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Noise Benefits in Combined Nonlinear
Bayesian Estimators

Fabing Duan , Yan Pan , François Chapeau-Blondeau , and Derek Abbott , Fellow, IEEE

Abstract—This paper investigates the benefits of intentionally
adding noise to a Bayesian estimator, which comprises a linear
combination of a number of individual Bayesian estimators that are
perturbed by mutually independent noise sources and multiplied
by a set of adjustable weighting coefficients. We prove that the
Bayes risk for the mean square error (MSE) criterion is minimized
when the same optimum weighting coefficients are assigned to
the identical estimators in the combiner. This property leads to a
simplified analysis of the noise benefit to the MSE of the combined
Bayesian estimator even when the number of individual estimators
tends to infinity. It is shown that, for a sufficiently large number of
individual estimators, the MSE of the designed Bayesian estimator
approaches a plateau for a wide range of added noise levels. This
robust feature facilitates the incorporation of the added noise
into the design of Bayesian estimators without tuning the noise
level. For an easily implementable Bayesian estimator composed
of quantizers, the benefit of the symmetric scale-family noise is
demonstrated, and the optimal noise probability density function
is approximated by solving a constrained nonlinear optimization
problem. We further extend this potential Bayesian estimator to
the nonlinear filter design. Finally, examples of the noise benefits
in random parameter estimation and nonlinear filtering support
the theoretical analyses.

Index Terms—Noise benefit, Bayesian estimator, linear combi-
nation, nonlinear filtering, stochastic resonance.

I. INTRODUCTION

I T IS well known that the closed form description of an
optimal Bayesian estimator is difficult to achieve in general

[1]. For instance, the implementation of a minimum mean square
error (MMSE) estimator requires the solution to the mean of
the posterior probability density function (PDF) of the obser-
vation via difficult integrals [1]. Thus, in practice, it is reason-
able to seek some suboptimal but feasible nonlinear Bayesian
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estimators with tractable forms to estimate random parameters
or variables [1]–[3].

Recently, the noise benefit in nonlinear estimators [4]–[18]
and detectors [19]–[33] has attracted great attentions of re-
searchers in the field of signal processing, because the accu-
racy of an estimator and the detectability of a detector can be
enhanced by design via intentionally adding noise. Sufficient
or necessary conditions have been derived for the existence
of the optimal added noise PDF [6]–[8], [16], [23]–[26], and
the explicit or approximate forms of optimal added noise PDFs
[7]–[13], [15], [16] have also been of great interest. Among these
investigations, it was found that a parallel array of estimators can
benefit from mutually independent added noise components in
comparison to a single estimator [4], [5], [7]–[13]. From the
parameter estimation standpoint, Uhlich [7] proposed a novel
noise-enhanced estimator by averaging estimates from the same
observation added by artificial noise components, and discussed
its superiority over the original estimator and the noise-modified
estimator derived by Chen et al. [6]. Based on the sum of outputs
of quantizer arrays, the linear Wiener decoding scheme [9] and
the linear MMSE estimation [8] of the random inputs were
extensively investigated within the framework of suprathresh-
old stochastic resonance [34]. We also used the least-square
regression algorithm to numerically study the noise benefit in
a quantizer array with optimal weights in comparison with the
unweighted array [35].

In this paper, we design a linear combination illustrated in
Fig. 1 as a potential noise-enhanced Bayesian estimator θ̂LC,
which consists of two modules: Module 1 exploits the benefit of
noise by adding mutually independent noise components ηi into
each estimator θ̂i, and module 2 outputs the linear MMSE esti-
mation based on a set of estimates {θ̂i} from module 1 multiplied
by optimally tuned weighting coefficientswi for i = 1, 2, . . . ,m
and a bias weighting w0. Then, the collective responses of all
individual estimators yield the combined Bayesian estimator
output θ̂LC, as shown in Fig. 1. We first prove that, with the
Bayes risk for the MSE criterion and at a given added noise
level, the MSE of θ̂LC gradually reduces as the number m of
individual estimators increases, leading to the minimum MSE
achieved by the combined estimator θ̂LC in the limit of an infinite
number. It is also proved that any two identical estimators in a
combiner require the same optimum weighting coefficients. This
characteristic simplifies theoretical analyses of the convergence
of the MSE of θ̂LC with no requirement for matrix inversions,
and makes it possible to recognize the noise benefit of the added
noise in the limiting case of an infinite number of individual
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Fig. 1. Block diagram representation of a linear combination of estimators
performing as a noise-enhanced Bayesian estimator. In module 1, mutually inde-
pendent noise components ηi are intentionally added into individual estimators
θ̂i, and then each θ̂i is multiplied by optimally tuned weighting coefficient wi

