ), (6)

where J(fw ) is the Fisher information of the probability den-
sity fw [41]. Therefore, in order to measure how near the M-
estimator θ̂ is to the optimal estimator, the asymptotic efficiency
is defined as the ratio [37]

Eff(θ̂) =
1

nJ(fw )
1

var(θ̂)
=

1
J(fw )

E2
w [ψ

′
(x)]

Ew [ψ2(x)]
. (7)

In the following section, we will use the asymptotic effi-
ciency of Eq. (7) and the bias b(θ̂) to assess the occurrence
of noise-enhanced effects in M-estimators associated with two
noise distribution models.

III. NOISE-ENHANCED ASYMPTOTIC EFFICIENCY

In a number of areas of engineering, outliers in the mea-
surement cause a heavy-tailed distribution and so a Gaussian
assumption no longer holds true [34]–[38]. In this Section, we
consider the symmetric heavy-tailed distribution model of noise.
Under such scenarios, the function ψ in Eq. (3) is assumed to
be odd, so that there is no bias problem for the unbiased M-
estimator θ̂ derived from Eq. (3). Thus, we mainly discuss the
noise-enhanced asymptotic efficiency effect in this situation un-
der consideration.

When the expression for the noise distribution fw is known,
the maximum likelihood estimator is the optimal option if it
exists [34]–[38]. However, in practice, the noise distribution
fw may be incompletely known, or a complete closed-form of
the maximum likelihood estimator is too complex to implement
[34]–[38]. Thus, other M-estimators with an easily implemented
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feature are frequently employed [34]–[38]. We note that M-
estimators are critically connected the ψ-function in Eq. (3),
which can be grouped into the monotone or the redescending
classes [37]. Here, we mainly consider the monotone Huber
function [34]

ψ(x) =
{
x, |x| ≤ γ,
γ sgn(x), |x| > γ,

(8)

and the redescending bisquare function [34], [37]

ψ(x) = x
[
1 − (x/γ)2]2

, (9)

for |x| ≤ γ and otherwise zero. Here, γ is an adjustable parame-
ter of the M-estimator. We further consider a scale family of the
probability density fw (x) = fw 0 (x/σ)/σ, where fw 0 has unity
scale and the Fisher information of Eq. (6) can be expressed
as J(fw ) = J(fw 0 )/σ

2 [41], [42]. Here, J(fw 0 ) is the Fisher
information of the probability density fw 0 . Then, the asymptotic
efficiency of Eq. (7) can be calculated as

Eff(θ̂) =

[
1 − 2Fw 0 (− γ

σ )
]2

2J(fw 0 )
[∫ γ/σ

0 x2fw 0 (x)dx+ γ 2

σ 2 Fw 0 (− γ
σ )

] (10)

for the Huber estimator of Eq. (8) and

Eff(θ̂) =

[∫ γ/σ

−γ/σ
[
1 − σ 2

γ 2 x
2
][

1 − 5σ 2

γ 2 x
2
]
fw 0 (x)dx

]2

J(fw 0 )
∫ γ/σ

−γ/σ x
2
[
1 − σ 2

γ 2 x2
]4
fw 0 (x)dx

(11)

for the bisquare estimator of Eq. (9). Here,Fw 0 is the cumulative
distribution function of noise w0 .

For instance, we especially consider the generalized Cauchy
noise with the probability density

fw (x) = B(k, v)

{
1 +

1
v

[ |x|
A(k)

]k}−(v+1/k)

(12)

with A(k) = σ
√

Γ(1/k)/Γ(3/k), B(k, v) = kv−1/kΓ(v +
1/k)/[2A(k)Γ(v)Γ(1/k)], and parameters σ, k, v > 0 [36],
[42]. This generalized Cauchy distribution of Eq. (12) is ca-
pable of modelling a wide range of practical noise types. For
instance, we obtain a typical heavy-tailed distribution model for
v = 1/2 and k = 2, which is the Cauchy noise [42].

In Fig. 1(a) and (b), we plot the asymptotic efficiencies of
Eq. (10) and Eq. (11) as a function of γ/σ, respectively. It is
clearly seen that, for the generalized Cauchy noise in Eq. (12)
with v = 0.5, 1, 2, 5 and k = 2, the asymptotic efficiency Eff(θ̂)
can be enhanced to its maximum as γ/σ increases. For instance,
in the case of Cauchy noise with v = 1/2 and k = 2 in Eq. (12),
the asymptotic efficiency Eff(θ̂) of Huber estimator of Eq. (10)
is maximized to the value of 0.88 at γ/σ = 0.39 and for the
bisquare estimator, the asymptotic efficiency Eff(θ̂) of Eq. (11)
has the maximum value of 0.90 as γ/σ = 3.28. For a given
parameter γ, this is the noise-enhanced effect occurring in the
location M-estimator, since the asymptotic efficiency is maxi-
mized at an optimal noise scale. Of course, if the noise scale
σ is given, we can also optimize the estimator parameter γ to
obtain the maximum asymptotic efficiency.

Fig. 1. Asymptotic efficiency Eff(θ̂) of (a) Eq. (10) for the Huber estimator
and (b) Eq. (11) for the bisquare estimator as a function of γ/σ for the gener-
alized Cauchy noise in Eq. (12) and the Laplacian noise in Eq. (18) (β = 1).
Here, the generalized Cauchy noise is with parameters v = 1/2, 1, 2, 5,∞ and
k = 2.

It is also noted that, for the Gaussian noise (v = ∞ and
k = 2 in Eq. (12)), the asymptotic efficiency Eff(θ̂) approaches
unity as γ/σ increases, as shown in Fig. 1(a) and (b). The
reason is that, as the parameter γ → ∞, both Huber and the
bisquare functions are linear, which just corresponds to the op-
timal estimator for the Gaussian noise. For the Laplacian noise
in Eq. (18) (β = 1), Fig. 1(a) shows the asymptotic efficiency
Eff(θ̂) monotonically decreases from unity as γ/σ increases.
The reason is that, as γ → 0, the Huber function of Eq. (8) be-
comes ψ(x) = sgn(x) that corresponds to the maximum likeli-
hood estimator for the Laplacian noise, i.e., the median estimator
[34]–[38].

Next, two interesting problems arise. The first problem is,
when the noise scale σ can be exactly estimated or is known and
the asymptotic efficiency is maximized at an optimal parameter
γopt , whether the addition of extra noise is beneficial or not?
The second problem arises because the noise scale σ is often
unknown, while the optimization of the asymptotic efficiency
Eff(θ̂) is closely tied with the ratio γ/σ, as shown in Fig. 1.
Thus, the M-estimators of Eqs. (8) and (9) often estimate the
location away of the maximum asymptotic efficiency obtained
by the optimal parameter γopt . Under this circumstance, can we
add extra noise to the given observations and obtain an improved
performance of a robust M-estimator with a fixed parameter γ?
In the following discussion, the answers to these two interesting
problems will be presented.
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Fig. 2. Region S+ (gray) of the positive signs of D(ψ, fw ) in Eq. (46)
where addition of noise is beneficial, and the complementary region S− of the
negative signs of D(ψ, fw ), versus the parameter v of the generalized Cauchy
distribution fw in Eq. (12) (k = 2) and the parameter γ of (a) the Huber and
(b) the bisquare function. Here, the existing noise scale σ = 1 and the added
uniform noise level d → 0.

We purposefully add the extra noise to the original observa-
tions

yi = xi + ηi = θ + zi, i = 1, 2, · · · , n (13)

where the composite noise components zi = wi + ηi and the
extra noise components ηi are the i.i.d. random variables with
the common probability density fη . Therefore, zi have a con-
volved probability density fz (z) =

∫
fw (z − η)fη (η)dη. It is

proven by the Fisher information convolution inequality in Ap-
pendix A that the addition of extra noise to the original ob-
servations cannot improve the performance of the maximum
likelihood estimator.

Furthermore, inspired by the suprathreshold stochastic reso-
nance model [39], [40], we collect L statistics θ̂l generated by
identical M-estimators for l = 1, 2, · · · , L, and average them
as the M-estimation of the location parameter in the context of
noise benefits. It is emphasized that each M-estimator is subject
to the same input xi but mutually independent noise compo-
nents ηli with the common probability density fη . Therefore,
the input of each M-estimator is

yli = θ + wi + ηli = θ + zli , (14)

where the composite noise zli = wi + ηli have the probability
density fz . The estimate θ̂l satisfies

∑n
i=1 ψ(yli − θ̂l) = 0 of

Eq. (3), and the devised M-estimator is given by

θ̂ =
1
L

L∑

l=1

θ̂l . (15)

Due to the independent characteristic of noise ηli and using the
Taylor expansion of θ̂l , the asymptotic efficiency Effa(θ̂) of θ̂
in Eq. (15) is theoretically derived in Appendix B as

Effa(θ̂) =
1

J(fw )
L E2

z [ψ
′(z)]

Ez [ψ2(z)] + (L− 1)Ew

{
E2
η [ψ(w + η)]

} ,

(16)

with the expectations Ez (·) =
∫ ·fz (x)dx and Eη (·) =∫ ·fη (x)dx.