in module 2, resulting in the combined Bayesian estimator output θ̂LC.

estimators. It is interesting to note that the noise-enhanced
estimator θ̂NE of Ref. [7] is just a special case of the combined
estimator θ̂LC with same fixed weighting coefficients, while the
linear MMSE estimation [8], [9] corresponds to the estimator
θ̂LC with a combination of homogeneous quantizers. It is illus-
tratively shown that, for a large enough number of individual
estimators, the MSE of θ̂LC can be reduced to a minimum for
an optimal added noise level, i.e. the stochastic resonance effect
[34], [36]. When the response of an original estimator θ̂ has an
upper bound, it is demonstrated that, for a very large number of
individual estimators, the MSE of the combined estimator θ̂LC
approaches a plateau for a wide range of large added noise levels.
If this plateau consists of ‘local’ minima of the MSE that are
tolerable levels for practical applications, the noise-enhanced
estimator θ̂LC can be operated over a wide range of added
noise levels. This robust feature suggests that, as the background
noise varies, the designed estimator might be improved by the
added noise without tuning levels in practice. For a special
combined Bayesian estimator θ̂LC with quantizers in number
m > 1, we also prove that θ̂LC can always benefit from any
type of the zero-mean symmetric scale-family added noise,
because the MSE initially decreases by adding a small amount
of noise. Moreover, using constrained nonlinear optimization
methods, the optimal noise PDF is also approximately solved
and the obtained MSE is effectively reduced in the considered
cases. The designed Bayesian estimator can be also extended
to nonlinear filtering with the multiple samples of observations,
and some examples demonstrate the applicability of noise ben-
efits in the proposed Bayesian estimators. The obtained novel
results indicate that the added noise can be incorporated into the
design of nonlinear Bayesian estimation and nonlinear filtering
as a potential technique to enhance the accuracy of estimators
[4]–[18].

II. PARAMETER MODEL AND BAYESIAN ESTIMATOR

We observe the scalar data model as

x = θ + ξ, (1)

where the parameter θ is a random variable with the prior
PDF fθ, and the background white noise ξ, independent of
θ, has the PDF fξ. Then, the observation x accords with the
convolved PDF fx(x) =

∫
fθ(θ)fξ(x− θ)dθ. As in Fig. 1,

the same observation x perturbed by the independent noise
component ηi is operated by each estimator θ̂i(x+ ηi) for
i = 1, 2, . . . ,m, and here m denotes the total number of
individual estimators in the combination. Letting the esti-
mate vector θ̂ = [θ̂1(x+ η1), θ̂2(x+ η2), . . . , θ̂m(x+ ηm)]�

and the weight vectorw = [w1, w2, . . . , wm]�, we design a new
Bayesian estimator θ̂LC(x) = w0 +w�θ̂ as an unbiased estima-
tion of the parameter θ. Here,w0 is the bias weight. Then, the un-
biased condition of expectations Ex,η(θ̂LC) = Eθ(θ) yields the
bias weight w0 = Eθ(θ)−w�Ex,η(θ̂), and then the designed
estimator θ̂LC can be written as

θ̂LC(x) = Eθ(θ) +w�[θ̂ − Ex,η(θ̂)
]
, (2)

where Ex,η(·) denotes the expectation with respect to the joint
PDF of variables x and η and Eθ(·) denotes the expectation with
respect to the PDF of variable θ.

Define ε = θ − θ̂LC as the error of the estimator for a particu-
lar sample of x, then the Bayes risk of θ̂LC for the MSE criterion
is given by

Rm = Ex,η(ε
2) = var(θ)− 2w�p+w�Cw, (3)

where the subscriptm is used to denote the number of estimators
θ̂i and the variance of θ is var(θ) = Eθ(θ

2)− E2
θ(θ). The cen-

tralized cross-correlation vector between the parameter θ and
the estimate vector θ̂ is p = Ex,η

[(
θ − Eθ(θ)

)(
θ̂ − Ex,η(θ̂)

)]

with its elements calculated as

pi = Ex,η

[(
θ − Eθ(θ)

)(
θ̂i − Ex,η(θ̂i)

)]

= Ex{θEη[θ̂i(x+ η)]} − Eθ(θ)Ex{Eη[θ̂i(x+ η)]}. (4)

The covariance matrix of the estimate vector θ̂ is a sym-
metric positive definite matrix C = Ex,η

[(
θ̂ − Ex,η(θ̂)

)(
θ̂ −

Ex,η(θ̂)
)�]

with its diagonal elements

Cii = Ex,η

[(
θ̂i − Ex,η(θ̂i)

)2]

= Ex{Eη[θ̂
2
i (x+ η)]} − E2

x{Eη[θ̂i(x+ η)]} (5)

and the non-diagonal elements

Cij = Ex,η

[(
θ̂i − Ex,η(θ̂i)

)(
θ̂j − Ex,η(θ̂j)

)]

= Ex{Eη[θ̂i(x+ η)]Eη[θ̂j(x+ η)]}
− Ex{Eη[θ̂i(x+ η)]}Ex{Eη[θ̂j(x+ η)]} (6)

for i, j = 1, 2, . . . ,m (i �= j). Note that the positive definite
property of C requires the individual estimator in the combina-
tion not being such degenerate cases as θ̂i = κ for an arbitrary
constant κ.

Setting the gradient ∂Rm/∂w = −2p+ 2Cw to zero, we
have the optimum weight vector

wo = C−1p. (7)
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Substituting wo of Eq. (7) into Eqs. (2) and (3), we have the
final form of the designed estimator as

θ̂LC(x) = Eθ(θ) + p�C−1
(
θ̂ − Ex,η(θ̂)

)
, (8)

and the optimized MSE with respect to the weight vector is

Ro
m = var(θ)−wo�Cwo = var(θ)− p�C−1p. (9)

Theorem 1: When the covariance matrix C is positive-
definite, the MSE Ro

m in Eq. (9) is a monotonically decreasing
function of the number m, i.e.

Ro
m < Ro

m−1, (10)

for a given circumstance of the background noise ξ and the added
noise η.

Proof of Theorem 1 is presented in Appendix A. This theorem
implies that, for a given circumstance of the background noise
ξ and the added noise η, the minimum MSE Ro

∞ is achieved
by the Bayesian estimator θ̂LC in the limiting case of m → ∞.
Moreover, the individual estimator θ̂i can differ from each other.

Theorem 2: If two estimators θ̂i = θ̂j (i �= j) in a combiner
are identical, then optimum weighting coefficients wo

i = wo
j .

Proof of Theorem 2 is given in Appendix B. This theorem
suggests that, when a combiner has L groups and each group
has ml identical estimators ϑ̂l,i = ϑ̂l for l = 1, 2, . . . , L and
i = 1, 2, . . . ,ml, then each group has ml identical weighting
coefficients wl,i = wl. Updating the weight vector as w =

[w1, w2, . . . , wL]
� and rewriting the estimate vector as θ̂ =

[θ̂1, θ̂2, . . . , θ̂L] with θ̂l =
∑ml

i=1 ϑ̂l(x+ ηi), we then obtain the
combined Bayesian estimator of Eq. (8) and its MSE of Eq. (9).