For a single M-estimator (L = 1), the asymptotic efficiency
Effa(θ̂) of Eq. (16) reduces to Eq. (32), and the correspond-
ing optimal noise probability density f opt

η that maximizes the

asymptotic efficiency Effa(θ̂) of Eq. (16) is discussed in Ap-
pendix C. This optimization problem is similar to the issue
of finding the optimal additive noise addressed by Chen et al.
[9]–[11] based on Carathéodory’s theorem. It is proven [11]
that, for a general estimation parameter, the optimal noise, if
one exists, can be chosen as a suitable randomization of no
more than two constant vectors to reduce of the estimation vari-
ance without increasing the bias of the estimator. In Appendix C,
for a location parameter under the Fisher-consistent constraint
Ez [ψ(z)] = 0, we provide the existence condition of the opti-
mal noise implied by the function g(η) in Eq. (34b) and prove
the symmetrical dichotomous noise in Eq. (25) to be the opti-
mal one on the basis of a convex real-value vector function and
the Jensen’s inequality [17], [43], [44]. The demonstration of
Appendix C is in particular complementary to the approach of
Ref. [11] for location estimation.

However, the derived optimal additive noise may not exist for
a single M-estimator in some situations where the function of
g(η) in Eq. (34b) has its maximum at η = 0, e.g., the Cauchy
background noise fw of Eq. (12) and the Huber M-estimator
of Eq. (8). It is interesting to note in Fig. 3 that, even if the
added noise is not optimal, the asymptotic efficiency Effa(θ̂)
can be enhanced by injecting extra noise components into the
M-estimator of Eq. (15) with the estimator number L > 1. This
noise-enhanced effect motivates us to further consider the situ-
ation of L > 1.

Furthermore, for a given M-estimator function ψ and at a
given extra noise level, we demonstrate in Appendix D that the
asymptotic efficiency Effa(θ) in Eq. (16) is a monotonically
increasing function of the estimator number L, as illustratively
shown in Fig. 3. Here, the additive noise distribution fη is ar-
bitrary. We recognize that, due to the nonlinear functional term
Ew

{
E2
η [ψ(w + η)]

}
in Eq. (16), the theoretical determination

of the optimal probability density that maximizes the asymptotic
efficiency of Eq. (16) remains an open question for a finite M-
estimator number 1 < L <∞. In the limiting case of L→ ∞,
the asymptotic efficiency of Eq. (16) attains its maximum with
respect to L and asymptotically approaches to

Eff∞(θ̂) = lim
L→∞

Effa(θ̂) =
1

J(fw )
E2
z [ψ

′(z)]
Ew

{
E2
η [ψ(w + η)]

} ,

(17)

where Ez [ψ2(z)] <∞ and limL→∞ Ez [ψ2(z)]/L→ 0. In
Appendix E, aiming to maximize the asymptotic efficiency of
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Fig. 3. Asymptotic efficiency Effa (θ̂) of Eq. (16) for an array of (a) Huber
estimators with γ = 0.1 and (b) bisquare estimators with γ = 1 as a function
of uniform noise level d and the estimator number L. Here, the existing Cauchy
noise is with the fixed scale σ = 1. Using the iterative reweighting algorithm
(see Appendix G-A), the numerical results computed by 104 Monte Carlo trails
are plotted in (b) for the M-estimator number L = 1 (∗), L = 3 (�), L = 7
(◦), L = 15 (�) and L = 100 (	). Here, the observation size takes n = 7000,
the number of simulation trails is 104 and the tolerance parameter ζ = 10−6 .

Eq. (17), we find the optimal noise density f opt
η is the solu-

tion of the weighted minimum L2-norm of Eq. (44), and the
asymptotic efficiency Eff∞(θ̂) is theoretically proven to be not
more than unity by the Cauchy-Schwarz inequality. Then, for
achieving the upper bound of Eff∞(θ̂) = 1, it is demonstrated
that the optimal noise probability density f opt

η of Eq. (42) is
the deconvolution of ψM(w) and ψ(x). Here, the condition of
existence of this optimal probability density f opt

η is that the
inverse of the Fourier transform in Eq. (42) must exist and be
nonnegative. In Appendix E, an achievable optimum as a logis-
tic noise is worked out as an example. Unfortunately, this kind
of optimal noise often does not exist. For instance, there is no
solution of Eq. (42) for the Huber function in Eq. (8) (or the
bisquare function in Eq. (9)) and the Cauchy noise distribution
fw in Eq. (18) (v = 1/2 and k = 2). In addition, the infinite
M-estimator number L = ∞ is also inaccessible and can only
be approached in practice.

As an alternative, some prior interesting parametric classes of
noise distributions can be selected and optimized to improve the
asymptotic efficiency of M-estimators. For example, consider
the generalized Gaussian noise ηi with its probability density

fη (x) =
c1(β)
ση

exp

(
−c2(β)

∣∣∣∣
x

ση

∣∣∣∣
2/(1+β )

)
, (18)

where c1(β) = Γ1/2(3(1 + β)/2)/(1 + β)Γ3/2((1 + β)/2),
c2(β) = [Γ(3(1 + β)/2)/Γ((1 + β)/2)]1/(1+β ) , the decay
exponent β ≥ −1 and the scale parameter ση > 0 [45]. This
generalized Gaussian noise model of Eq. (18) describes
many noise types encountered in real-world systems, ranging
from Gaussian noise (β = 0), Laplacian noise (β = 1) to
uniform noise (β = −1) [42], [45]. For β = −1 in Eq. (18),
the probability density of uniform noise can be expressed
as fη (x) = 1/(2d) for −d ≤ x ≤ d (d =

√
3ση ) and zero

otherwise.
The theoretical asymptotic efficiency of Eq. (17) is then ap-

plicable to evaluate the benefit of added noise for various back-
ground noise types. For instance, with the addition of uniform
noise, the asymptotic efficiency in Eq. (17) can be expressed as

Eff∞(θ̂, d) =
1

J(fw )
E2
w

(∫ d

−d
1
2d ψ

′(w + η)dη
)

Ew

[(∫ d

−d
1
2d ψ(w + η)dη

)2]

=
1

J(fw )
E2
w [ψ(w + d) − ψ(w − d)]

Ew

{
[ρ(w + d) − ρ(w − d)]2

} . (19)

In Appendix F, we assume the uniform noise level d→ 0, and
derive the condition of Eq. (46) to determine whether the addi-
tion of uniform noise is beneficial or not. For the generalized
Cauchy noise in Eq. (12) (k = 2) with the fixed scale σ = 1, the
signs of D(ψ, fw ) in Eq. (46) versus the parameter γ of the ψ
function and the parameter v of the generalized Cauchy distri-
bution fw in Eq. (12) are shown in Fig. 2(a) and (b). It is seen in
Fig. 2 that, using the discriminant inequality of Eq. (46), the re-
gions S+ of the positive signs ofD(ψ, fw ) clearly manifest that
the benefit of adding uniform noise exists for substantial ranges
of the parameter pair (γ, v). In addition, the benefit of added uni-
form noise occurs for various noise distributions characterised
by the parameter v of the generalized Cauchy distribution fw in
Eq. (12).

The discriminant inequality of Eq. (46) only theoretically
demonstrates the noise benefit for a very small noise level and an
infinite M-estimator number. Furthermore, for the background
Cauchy noise and the estimator parameter γ indicated in Fig. 2
that elicits the benefit of adding noise, the asymptotic efficiency
Effa(θ̂) as a function of the uniform noise level d is shown in
Fig. 3 for different M-estimator numbers. Here, the Huber func-
tion in Fig. 3(a) has a given estimator parameter γ = 0.1, and
the bisquare function in Fig. 3(b) is with γ = 1. The fixed scale
of the Cauchy noise is σ = 1. It is seen in Fig. 3 that, for a single
M-estimator (L = 1), the asymptotic efficiency Effa(θ̂) mono-
tonically decreases with the increase of noise level d. While, for
the estimator number L > 1, the asymptotic efficiency Effa(θ̂)
can be improved to a maximum as the noise level d increases.
This kind of noise enhancement is distinct from the beneficial
effect of noise in a single processor in that it critically relies on
the collective role of the estimator number L [39]. Then, the
noise-enhanced effect shown in Fig. 3 can be regarded as a form
of SSR [39] for location estimation in essence.