Corollary 1: For a combiner composed of m identical orig-
inal estimators θ̂i = θ̂, the Bayesian estimator θ̂LC in Eq. (8)
becomes

θ̂LC(x) = Eθ(θ) + wo
m∑

i=1

(
θ̂(x+ ηi)− Ex{Eη[θ̂(x+ η)]}

)
,

(11)

where the optimum weighting coefficient is

wo = pi/[Cii + (m− 1)Cij ]. (12)

The corresponding MSE Ro
m of Eq. (9) is now simplified as

Ro
m = var(θ)−mp2i /[Cii + (m− 1)Cij ] (13)

with the limit

Ro
∞ = lim

m→∞Ro
m = var(θ)− p2i /Cij . (14)

Proof of Corollary 1 is presented in Appendix C, where
pi, Cii and Cij , as special cases of Eqs. (4)–(6), are given
in Eqs. (37)–(39). Corollary 1 indicates that, for a combiner
of m identical original estimators, the combined estimator of
Eq. (8) with optimally weighting before summation and the
estimator of Eq. (11) with optimally weighting after summation
can achieve the same MSERo

m of Eq. (13). Moreover, compared
with the general expression of Ro

m in Eq. (9), Eq. (13) results in
considerable simplification of the computation of the MSE Ro

m

with no requirement for matrix inversions in the considered case
of m identical estimators θ̂i = θ̂.

Corollary 2: For a combination of identical estimators θ̂i =
θ̂ in the limit case of m → ∞, the designed Bayesian estimator
θ̂LC in Eq. (8) evolves into

θ̂LC(x) = Eθ(θ) + wo
(
θ̂NE(x)− Ex[θ̂NE(x)]

)
, (15)

where θ̂NE(x) is the noise-enhanced estimator

θ̂NE(x) = Eη[θ̂(x+ η)] (16)

defined by Uhlich [7] and the optimum weight is given by

wo =
Ex

[(
θ − Eθ(θ)

)(
θ̂NE(x)− Ex(θ̂NE)

)]

Ex

[(
θ̂NE(x)− Ex(θ̂NE)

)2] . (17)

The designed estimator θ̂LC of Eq. (15) achieves the MSERo
∞ of

Eq. (14), and is never worse than the noise-enhanced estimator
θ̂NE of Eq. (16).

Corollary 3: The MSE Ro
∞ of the estimator θ̂LC in Eq. (15)

satisfies the inequality

Ro
∞ ≥ Rms = Ex

[(
θ − θ̂mmse

)2]
, (18)

where Rms is achieved by the MMSE estimator [1]

θ̂mmse(x) = Eθ|x(θ|x) =
∫

θfθ|x(θ|x)dθ (19)

with the conditional posterior PDF fθ|x(θ|x) = fθ(θ)fξ(x−
θ)/

∫
fθ(θ)fξ(x− θ)dθ. The equality of Eq. (18) occurs when

θ̂mmse(x)− Eθ(θ) = κ[θ̂NE(x)− Ex(θ̂NE)],

where κ is an arbitrary constant.
Proofs of Corollaries 2 and 3 are presented in Appendices D

and E, respectively, which are also illustrated in the following
examples.

Example 1: Consider an uniformly distributed parameter θ
buried in the Gaussian white noise ξ [1], [7]. The prior PDF of
θ is fθ(x) = 1/a for 0 ≤ x ≤ a and otherwise zero, and ξ has

the PDF fξ(x) = exp(−x2/2σ2
ξ )/

√
2πσ2

ξ with zero-mean and

variance σ2
ξ . Then, the maximum a posteriori (MAP) estimator

is given by [1], [7]

θ̂map(x) =

⎧
⎪⎨

⎪⎩

0, x < 0,

x, 0 ≤ x ≤ a,

a, x > a,

(20)

and the MMSE estimator of Eq. (19) becomes [1], [7]

θ̂mmse(x) = x+ σξ

√
2

π

e
− x2

2σ2
ξ − e

− (x−a)2

2σ2
ξ

erf
(

x√
2σξ

)
− erf

(
x−a√
2σξ

) . (21)