We also numerically demonstrate the noise-enhanced asymp-
totic efficiency effect for the bisquare M-estimator by the
iterative reweighting method [37]. The procedure of the
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Fig. 4. (a) Asymptotic efficiency Effa (θ̂) of Eq. (16) for an array of bisquare
estimators versus the estimator parameter γ and uniform noise level d. Here,
the M-estimator number L = 1000 and the background Cauchy noise scale
σ = 1; (b) Maximum asymptotic efficiency Effa (θ̂) of Eq. (16) as a function
of the decay exponents β of generalized Gaussian distributions via the optimized
parameter pair of (ση , γ) for L = 1000 (solid line) and L = ∞ (dashed line).
(c) Asymptotic efficiency Effa (θ̂) as a monotonically increasing function of the
M-estimator number L with the parameters γopt , σopt

η and β that correspond

to the maximum asymptotic efficiency Eff∞(θ̂) = 0.999 (•) in Fig. 4(b).

numerical compution is given in Appendix G-A. In Fig. 3(b), the
asymptotic efficiency Effa(θ̂) is numerically evaluated for 104

simulation trails and the tolerance parameter ζ = 10−6 . Here,
the observation size n = 7000 is large enough but finite. The
numerical results of the asymptotic efficiency Effa(θ̂) are plot-
ted in Fig. 3(b) for the M-estimator numbers L = 1 (∗), L = 3
(�), L = 7 (◦), L = 15 (�) and L = 100 (	). It is shown in
Fig. 3(b) that the numerical results of Effa(θ̂) obtained by this
method are well consistent with the theoretical values of Effa(θ̂)
in Eq. (16).

Now we return to the question of whether, for an optimized
M-estimator with its optimal parameter γopt , the addition of
extra noise is beneficial or not. For a fixed input Cauchy noise

Fig. 5. Asymptotic efficiency Eff(θ̂) of Eq. (11) without added noise (solid
line), and the maximum asymptotic efficiency Effa (θ̂) of Eq. (16) versus the
estimator parameter γ for Gaussian (◦), Laplacian (∗) and uniform (�) types
of the added noise from Eq. (18). For each point of the curves, the level ση
of added noise is optimized to achieve the maximum asymptotic efficiency
Effa (θ̂). Here, the background Cauchy noise scale σ = 1 and the M-estimator
number L = 1000.

scale σ = 1 and the M-estimator number L = 1000, we plot
the asymptotic efficiency Effa(θ̂) of the bisquare M-estimator
array as a function of both the estimator parameter γ and the
added noise level d, as shown in Fig. 4(a). It is found in Fig. 4(a)
that the asymptotic efficiency Effa(θ̂) of Eq. (16) attains its
maximum value of 0.93 (∗) at the optimized parameter pair of
(dopt , γopt) = (1.3, 2.8). Without the help of added noise (d =
0), the maximum Eff(θ̂) is 0.90 (�) with the optimal parameter
γopt = 3.28, as shown in Fig. 4(a). The maximum asymptotic
efficiency Effa(θ̂) = 0.93 via optimizing the parameter pair (γ,
d) presents a slight improvement over the maximum Eff(θ̂) of
0.90 without the help of added noise.

Furthermore, we can consider the possibility of adding extra
noise from Eq. (18) to the M-estimator. For different decay ex-
ponents β of the generalized Gaussian distributions of Eq. (18),
Fig. 4(b) shows the maximum asymptotic efficiency Effa(θ̂) in
Eq. (16) via optimizing the parameter pair (γ, ση ). It is inter-
esting to note in Fig. 4(b) that, for a finite M-estimator num-
ber L = 1000, the maximum asymptotic efficiency of Eq. (16)
can reach 0.956 (�) for the decay exponent β = 1 (Laplacian
noise). More interestingly, based on Eq. (17) and for L = ∞,
Fig. 4(b) also shows the the maximum asymptotic efficiency
Eff∞(θ̂) can achieve as high as 0.999 (•) that is very close
to unity. Here, the decay exponent β = 1.2 and the optimal
parameter pair(γopt , σ

opt
η ) = (1.4, 8.1). Of course, this limit

value of Eff∞(θ̂) = 0.999 can only be approached in prac-
tice. Under this circumstance, Fig. 4(c) illustrates the asymp-
totic efficiency Effa(θ̂) as a monotonically increasing function
of the M-estimator number L with the parameters γopt , σopt

η

and β that correspond to the maximum asymptotic efficiency
Eff∞(θ̂) = 0.999. It is shown in Fig. 4(c) that the asymptotic
efficiency Effa(θ̂) can gradually approach the limit value of
Eff∞(θ̂) = 0.999, but at the cost of the very heavy computation
complexity induced by the large number L.

Finally, we answer the second question of the possibility
of a noise benefit to an array of robust M-estimators with a
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fixed parameter γ. Fig. 5 shows the asymptotic efficiency Eff(θ̂)
(solid line) of Eq. (11) without added noise. Furthermore, for
each given parameter γ and the estimator number L = 1000,
Fig. 5 also depicts the maximum asymptotic efficiency Effa(θ̂)
of Eq. (16) for Gaussian (◦), Laplacian (∗) and uniform (�) types
of the added noise via optimizing the noise level ση (d =

√
3ση

for uniform noise). From Fig. 5, it is visible that the asymptotic
efficiencies Effa(θ̂) obtained by optimizing the level of added
noise are always superior to the efficiency with no added noise
(solid line). These results show that, for a fixed parameter γ, the
addition of extra noise is effectively beneficial to the estimation
process.

IV. ADDING NOISE TO REDUCE THE MAXIMUM BIAS

In Section III, we discussed the noise-enhanced asymptotic
efficiency in symmetric heavy-tailed noise models. In this Sec-
tion, we further consider the case of ε-contaminated noise model
h ranging in the ε-neighborhood [34], [37]

hε(x, θ) = {h| h = (1 − ε)fw (x, θ) + εq(x), q ∈ Q}, (20)

of an assumed parametric distribution fw (x, θ), where q that
represents the probability model of outliers belongs to a family
of probability density functions Q and 0 ≤ ε < 1 indicates the
proportion of the observations generated by the contamination
model of q [34], [37]. Here, the contamination model of q is
usually not exactly known, and depicts the statistical character-
istics of the outliers produced by some unknown mechanisms
[34], [36]–[38]. In order to analyze some extreme contaminated
cases, q is chosen from the set of point mass distribution δ(x0)
such that the probability of x = x0 is unity [34], [37]. Here, δ
is the Dirac function. It has been pointed out [34], [37] that,
for the location M-estimation in neighborhoods of Eq. (20) of
a symmetric fw with a symmetric probability density q of con-
tamination, it is easy to derive an unbiased M-estimator θ̂ with
E(θ̂) = θ and we still care about the asymptotic efficiency of
M-estimators. Thus, in this Section, we mainly focus on the
asymmetric contaminated noise model of hε(x, θ). Under this
condition, the bias of the estimators to the true value becomes
the main factor of MSE as a measurement of estimators rather
than the variance for a sufficiently large observation size n. This
is because the estimation variance var(θ̂) of Eq. (4) tends to
zero with the order of n−1 , while the bias does not [34]–[38].

For the asymmetric contaminated noise model of hε(x, θ) of
Eq. (20), there are two cases: either a symmetric central proba-
bility density fw but an asymmetric point mass distribution q, or
an asymmetric fw plus an asymmetric (or symmetric) q. In the
case of the noise components wi with the asymmetric probabil-
ity density fw , we can add the i.i.d. noise components w′

i with
the probability density of −wi , i.e., fw ′(x) = fw (−x), to the
original noise componentswi . Here,w′

i are independent withwi .
Then, the updated random variables w̃i = wi + w′

i have a sym-
metric probability density fw̃ (x) =

∫
fw (x− u)fw ′(u)du =∫

fw ′(−x− u)fw (u)du = fw̃ (−x). Therefore, we here only
concentrate on the maximum bias induced by the contaminated
noise model of hε(x, θ) with a symmetric fw but an asymmetric
q in the following parts.

Consider the estimate θ̂n depending on the observation data
(x1 , x2 , · · · , xn ) and for a location M-estimator with the mono-
tonic ψ in Eq. (3), the asymptotic value θ̂∞ = θ under fw ,
i.e., the solution of E[ψ(x− θ)] = 0 [34], [37]. Then, the bias
for an arbitrary distribution h is bθ̂ = θ̂∞(h) − θ. For a given
proportion ε and the assumed parametric probability density fw ,
the maximum bias is defined as [34], [37]

bε = max{|bθ̂ (h, θ)| : h ∈ hε}, (21)

over an arbitrary contamination model of q ∈ Q.
Let ψ be a nondecreasing function, instead of a redescending

function, with a bound s = ψ(∞), the fraction of contamination
0 < ε < 1/2 and θ = 0 (without loss of generality). It can be
shown [34], [37] that the maximum bias bε of a location M-
estimator is the solution of

Ew [ψ(x+ b)] =
sε

1 − ε
, (22)

which is attained in the case of the point mass distribution
q = δ(x0) in Eq. (20) with x0 → ±∞.

The median estimator, as a special Huber estimator in Eq. (8)
with its parameter γ → 0, has the minimax bias property for a
symmetric unimodal distribution fw of noise [34], [37], [38].
Since the median estimator with ψ(x) = sgn(x) is bounded by
s = 1, the maximum bias bε in Eq. (22) can be calculated as
[34], [37]

bε = F−1
w [1/2(1 − ε)], (23)

where F−1
w is the inverse function of the cumulative distri-

bution Fw . When we add noise ηi to the median estimator,
the observations in Eq. (13) are now buried in the composite
noise zi = wi + ηi (i = 1, 2, · · · , n). Then, the maximum bias
of Eq. (23) is updated as

b̃ε = F−1
z [1/2(1 − ε)], (24)

with the inverse function F−1
z of the cumulative distribution Fz .

In Appendix H, we derive the condition for reducing maxi-
mum bias bε of the median estimator in Eq. (23) with additive
noise. It is demonstrated that if there exists a positive interval
where the cumulative distribution functionFw is strictly convex,
then the maximum bias bε of the median estimator in Eq. (23)
can be reduced. Furthermore, under the condition of convexity
of Fw , we also demonstrate in Appendix H that the optimal
noise probability density f opt

η is given by

f opt
η (η) =

1
2
[δ(η − aopt) + δ(η + aopt)], (25)

with the optimal noise level

aopt = arg max
a

1
2
[Fw (bε − a) + Fw (bε + a)]. (26)

The noise with the distribution in Eq. (25) is also referred to as
the dichotomous noise [2]. This condition applies for bimodal
noise distribution models arising in diverse problems [46]–
[51], where the cumulative distribution function Fw satisfies the
convexity condition given in Appendix H.
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Fig. 6. (a) Maximum bias b̃ε (◦) of Eq. (24) obtained by optimizing the added
noise level a, and maximum bias bε (solid line) of Eq. (23) without the added

noise as a function of μ/τ . The numerical results of maximum bias b̃ε (�) and
bε (�) are produced by Monte Carlo simulation (see Appendix G-B). (b) The
optimal noise level aopt corresponding to (a) versus μ/τ . Here, the fraction of
contamination ε = 0.1.

For example, consider the Gaussian mixture noise with den-
sity

fw (x) =
1
2

[κ(x;−μ, τ) + κ(x;μ, τ)] , (27)

where κ(x;μ, τ) = (1/
√

2πτ 2) exp[−(x− μ)2/(2τ 2)] with
parametersμ, τ ≥ 0. The dichotomous noise of Eq. (25) with the
optimal noise level aopt of Eq. (26) is added to the observations.
For the fraction of contamination ε = 0.1, Fig. 6(a) presents
that the maximum bias bε (solid line) of Eq. (23) without added
noise increases as the ratio of μ/τ grows, while the maximum
bias b̃ε (◦) of Eq. (24) obtained by optimizing the added noise
level aopt maintains a lower value with the increase of μ/τ .
The corresponding optimal noise level aopt is also plotted in
Fig. 6(b). The results clearly show the noise-reduced bias ef-
fect in the median estimator for the asymmetric ε-contaminated
noise model.

V. DISCUSSION

In this paper, we study the enhancement of the asymp-
totic efficiency and the reduction of the maximum bias by
adding noise in robust location M-estimators. For symmetric

heavy-tailed noise models, we show that the asymptotic effi-
ciencies of two commonly used M-estimators with the Huber
function and the bisquare function are non-monotonic functions
of the ratio of the noise scale and the estimator parameter. With
a summing array of M-estimators, by injecting extra noise into
the array, we show the possibility of noise enhancement of the
asymptotic efficiency that is maximized by an optimal nonzero
amount of extra noise.

Furthermore, in order to maximize the asymptotic efficiency
of a single M-estimator with added noise, a discriminant func-
tion is proposed to establish whether an optimal noise condition
exists or not. When the optimal additive noise exists, its prob-
ability density function is proven to be the same one given by
Chen et al. [9]–[11]. Nevertheless, even when the optimal ad-
ditive noise does not exist, the noise-enhanced effect occurs for
an array of M-estimators with estimator number larger than one.
Moreover, it is proven that the asymptotic efficiency of an array
of M-estimators is a monotonically increasing function of the
M-estimator number, and achieves its maximum for an infinite
M-estimator number. Then, aiming to maximize the asymptotic
efficiency of an infinite number of M-estimators, we find that
the optimal noise distribution is the weighted minimum L2-
norm solution of Eq. (44). It is also theoretically demonstrated
that the upper bound of the asymptotic efficiency of an infinite
number of M-estimators is unity, and the corresponding optimal
noise is analytically derived. Unfortunately, this optimal noise
distribution often does not exist. Therefore, we select a class
of parametric noise distributions, and optimize the noise distri-
bution parameters as well as the noise variance. Specially, we
present a condition for a benefit by adding uniform noise, and
show the noise benefit is effective for a number of background
heavy-tailed noise models.

It is also shown that, compared with the method without extra
noise, the addition of noise can provide an improved asymptotic
efficiency with a local optimal probability density chosen from
the given parametric noise distributions. In addition, upon in-
creasing the M-estimator number to a sufficiently large value,
we can gradually obtain an excellent asymptotic efficiency close
to unity. The asymmetric contaminated model is also consid-
ered, which contains a proportion of the observations generated
by the true distribution, while another proportion of outliers is
mixed by an unknown mechanism. In this case, we consider the
extreme situation of contamination with an infinite point-mass
distribution, and characterize the noise type for which the max-
imum bias of the median estimator can be minimized by adding
an optimal amount of the dichotomous noise.

Several questions of interest remain open: Although the op-
timal noise density f opt

η that maximizes the asymptotic ef-
ficiency of an infinite number of M-estimators is proven to
be the weighted minimum L2-norm solution of Eq. (44), an
explicit form of f opt

η remains an interesting open question
for future study. We also note that, for achieving the upper
bound of unity of the asymptotic efficiency, the optimal addi-
tive noise exists only if the inverse of the Fourier transform
of Eq. (42) is nonnegative over all the probability space. Oth-
erwise, the optimal noise does not exist. In cases where the
inverse of the Fourier transform of Eq. (42) exists but has
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negative parts, one can envisage to clip the negative parts to
zero and renormalize the positive parts as a suboptimal solution
for the noise density. We test this approach with the following
example. Consider a zero-mean Student distribution fw (x) =
cv (1 + x2/v)−(v+1)/2 with the degree of freedom v > 0 and the
constant cv = Γ((v + 1)/2)/(

√
vπΓ(v/2)). The correspond-

ing maximum likelihood estimator ψM = −f ′w (x)/fw (x) =
(v + 1)x/(v + x2). When the median estimatorψ(x) = sgn(x)
is employed, the inverse of the Fourier transform of Eq. (42) is
given by I(x) =

√
π/2(v + 1)(v − x2)/(v + x2)2 , which has

negative parts as |x| > √
v and is actually not a probability

density function. We can clip these negative parts of I(x) to
zero and renormalize the nonnegative parts as a probability den-
sity function f c

η (x) =
√
v(v − x2)/(v + x2)2 for |x| ≤ √

v and
zero otherwise. It is very interesting to note that, with this clipped
probability density function f c

η and the degree of freedom v = 4,
the asymptotic efficiency of Eq. (17) is 0.995 that is very close
to unity. Thus, this suboptimal solution f c

η (x) provides a suit-
able noise density to improve the asymptotic efficiency of an
array of M-estimators. Adding noise in an array as we propose
is another alternative to improve the efficiency. However, even if
this optimal noise distribution exists, the infinite-size array can
only be approached in practice. As an alternative, it is mean-
ingful to further explore the optimal noise type that achieves
the maximum asymptotic efficiency for a finite M-estimator
number, and ideally with a noise type which is not restricted
to a prior class of parametric noise distributions. In addition,
for the special case of the median estimator, the optimal di-
chotomous noise is demonstrated to minimize the maximum
bias for estimating a location buried in bimodal noise models
with convex cumulative distributions. It is interesting to ana-
lyze the reduction of maximum bias with addition of noise for
other robust M-estimators, and prove whether there are other
contaminated models exhibiting the noise-enhanced effects or
not. We here consider the asymmetrical contaminated model of
Eq. (20) for the point mass distribution of extreme cases, and
derive the optimal symmetrical noise to reduce the maximum
bias at a given proportion of the contamination. In this contami-
nated model, the contaminating probability density q is actually
arbitrary and unknown. But, with sufficient knowledge of the
contamination distribution in Eq. (20), it is very meaningful to
further investigate the optimal asymmetrical noise obeying the
distribution of hε(−x). Then, the asymmetrical contaminated
model of Eq. (20) can be simplified as an unbiased location es-
timation. For robust statistics of multi-parameter problems and
M-estimators for regression models [34]–[38], the benefits of
noise also deserve to be further studied. These questions are of
interest for robust estimation where addition of noise properly
optimized may reveal, as in the present study, to be a beneficial
option.

APPENDIX A
NO NOISE-ENHANCED EFFECT FOR THE MAXIMUM

LIKELIHOOD ESTIMATOR

In this Appendix, we show that adding extra noise to obser-
vations cannot reduce the variance of the maximum likelihood

estimator. Based on Eqs. (5) and (6), the asymptotic variance
of the maximum likelihood estimator is 1/(nJ(fw )) that is
closely related to the original noise distribution fw . When we
add extra noise η to the observations and the background noise
becomes the composite noise z = w + η, the asymptotic vari-
ance of the maximum likelihood estimator that is optimal for
noise z is updated as 1/(nJ(fz )). According to the Fisher in-
formation convolution inequality J(fz ) ≤ min{J(fw ), J(fη )}
in Refs. [41] (Chapter 16.6) and [52], we can derive that
1/(nJ(fz )) ≥ 1/(nJ(fw )), which indicates no noise-enhanced
effect for the maximum likelihood estimator.