For the interval bound a = 2 and the background noise level
σξ = 1, it is seen in Fig. 2(a) that the MSE of the MAP estimator
θ̂map of Eq. (20) is 0.4832 (magenta dashed line), much higher
than the MMSE 0.2492 (red solid line) achieved by the MMSE
estimator θ̂mmse of Eq. (21). Substituting this suboptimal estima-
tor θ̂map of Eq. (20) into Eq. (11) and Eq. (16), we can construct
the combined estimator θ̂LC and the noise-enhanced estimator
θ̂NE. The added noise η is chosen as Gaussian white noise

with PDF fη(x) = exp(−x2/2σ2
η)/

√
2πσ2

η and the standard
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Fig. 2. (a) MSEs of the designed estimator θ̂LC and the noise-enhanced estimator θ̂NE [7] constructed form the suboptimal MAP estimator θ̂map in Eq. (20)
versus the added noise level ση . For comparison, the MSEs of the MAP estimator θ̂map in Eq. (20) and the MMSE estimator θ̂mmse in Eq. (21) are also plotted.
Here, the background noise level σξ = 1 and the interval bound a = 2 for the parameter θ. Specially, for the limiting case m → ∞, MSEs of θ̂LC are also plotted

in (b) over a suitable range. (c) MSEs of θ̂LC and θ̂NE constructed form the quantizer θ̂qt of Eq. (22) with the threshold γ = 0 versus ση . (d) For a combiner of
identical θ̂qt, the MSEs of θ̂LC and the MMSE estimator θ̂mmse versus the background noise level σξ at a fixed added noise level.

deviation ση . As in Fig. 2(a), with the benefits of added noise,
both θ̂LC and θ̂NE are better than the MAP estimator θ̂map.
At an optimal noise level σopt

η = 2.8184, the noise-enhanced

estimator θ̂NE achieves its minimum MSE value of 0.2494. After
the optimal added noise level ση > σopt

η , the MSE of θ̂NE goes
up again, and finally reaches a stable value of 0.33 for very
large added noise levels (e.g. ση > 102). This can be viewed
as a kind of stochastic resonance effect measuring by the MSE
that descends to its lowest point at an optimal non-zero noise
level. It is also interesting to note in Fig. 2(a) that, as the added
noise level ση increases and the number m ≥ 5, the MSE Ro

m of
θ̂LC calculated by Eq. (13) can be further reduced by the added
noise. In order to observe the behavior of Ro

∞ in Eq. (14) in
detail, Fig. 2(b) redraws the MSE Ro

∞ over a suitable range, and
clearly shows that the MSE Ro

∞ in Eq. (14) achieves a minimum
value of 0.2493 at an optimal noise level σopt

η = 1.995. When
ση > σopt

η , Ro
∞ also rises and gradually evolves into a stable

value of 0.2500 for large noise levels (e.g. ση > 10). Therefore,
compared with the estimator θ̂NE (∗), the designed estimator θ̂LC
(◦) has the similar noise-enhanced effect, but exhibits a quite
stable improvement for a wide range of added noise levels, as

shown in Figs. 2(a) and (b). The reason is that, as the added
noise level ση increases, the optimum weighting coefficient wo

in Eq. (15) can adaptively tune itself for the variety of added
noise, and an effectively reduced MSE Ro

∞ is achieved by the
incorporation of added noise ηi and the weights wo in θ̂LC. It is
shown in Figs. 2(a) and (b) that, even without the help of added
noise η (when ση = 0), the MSE Ro

m of θ̂LC can be optimized
by the weight vector wo as 0.2550 much lower than the MSE
0.4832 achieved by θ̂NE at ση = 0. This superiority of θ̂LC over
θ̂NE is also theoretically proved by Eq. (43) in Appendix D.

The benefits of added noise might take effect in other subop-
timal estimators. For instance, consider a binary quantizer [9],
[34]

θ̂qt(x) =

{
1, x ≥ γ,

0, x < γ,
(22)

with the threshold γ. Similarly, based on this suboptimal esti-
mator θ̂qt, the combined estimator θ̂LC and the noise-enhanced
estimator θ̂NE can be also obtained. Upon increasing the added
noise level ση and the number m, the MSEs Ro

m of θ̂LC are
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plotted in Fig. 2(c) as a function of ση . It is seen that the noise
benefit to the MSE Ro

∞ of θ̂LC is more effective, reducing the
initial MSE Ro

∞ = 0.2925 at ση = 0 to the minimum of 0.2498
at the optimal added noise level σopt

η = 4.4668, as illustrated in
Figs.2(b) and (c).