APPENDIX B
ASYMPTOTIC EFFICIENCY OF AN ARRAY OF M-ESTIMATORS

In this Appendix, we present the derivation of the asymptotic
efficiency of Eq. (16) for a summing array of M-estimators. The
location estimate θ̂l of each M-estimator satisfies

∑n
i=1 ψ(yli −

θ̂l) = 0 for l = 1, 2, · · · , L. We can perform a Taylor expansion
of ψ as a function of θ̂l around the true value of θ, so the result
yields [34], [37]

0 =
n∑

i=1

ψ(yli − θ̂l)

≈
n∑

i=1

ψ(yli − θ) − (θ̂l − θ)
n∑

i=1

∂

∂θ
ψ(yli − θ)

= An − (θ̂l − θ)Bn, (28)

where An =
∑n

i=1 ψ(yli − θ)/n and Bn =
∑n

i=1(∂ψ(yli −
θ)/∂θ)/n. Hence, by Slutsky’s lemma and according to the cen-
tral limit theorem for a sufficiently large n, Bn in probability
converges to B = E[∂ψ(y − θ)/∂θ] = Ez [ψ′(z)], and An con-
verges to a Gaussian distribution with zero mean and variance
E[ψ2(y − θ)]/n = Ez [ψ2(z)]/n [34], [37]. Therefore, each es-
timate θ̂l converges to a Gaussian distribution with mean θ and
variance var(θ̂l) = n−1Ez [ψ2(z)]/E2

z [ψ
′
(z)] of Eq. (5). In line

with this general proof, the average estimate θ̂ =
∑L

l=1 θ̂l/L,
also converges to a Gaussian distribution with mean θ and vari-
ance

vara(θ̂) = var

(
1
L

L∑

l=1

θ̂l

)

=
1
L2

[
L var(θ̂l) +

L∑

l,p=1
l 
=p

Ez [(θ̂l − θ)(θ̂p − θ)]
]

=
1
L2

[
L var(θ̂l) + L(L− 1)Ez [(θ̂l − θ)(θ̂p − θ)]

]

=
1
L

[
var(θ̂l) + (L− 1)Ew

{
Eη [(θ̂l − θ)(θ̂p − θ)]

}]

=
1
L

var(θ̂l) +
L− 1
L

Ew

{
Eη [(θ̂l − θ)(θ̂p − θ)]

}
.

(29)

Since for a given wi , wi + ηli are i.i.d. random variables for
l = 1, 2, · · · , L and the Taylor expansion of ψ in Eq. (28), so
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we can obtain

Ew

{
Eη [(θ̂l − θ)(θ̂p − θ)]

}
=

Ew

{
E2
η [ψ(w + η)]

}

n E2
z [ψ

′(z)]
. (30)

Substituting Eqs. (5) and (30) into Eq. (29), the asymptotic
variance of θ̂ can be calculated as

vara(θ̂) =
1
n

Ez [ψ2(z)] + (L− 1)Ew

{
E2
η [ψ(w + η)]

}

L E2
z [ψ′(z)]

. (31)

Then, the asymptotic efficiency of Eq. (16) is obtained.

APPENDIX C
OPTIMIZATION OF THE ASYMPTOTIC EFFICIENCY OF A SINGLE

M-ESTIMATOR

For a single M-estimator (L = 1), the asymptotic efficiency
of Effa(θ̂) of Eq. (16) becomes

Effa(θ̂) =
1

J(fw )
E2
z [ψ

′(z)]
Ez [ψ2(z)]

. (32)

Thus, it is interesting to find an optimal noise probability den-
sity f opt

η to maximize the asymptotic efficiency of Effa(θ̂) in
Eq. (32) under the constraint of unbiasedness. Since the Fisher
information J(fw ) > 0, then this optimization problem can be
expressed as

max
fη

E2
z [ψ

′(z)]
Ez [ψ2(z)]

, (33)

with the constraint of Ez [ψ(z)] = 0.
Consider a real-value vector function f(Z) = Z2

1 /Z2 with
Z = [Z1 , Z2 ]T and Z2 > 0. It is seen that f(Z) is convex, be-
cause its Hessian matrix∇2f(Z) = 2[Z2 ,−Z1 ]T [Z2 ,−Z1 ]/Z3

2
is positive semidefinite [43]. Then, Jensen’s inequality
E2
η (Z1)/Eη (Z2

2 ) ≤ Eη (Z2
1 /Z2) is valid in the definition do-

main {(Z1 , Z2) ∈ R2 |Z2 > 0} [17], [41], [43], [44]. Therefore,
defining Z1 = Ew [ψ′(w + η)] and Z2 = Ew [ψ2(w + η)], we
have

E2
z [ψ

′(z)]
Ez [ψ2(z)]

=
E2
η{Ew [ψ′(w + η)]}

Eη{Ew [ψ2(w + η)]} =
E2
η (Z1)

Eη (Z2)

≤ Eη

(
Z2

1 /Z2
)

(34a)

= Eη [g(η)] (34b)

≤ max
η

g(η), (34c)

where g(η) = Z2
1 /Z2 , Z2

1 and Z2 are even functions for the odd
function ψ and the even probability density fw . It is noted that
Eη [g(η)] cannot be larger than the maximum value of g(η) in
Eq. (34c) and the optimal added noise has a density function of
one or multiple mass points (depending on the number of points
of aopt = arg max

η
g(η)). Furthermore, since g(η) is an even

function, then it must have an extremum value g(0) at the origin.
If g(0) is the absolute maximum over the real space η ∈ R, then
the optimal solution of Eq. (33) is f opt

η (η) = δ(η). This indicates
that there is no benefit in adding noise. Meanwhile, if g(η)
has two absolute maximum values of g(aopt) = g(−aopt) >
g(0) at ±aopt (aopt 
= 0), then the optimal dichotomous noise

density exists and can be expressed by Eq. (25) for obtaining
the maximum of g(aopt). Substituting Eq. (25) with the optimal
noise level aopt into Eq. (34a) and Eq. (34c), both equalities hold
and the maximum value of Eq. (33) can be achieved. This result
accords with the determination of the optimal noise proven by
Chen et al. [9]–[11] based on Carathéodory’s theorem [53].

APPENDIX D
ASYMPTOTIC EFFICIENCY VERSUS THE M-ESTIMATOR NUMBER

For the convex function x2 and by the Jensen inequality, we
obtain

Eη [ψ2(w + η)] ≥ E2
η [ψ(w + η)], (35)

for any fixed variable w [41]. Then, we have

Ez [ψ2(z)] = Ew

{
Eη [ψ2(w + η)]

}

≥ Ew

{
E2
η [ψ(w + η)]

}
. (36)

Immediately, we find

1
L+ 1

Ez [ψ2(z)] +
L

L+ 1
Ew

{
E2
η [ψ(w + η)]

}

≤ 1
L

Ez [ψ2(z)] +
L− 1
L

Ew

{
E2
η [ψ(w + η)]

}
. (37)

From Eq. (16) and Eq. (37), we derive

1
J(fw )

(L+ 1)E2
z [ψ

′(z)]
Ez [ψ2(z)] + LEw

{
E2
η [ψ(w + η)]

}

≥ 1
J(fw )

LE2
z [ψ

′(z)]
Ez [ψ2(z)] + (L− 1)Ew

{
E2
η [ψ(w + η)]

} ,

which indicates

Effa(θ̂, L+ 1) ≥ Effa(θ̂, L). (38)

Thus, for the given M-estimator functionψ and fixed noise com-
ponentsw and η, the asymptotic efficiency Effa(θ̂, L) in Eq. (16)
is a monotonically increasing function of the M-estimator num-
ber L.

APPENDIX E
OPTIMIZATION OF THE ASYMPTOTIC EFFICIENCY FOR AN

INFINITE NUMBER OF M-ESTIMATORS

By using the Cauchy-Schwarz inequality, we find that the
asymptotic efficiency Eff∞(θ̂) in Eq. (17) satisfies

Eff∞(θ̂) =
1

J(fw )
E2
w {dEη [ψ(w + η)]/dw}
Ew

{
E2
η [ψ(w + η)]

}

=
1

J(fw )
E2
w {Eη [ψ(w + η)]ψM(w)}

Ew
{
E2
η [ψ(w + η)]

}

≤ 1
J(fw )

Ew

[
ψ2

M(w)
]

= 1, (39)

where the equality occurs as

Eη [ψ(w + η)] = CψM(w), (40)

with an arbitrary constant C.
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Thereby, for the given function ψ and the background noise
distribution fw , the optimal additive noise probability density
f opt
η is the solution of Eq. (40). With the assumptions of symmet-

rical distribution function fw and the odd M-estimator function
ψ, the added noise probability density function is also even,
i.e., fη (−η) = fη (η), due to the Fisher-consistent M-estimator
satisfying Ez [ψ(z)] = 0 [37]. Then, Eq. (40) can be rewritten
as

Eη [ψ(w + η)] =
∫ +∞

−∞
ψ(w + η)fη (−η)dη

=
∫ −∞

+∞
ψ(w − u)fη (u)d(−u)

= ψ(w) ∗ fη (w)

= CψM(w), (41)

which indicates that the optimal noise probability density f opt
η

is the deconvolution of CψM(x) and ψ(x). If the Fourier trans-
formations of ψ(x) and ψM(x) both exist [54], [55], we have

f opt
η (x) = C F−1

{
F [ψM(x)]
F [ψ(x)]

}
, (42)

where F and F−1 denote the Fourier transform and its inverse
transform, respectively. Here, we emphasize that, due to the
probability density fη (η) ≥ 0, the optimal density f opt

η exists
only if the inverse of the Fourier transform in Eq. (42) exists and
is a nonnegative function. The constant C can be calculated by
the normalization condition

∫
fη (η)dη = 1. In addition, both

ψM(x) and ψ(x) are odd functions. According to the convolu-
tion property [55], f opt

η is an even function when it exists. For ex-
ample, consider a kind of heavy-tailed noise with the hyperbolic
secant distribution fw (x) = sech(πx/2) [42] and the median es-
timator ψ(x) = sign(x). Then, from Eq. (42), the optimal prob-
ability density becomes f opt

η (x) = πeπx/[4(1 + eπx)2 ], which
indicates logistic noise as a feasible optimal noise.

It is noted that the optimal noise indicated in Eq. (42) cor-
responding to the upper bound of unity is only a special case
of

f opt
η (x) = arg max

fη
Eff∞(θ̂). (43)

An achievable optimal noise density that achieves the max-
imum of the asymptotic efficiency (not more than unity) of
Eq. (17) among all feasible densities is practically significant.
Define the inner product of two functions f and g as 〈f, g〉 =
Ew [f(w)g(w)], and the L2-norm of a function g as ‖g‖ =
〈g, g〉1/2 . Here, we define φ(w) = Eη [ψ(w + η)] and its nor-
malized function can be expressed as φ(w) = φ(w)/‖φ(w)‖.
Correspondingly, the maximum likelihood estimator ψM(w)
can be also normalized as ψM(w) = ψM(w)/‖ψM(w)‖ with
its norm ‖ψM(w)‖ =

√
J(fw). From Eqs. (17) and (41), we

have

Eff∞(θ̂) =
〈Eη [ψ(w + η)], ψM(w)〉2

‖Eη [ψ(w + η)]‖2‖ψM(w)‖2 = 〈φ(w), ψM(w)〉2 .

Note that ‖φ(w) − ψM(w)‖2 = 2 − 2〈φ(w), ψM(w)〉. Thus,
the optimal noise density indicated in Eq. (43) is just the

minimum L2-norm solution of ‖φ(w) − ψM(w)‖2 , expressed
as

f opt
η (x) = arg min

fη
‖φ(w) − ψM(w)‖2 , (44)

with the constrains of
∫
fη (x)dx = 1 and fη (x) ≥ 0 for x ∈ R.

A further point is to consider the set of all possible noise den-
sities, and then in this set there is necessarily at least one that
realizes the maximum efficiency, which is equivalent to solving
the constrained minimization of Eq. (44). How to calculate such
an achievable optimal density of the additive noise remains an
interesting open question for future study.

APPENDIX F
BENEFIT CONDITION OF ADDING UNIFORM NOISE

Based on Eq. (19), the derivative of Eff∞(θ̂, d) with respect
to the uniform noise level d is given by

∂Eff∞(θ̂, d)
∂d

=
1

J(fw )
A

E2
w

{
[ρ(w + d) − ρ(w − d)]2

} , (45)

with A = 2Ew [ψ(w + d) − ψ(w − d)]Ew [ψ′(w + d) + ψ′(w −
d)]Ew

{
[ρ(w + d) − ρ(w − d)]2

} − 2E2
w [ψ (w + d) − ψ (w −

d)]Ew

{
[ρ(w + d) − ρ(w − d)][ψ(w + d) + ψ(w − d)]

}
. The

optimal noise level dopt is solved by ∂Eff∞(θ̂, d)/∂d = 0.
Since J(fw ) > 0 and E2

w

{
[ρ(w + d) − ρ(w − d)]2

}
> 0, then

the optimal noise level dopt is the solution ofA = 0. We further
consider the small noise level d→ 0 (d > 0). In this situation,
the derivative of Eff∞(θ̂, d) in Eq. (45) can be approximated
with the second-order Taylor expansion as

∂Eff∞
∂d

≈ d

J(fw)
E2
w [ψ′(w)]

Ew [ψ2(w)]

{
Ew [ψ′′′(w)]
Ew [ψ′(w)]

− Ew [ψ(w)ψ′′(w)]
Ew [ψ2(w)]

}
.

Since E2
w [ψ′(w)]/Ew [ψ2(w)] > 0 and the noise level d > 0,

then the condition of a benefit by adding uniform noise is given
by

D(ψ, fw ) =
Ew [ψ′′′(w)]
Ew [ψ′(w)]

− Ew [ψ(w)ψ′′(w)]
Ew [ψ2(w)]

> 0, (46)

which indicates when the addition of uniform noise leads to
the increase of the asymptotic efficiency Eff∞(θ̂, d). If the sec-
ond or third derivative of ψ in Eq. (46) does not exist, we can
reduce the derivative order of ψ, and explore the derivative of
fw by applying the subsection integral method. For example,
Ew [ψ′′′(w)] = − ∫

ψ′′(w)f ′w (w)dw and note fw (±∞) = 0. In
practice, we can simply calculate the sign of D(ψ, fw ) in
Eq. (46) to determine whether the addition of uniform noise
is beneficial or not for a background noise distribution fw , as
illustrated in Fig. 2.
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APPENDIX G
NUMERICAL SIMULATION

A. Numerical Computation of the Asymptotic Efficiency

We adopt the iterative reweighting method to obtain the nu-
merical estimation θ̂ of a location parameter [37]. Assuming

W (x) =
{
ψ(x)/x, x 
= 0,
ψ′(x), x = 0, (47)

then Eq. (3) can be rewritten as [37]
n∑

i=1

W (xi − θ̂)(xi − θ̂) = 0. (48)

From Eq. (48), the estimated parameter can be obtained as a
weighted mean [37]

θ̂ =
∑n

i=1 Wi xi∑n
i=1 Wi

, (49)

with Wi = W (xi − θ̂).
For the method of adding extra noise to an array of

M-estimators, we first generate L groups of updated samples
with the addition of L samples of uniform noise components ηli
with the level of d. Then, computeL values of parallel estimators
(θ̂1 , · · · , θ̂L ) by using L groups of observations respectively.
For each group of observations yl = (yl1 , yl2 , · · · , yln ), the lth
estimator θ̂l is obtained by the iterative reweighting method as
follows:

1) Set the initial estimator θ̂l(0) as the median of the updated
observations yl .

2) For k = 0, 1, 2, . . ., compute the location parameter θ̂l(k +
1) at iteration k + 1 as

θ̂l(k + 1) =
∑n

i=1 Wk,li yli∑n
i=1 Wk,li

, (50)

with the weight function Wk,li = W [yli − θ̂l(k)].
3) Stop when |θ̂l(k + 1) − θ̂l(k)| < ζ, where ζ is a small

tolerance parameter, and the numerical M-estimator θ̂l(k + 1)
is assumed to be the lth expected M-estimator θ̂l .

4) Compute the estimator θ̂ of Eq. (15) by averaging L esti-
mators (θ̂1 , · · · , θ̂L ).

Then, we can realize the numerical M-estimator θ̂ for
M = 104 Monte Carlo trails by the above iterative reweight-
ing method, and the variance of θ̂ is evaluated as var(θ̂) =
∑M

m=1(θ̂m − θ̂)2/(M − 1) with the mean θ̂ =
∑M

m=1 θ̂m /M .
Substituting the variance var(θ̂) into Eq. (7), the numerical
asymptotic efficiency Effa(θ̂) can be obtained, as shown in
Fig. 3(c).

B. Numerical Simulation of the Maximum Bias

We use 104 Monte Carlo trails to evaluate the maximum bias
with optimal noise and without added noise, respectively. For
each trail, the observation size n = 5 × 104 and the fraction
of contamination ε = 0.1. We generate n observations obey-
ing the Gaussian mixture distribution, then replacing 0.1n of
observations with the outliers, resulting in the contaminated

data xi . According to the contamination model of Eq. (20), the
maximum bias is theoretically evaluated with the extreme out-
liers obeying the point mass distribution q = δ(x0) at x0 → ∞.
In practice, the outliers are taken as real numbers with suffi-
ciently large magnitude as 106 � μ+ 3τ . Then, we generate
n random components ηi composed by two values of aopt and
−aopt with equal probabilities. Then, the updated observations
yi = xi + ηi are obtained. Next, calculate the median of the
samples by the original data xi and the updated observations
yi , respectively. Finally, the maximum bias with optimal noise
and without added noise are obtained for 104 numerical trials,
respectively, as shown in Fig. 6.