Naturally, the optimal added noise level σopt
η is ex-

pected to be obtained for achieving the minimum MSE
of the Bayesian estimators θ̂NE and θ̂LC. The solution of
σopt
η by setting the derivative ∂Ro

m/∂ση = 0 may how-
ever identify several extrema. As shown in Figs. 2(a)–(c),
the equation of ∂Ro

m/∂ση = 0 will yield multiple solutions of
ση . In addition, the second-order derivative ∂2Ro

m/∂σ2
η needs

to be derived for further determining the optimal level σopt
η .

However, it is also seen in Figs. 2 (a)–(c) that, for a sufficiently
large number m (e.g. m ≥ 104), the MSE Ro

m of the combined
estimator θ̂LC reaches a plateau with stationary values of 0.25 for
a wide range of added noise levels (e.g. ση > 1.995 in Fig. 2(a)
orση > 4.4668 in Fig. 2(c)). This robust feature is very attractive
and forms Corollary 4.

Corollary 4: For the combined estimator θ̂LC in Eq. (11),
if the original estimator θ̂(x)|x→∞ = Θ < ∞ and the added
noise has a symmetric scale-family PDF fη(η, ση) = (1/ση)
fη̃(η/ση), then the MSE Ro

∞ of Eq. (14) has a plateau of the
local extremum for large added noise levels ση . Here, fη̃ is the
PDF of the standardized noise variable η̃ with zero mean and
unit variance.

Proof of Corollary 4 is given in Appendix F. Corollary 4
only tells us the MSE Ro

∞ of θ̂LC reaches a stable value for a
large added noise level ση , but does not indicate how low this
stable value is. Due to the optimum weight wo and for a large
noise level, it is seen in Figs.2 (a)–(c) that this stable value of
0.2500 is rather near to the MMSE 0.2492 given by θ̂mmse.
This interesting characteristic of θ̂LC suggests that, instead of
finding the optimal noise level σopt

η , a fixed large noise level
ση can be used to improve the MSE of the combined estimator
θ̂LC with a tolerable accuracy. In practice, the limiting case of
m → ∞ is inaccessible and can only be approached. Then, we
here use a combiner of quantizers to construct the estimator
θ̂LC with a finite number m = 105, and plot its MSE Ro

m as a
function of the background noise levelσξ in Fig. 2(d). It is clearly
seen in Fig. 2(d) that, with the help of added noise (when ση =

10), the combined estimator θ̂LC achieves a rather comparable
performance in comparison to the MMSE estimator θ̂mmse in
the considered range of σξ ∈ [0.1, 4].

In Fig. 2, we only consider the added noise η with Gaussian
distribution. Since the noise components ηi are artificially added
to estimators θ̂i, then the characteristic of added noise η can
be selected purposefully for improving the performance of the
designed estimator θ̂LC. Thus, an important question is whether
the addition of any type of noise to the estimators θ̂i is always
beneficial to the decrease of MSE. When the initial rate of the
MSE is negative, i.e.

lim
ση→0

dRo
m

dση
< 0, (23)

the answer is affirmative in certain circumstances, as stated in
Corollary 5.

Fig. 3. MSEs Ro∞ of the combined estimator θ̂LC as a function of the added
noise level ση . Here, θ̂LC is constructed form the quantizer θ̂qt of Eq. (22) with
the threshold γ = 0. The added noise η has the generalized Gaussian PDF with
exponents α = 0.5, 1, 2 and ∞. The other parameters are the same as in Fig. 2

Corollary 5: For the designed estimator θ̂LC composed of
identical estimators θ̂i = θ̂qt and the symmetric scale-family
added noise η, θ̂LC can benefit from the added noise when the
number m > 1 and fx(γ) �= 0.