APPENDIX H
NOISE-REDUCED MAXIMUM BIAS OF THE MEDIAN ESTIMATOR

For the median estimator and a given proportion 0 < ε < 1/2,
we expect that the updated bias b̃ε of Eq. (24) is smaller than the
bias bε of Eq. (23), i.e., F−1

z [1/2(1 − ε)] < F−1
w [1/2(1 − ε)].

Here, the median estimator has the breakdown point of ε∗ = 1/2
that yields an unbounded estimator θ̂ → ∞, thus requiring 0 <
ε < 1/2. Since the probability density fw or fz is symmetric,
the cumulative distribution function is then analyzed for the
nonnegative domain of x ≥ 0. It is known that the cumulative
distribution function is nondecreasing, then finding a smaller
updated bias of b̃ε < bε is equivalent to satisfying the condition
of Fz (bε) > Fw (bε) for bε = b̃ε . The cumulative distribution
function Fz of the composite noise z can be calculated as

Fz (x) =
∫ x

−∞
fz (z)dz

=
∫ x

−∞

∫ ∞

−∞
fw (z − η)fη (η)dηdz

=
∫ ∞

−∞

∫ x

−∞
fw (z − η)dzfη (η)dη

=
∫ ∞

−∞
Fw (x− η)fη (η)dη

= Eη [Fw (x− η)]. (51)

For a given positive value of bε ∈ (U, V ) for 0 ≤ U < V and a
functionFw (x) convex over the interval (U, V ), then, according
to the Jensen inequality [41], we obtain

Fz (bε) = Eη [Fw (bε − η)] > Fw [Eη (bε − η)] = Fw (bε) (52)

with the zero mean Eη [η] = 0. This indicates that if there ex-
ists a positive interval (U, V ) where the cumulative distribution
function Fw is strictly convex, then the maximum bias of the
median estimator can be reduced by adding extra noise η.

Under the above convexity condition of Fw over a certain
positive interval (U, V ), a naturally emerging problem is to
find an optimal noise distribution f opt

η , aiming to minimize the
maximum bias of Eq. (24) without changing the consistency of
the estimator under fz , i.e., Ez [ψ(z)] = 0 with ψ(x) = sgn(x).
It is noted that minimizing the maximum bias is equivalent to
maximizing Fz (bε) for a given positive bias bε ∈ (U, V ). Thus,
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the optimal distribution f opt
η is given by

arg max
fη

Fz (bε) = Eη [Fw (bε − η)], (53)

with the constraint Ez [ψ(z)] = Eη [2Fw (η) − 1] = 0. Next, we
will demonstrate that the solution of Eq. (53) is just the noise
distribution fη of Eq. (25).

Proof: Consider the set of all pairs of (Fw (bε − η), 2Fw (η) −
1) named P = {(p1 , p2)|p1 = Fw (bε − η), p2 = 2Fw (η) − 1}.
T = {(t1 , t2)|t1 = Fz (bε), t2 = Ez [ψ(z)]} denotes the set of
pairs (Fz (bε),Ez [ψ(z)]). Let E be the convex hull of P and
the dimension Dim(E) ≤ 2. As discussed in [9]–[11], [19], we
have T = E. From Carathéodory’s theorem [53], any point in
T can be expressed as a combination of at most three elements
of P . Since our aim is to maximize Fz (bε) with the constraint of
Ez [ψ(z)] = 0, the optimum point can only occur on the bound-
ary of T . Therefore, the optimal pair (Fz (bε),Ez [ψ(z)]) can be
expressed as the convex combination of two points of P . Based
on the constraint such that Ez [ψ(z)] = 0, i.e., fη (−η) = fη (η),
we derive the optimal noise distribution fη of Eq. (25).

REFERENCES

[1] S. Mitaim and B. Kosko, “Adaptive stochastic resonance,” Proc. IEEE,
vol. 86, no. 11, pp. 2152–2183, Nov. 1998.

[2] F. Chapeau-Blondeau and X. Godivier, “Theory of stochastic resonance
in signal transmission by static nonlinear systems,” Phys. Rev. E, vol. 55,
pp. 1478–1495, 1997.

[3] V. Galdi, V. Pierro, and I. M. Pinto, “Evaluation of stochastic-resonance-
based detectors of weak harmonic signals in additive white Gaussian
noise,” Phys. Rev. E, vol. 57, pp. 6470–6479, 1998.

[4] S. Kay, “Can detectability be improved by adding noise?” IEEE Signal
Process. Lett., vol. 7, no. 1, pp. 8–10, Jan. 2000.

[5] S. Zozor and P. O. Amblard, “Stochastic resonance in locally optimal
detectors,” IEEE Trans. Signal Process., vol. 51, no. 12, pp. 3177–3181,
Dec. 2003.

[6] H. Chen, L. R. Varshney, and P. K. Varshney, “Noise-enhanced information
systems,” Proc. IEEE, vol. 102, no. 10, pp. 1607–1621, Oct. 2014.

[7] R. Benzi, A. Sutera, and A. Vulpiani, “The mechanism of stochastic res-
onance,” J. Phys. A, Math. Gen., vol. 14, pp. L453–L457, 1981.

[8] S. Zozor and P. O. Amblard, “Noise-aided processing: Revisting dithering
in a ΣΔ quantizer,” IEEE Trans. Signal Process., vol. 53, no. 8, pp. 3202–
3210, Aug. 2005.

[9] H. Chen, P. K. Varshney, S. M. Kay, and J. H. Michels, “Theory of
the stochastic resonance effect in signal detection: Part I–Fixed detec-
tors,” IEEE Trans. Signal Process., vol. 55, no. 7, pp. 3172–3184, Jul.
2007.

[10] H. Chen and P. K. Varshney, “Theory of the stochastic resonance effect in
signal detection–Part II: Variable detectors,” IEEE Trans. Signal Process.,
vol. 56, no. 10, pp. 5031–5041, Oct. 2008.

[11] H. Chen, P. K. Varshney, and J. H. Michels, “Noise enhanced parameter
estimation,” IEEE Trans. Signal Process., vol. 56, no. 10, pp. 5074–5081,
Oct. 2008.

[12] F. Chapeau-Blondeau and D. Rousseau, “Noise-enhanced performance
for an optimal Bayesian estimator,” IEEE Trans. Signal Process., vol. 52,
no. 5, pp. 1327–1334, May 2004.

[13] D. Rousseau and F. Chapeau-Blondeau, “Noise-improved Bayesian esti-
mation with arrays of one-bit quantizers,” IEEE Trans. Instrum. Meas.,
vol. 56, no. 6, pp. 2658–2662, Dec. 2007.

[14] A. Patel and B. Kosko, “Optimal noise benefits in Neyman–Pearson and
inequality-constrained statistical signal detection,” IEEE Trans. Signal
Process., vol. 57, no. 5, pp. 1655–1669, May 2009.

[15] B. Xu, H. Zhang, L. Zeng, and J. Li, “Application of parameter-induced
stochastic resonance to target detection in shallow-water reverberation,”
Appl. Phys. Lett., vol. 91, 2007, Art. no. 091 908.

[16] S. Uhlich, “Bayes risk reduction of estimators using artificial observation
noise,” IEEE Trans. Signal Process., vol. 63, no. 20, pp. 5535–5545, Oct.
2015.

[17] G. O. Balkan and S. Gezici, “CRLB based optimal noise enhanced pa-
rameter estimation using quantized observations,” IEEE Signal Process.
Lett., vol. 17, no. 5, pp. 477–480, May 2010.

[18] A. B. Akbay and S. Gezici, “Noise benefits in joint detection and estima-
tion problems,” Signal Process., vol. 118, pp. 235–247, 2016.

[19] H. Soganci, S. Gezici, and O. Arikan, “Optimal stochastic parameter
design for estimation problems,” IEEE Trans. Signal Process., vol. 60,
no. 9, pp. 4950–4956, Sep. 2012.

[20] H. Soganci, S. Gezici, and O. Arikan, “Optimal signal design for multi-
parameter estimation problems,” IEEE Trans. Signal Process., vol. 63,
pp. 6074–6085, 2015.

[21] G. Zeitler, G. Kramer, and A. C. Singer, “Bayesian parameter estima-
tion using single-bit dithered quantization,” IEEE Trans. Signal Process.,
vol. 60, no. 6, pp. 2713–2726, Jun. 2012.

[22] H. C. Papadopoulos, G. W. Wornell, and A. V. Oppenheim, “Sequential
signal encoding from noisy measurements using quantizers with dynamic
bias control,” IEEE Trans. Inf. Theory, vol. 47, no. 3, pp. 978–1002, Mar.
2001.

[23] A. Patel and B. Kosko, “Optimal mean-square noise benefits in quantizer-
array linear estimation,” IEEE Signal Process. Lett., vol. 17, no. 12,
pp. 1005–1009, Dec. 2010.

[24] F. Chapeau-Blondeau, S. Blanchard, and D. Rousseau, “Fisher information
and noise-aided power estimation from one-bit quantizers,” Digit. Signal
Process., vol. 18, pp. 434–443, 2008.

[25] H. Chen and P. K. Varshney, “Performance limit for distributed estimation
systems with identical one-bit quantizers,” IEEE Trans. Signal Process.,
vol. 58, no. 1, pp. 466–471, Jan. 2010.

[26] H. Chen and P. K. Varshney, “Nonparametric one-bit quantizers for dis-
tributed estimation,” IEEE Trans. Signal Process., vol. 58, no. 7, pp. 3777–
3787, Jul. 2010.

[27] D. Rousseau, F. Duan, and F. Chapeau-Blondeau, “Suprathreshold
stochastic resonance and noise-enhanced fisher information in arrays of
threshold devices,” Phys. Rev. E, vol. 68, 2003, Art. no. 031 107.

[28] F. Chapeau-Blondeau, S. Blanchard, and D. Rousseau, “Noise-enhanced
fisher information in parallel arrays of sensors with saturation,” Phys. Rev.
E, vol. 74, 2006, Art. no. 031 102.

[29] J. Zhu, X. Li, R. S. Blum, and Y. Gu, “Parameter estimation from quantized
observations in multiplicative noise environments,” IEEE Trans. Signal
Process., vol. 63, no. 15, pp. 4037–4050, Aug. 2015.

[30] O. Dabeer and A. Karnik, “Signal parameter estimation using 1-bit
dithered quantization,” IEEE Trans. Inf. Theory, vol. 52, no. 12, pp. 5389–
5405, Dec. 2006.

[31] L. Xu, F. Duan, X. Gao, D. Abbott, and M. D. McDonnell, “Adaptive recur-
sive algorithm for optimal weighted suprathreshold stochastic resonance,”
Roy. Society Open Sci., vol. 4, 2017, Art. no. 160 889.

[32] M. D. McDonnell, “Is electrical noise useful?” Proc. IEEE, vol. 99, no. 2,
pp. 242–246, Feb. 2011.

[33] G. P. Harmer, B. R. Davis, and D. Abbott, “A review of stochastic reso-
nance: Circuits and measurement,” IEEE Trans. Instrum. Meas., vol. 51,
no. 2, pp. 299–309, Apr. 2002.

[34] P. J. Huber, Robust Statistics. Berlin, Germany: Springer-Verlag, 1981.
[35] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel, Robust

Statistics: The Approach Based on Influence Functions. New York, NY,
USA: Wiley, 1986.

[36] S. A. Kassam and H. V. Poor, “Robust techniques for signal processing:
A survey,” Proc. IEEE, vol. 73, no. 3, pp. 433–481, Mar. 1985.

[37] R. Maronna, D. Martin, and V. Yohai, Robust Statistics: Theory and Meth-
ods. New York, NY, USA: Wiley, 2006.

[38] A. M. Zoubir, V. Koivunen, Y. Chakhchoukh, and M. Muma, “Robust
estimation in signal processing: A tutorial-style treatment of fundamental
concepts,” IEEE Signal Process. Mag., vol. 29, no. 4, pp. 61–80, Jul.
2012.

[39] N. G. Stocks, “Suprathreshold stochastic resonance in multilevel threshold
systems,” Phys. Rev. Lett., vol. 84, pp. 2310–2313, 2000.

[40] M. D. McDonnell, N. G. Stocks, C. E. M. Pearce, and D. Abbott, Stochas-
tic Resonance: From Suprathreshold Stochastic Resonance To Stochastic
Signal Quantization. New York, NY, USA: Cambridge Univ. Press, 2008.

[41] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York, NY, USA: Wiley, 1991.

[42] S. A. Kassam, Signal Detection in Non-Gaussian Noise. New York, NY,
USA: Springer-Verlag, 1988.

[43] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[44] M. D. Perlman, “Jensen’s inequality for a convex vector-valued function
on an infinite-dimension,” J. Multivariate Anal., vol. 4, pp. 52–65, 1974.



1966 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 8, APRIL 15, 2018

[45] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection The-
ory, vol. 2. Upper Saddle River, NJ, USA: Prentice-Hall, 1998.

[46] I. K. Baldry et al., “Quantifying the bimodal color-magnitude distribution
of galaxies,” Astrophys. J., vol. 600, pp. 681–694, 2004.

[47] P. Seeman et al., “Bimodal distribution of dopamine receptor densities in
brains of schizophrenics,” Science, vol. 225, pp. 728–731, 1984.

[48] S. K. Sharma, “Neuronal model with distributed delay: Emergence of
unimodal and bimodal ISI distributions,” IEEE Trans. Nanobiosci., vol. 12,
no. 1, pp. 1–12, Mar. 2013.

[49] A. Karakoca, U. Erisoglu, and M. Erisoglu, “A comparison of the param-
eter estimation methods for bimodal mixture Weibull distribution with
complete data,” J. Appl. Statist., vol. 42, pp. 1472–1489, 2015.

[50] A. L. M. Vilela, F. G. B. Moreira, and A. J. F. de Souza, “Majority-vote
model with a bimodal distribution of noises,” Physica A, Statistical Mech.
Appl., vol. 391, pp. 6456–6462, 2012.

[51] H. Lategahn, S. Gross, T. Stehle, and T. Aach, “Texture classification by
modeling joint distributions of local patterns with Gaussian mixtures,”
IEEE Trans. Image Process., vol. 19, no. 6, pp. 1548–1557, Jun. 2010.

[52] N. M. Blachman, “The convolution inequality for entropy power,” IEEE
Trans. Inf. Theory, vol. IT-11, no. 2, pp. 267–271, Apr. 1965.

[53] A. W. Roberts and D. E. Varberg, Convex Functions. New York, NY, USA:
Academic, 1973.

[54] C. Corduneanu, Integral Equations and Applications. New York, NY,
USA: Cambridge Univ. Press, 1991.

[55] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems.
Upper Saddle River, NJ, USA: Prentice-Hall, 1997.

Yan Pan was born in China in 1987. She received
the Master’s degree in system science from Qingdao
University, Qingdao, China, in 2013 and she is cur-
rently working toward the Ph.D. degree in system
science at Qingdao University. She was a Computer
Programmer with Qingdao Software Area from 2013
to 2016. Her research interests are in robust signal
estimation and machine learning.

Fabing Duan was born in China in 1974. He received
the Master’s degree in engineering mechanics from
China University of Mining and Technology, Beijing,
China, in 1999 and the Ph.D. degree in solid mechan-
ics from Zhejiang University, Hangzhou, China, in
2002. From 2002 to 2003, he was a Postdoctoral fel-
low with the University of Angers, Angers, France.
Since 2004, he has been with Qingdao University,
Qingdao, China, and he is currently a Professor of
system theory. His research interests are in nonlinear
systems and signal processing.

François Chapeau-Blondeau was born in France
in 1959. He received the Engineering Diploma from
ESEO, Angers, France, in 1982, the Ph.D. degree
in electrical engineering from University Pierre et
Marie Curie, Paris 6, France, in 1987, and the Habili-
tation degree from the University of Angers, Angers,
France, in 1994. In 1988, he was a Research Asso-
ciate with the Department of Biophysics, the Mayo
Clinic, Rochester, MN, USA, working on biomedical
ultrasonics. Since 1990, he has been with the Univer-
sity of Angers, where he is currently a Professor of

electrical and electronic engineering. His research interests include information
theory, signal processing and imaging, and the interactions between physics,
and information sciences.

Derek Abbott (M’85–SM’99–F’05) was born in
South Kensington, London, U.K., in 1960. He re-
ceived the B.Sc.(Hons.) degree in physics from
Loughborough University, Leicestershire, U.K., in
1982 and the Ph.D. degree in electrical and electronic
engineering from the University of Adelaide, Ade-
laide, SA, Australia, in 1995, under K. Eshraghian
and B. R. Davis.

From 1978 to 1986, he was a Research Engineer
with the GEC Hirst Research Centre, London, U.K.
From 1986 to 1987, he was a VLSI Design Engineer

with Austek Microsystems, Australia. Since 1987, he has been with the Uni-
versity of Adelaide, where he is currently a Full Professor with the School of
Electrical and Electronic Engineering. He has authored or coauthored more than
800 publications and a number of patents. His research interests include mul-
tidisciplinary physics and electronic engineering applied to complex systems,
networks, game theory, energy policy, stochastics, and biophotonics.

Prof. Abbott has been an Invited Speaker at more than 100 institutions. He
coedited Quantum Aspects of Life (Imperial College Press, 2008), and coau-
thored Stochastic Resonance (Cambridge Univ. Press, 2008), and Terahertz
Imaging for Biomedical Applications (Springer-Verlag, 2012). He is a Fellow
of the Institute of Physics. He is an Editor and/or Guest Editor for a number of
journals, including the IEEE JOURNAL OF SOLID-STATE CIRCUITS, Journal of
Optics B, Microelectronics Journal, PLOSONE, Proceedings of the IEEE, and
the IEEE Photonics Journal. He is currently on the Editorial Boards of IEEE
ACCESS, Nature’s Scientific Reports, Royal Society Open Science, and Frontiers
in Physics. He was the recipient of awards, including the Tall Poppy Award
for Science (2004), the Premier’s SA Great Award in Science and Technology
for outstanding contributions to South Australia (2004), an Australian Research
Council Future Fellowship (2012), and the David Dewhurst Medal (2015).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