Proof of Corollary 5 is presented in Appendix G, and an
illustrative example is given as follows.

Example 2: Consider the symmetric scale-family added
noise η with generalized Gaussian PDF fη(x) = (c1/ση) exp

(−c2|x/ση|α). Here, c1 = α
2Γ

1
2 ( 3

α )/Γ
3
2 ( 1

α ), c2 = [Γ( 3
α )/Γ

( 1
α )]

α
2 , Γ(x) is the gamma function and the exponent α > 0

[1], [12]. It is shown in Fig. 3 that the noise-enhanced effects of
the MSE also occur clearly for different noise types of α = 0.5,
1 (Laplacian noise), 2 (Gaussian noise) and ∞ (uniform noise).
The larger the exponent α is, the faster the initial rate of the
MSE Ro

∞ declines, which also accords to the results in Ref. [8].
The corresponding MSE achieved by different noise types also
reaches a minimum at an optimal added noise level, and finally
tends to the stable value of 0.25 for larger added noise levels, as
Corollary 4 indicated.

However, Corollary 5 is only applicable to the prescribed
symmetric scale-family added noise η. An important problem
is whether the benefit of the added noise (not restricted to the
symmetric scale-family) exists or not for a combiner of arbitrary
suboptimal estimators θ̂i. The resolution of this problem is in
general difficult [7]–[10], [12]–[16], [37], even for a combiner
of arbitrary identical estimators with the simplified expression of
the MSERo

m in Eq. (13). In this case, since the variance var(θ) is
given, finding the optimal added noise PDF to minimize the MSE
Ro

m of θ̂LC with a finite number m is the optimization problem

fopt
η (η) = argmin

fη
Ro

m

= argmax
fη

mp2i
Cii + (m− 1)Cij

,

s.t. fη(η) ≥ 0,

∫
fη(η)dη = 1, (24)
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which is a constrained minimization of the nonlinear functional
Ro

m(fη) for the given observation data x, the estimators θ̂i and
the number m. This optimization problem is in general theoreti-
cally intractable, even for a single estimator θ̂i with m = 1. This
is due to the fact that the expectation Ex{Eη[θ̂i(x+ η)]} has
no constraint due to the adaptive bias weight w0, and the terms
E2
x{Eη[θ̂i(x+ η)]} in Eq. (5) (Eq. (38)) andEx{E2

η[θ̂i(x+ η)]}
in Eq. (6) (Eq. (39)) are nonlinear functional of fη . Thus, the
theoretical determination of optimal added noise PDF fopt

η that
minimizes Ro

m can not refer to the convex optimization method
proposed by Chen et al. [6], [16], [23], [24]. The necessary and
sufficient conditions determining the solution of this non-convex
optimization problem in Eq. (24) are that the first variation of
Ro

m vanishes and the second variation of Ro
m is nonnegative

[7], [38]. As Uhlich [7] pointed out, these theoretical conditions
are rather difficult to handle in general, and such approximation
methods as Parzen widows density estimation [7] and
particle-swarm optimization [37] can be employed.

For low computational cost, we here employ an approximate
form of added noise PDF as

f̃opt
η (η) =

K∑

k=1

νk�k(η, μk, σk), (25)

where the normalization coefficients νk ≥ 0,
∑K

k=1 νk = 1,
and the Gaussian window function �k(η, μk, σk) = exp[−(η −
μk)

2/2σ2
k]/

√
2πσ2

k with means μk and standard deviations
σk ≥ 0 [37], [39]. As the number K of �k increases, the estima-
tion form f̃opt

η (η) of Eq. (25) gradually converges to fopt
η (η) in

Eq. (24) under certain conditions [7], [37], [39].
Example 3: Reconsider the parameter estimation given in

Example 1, and choose the estimator θ̂i = θ̂qt of Eq. (22) with
the threshold γ = 0. The number of �k is chosen as K = 4, and
the constrained nonlinear optimization algorithm of sequential
quadratic programming [40] is employed to find the approx-
imation PDF of the optimal added noise. Note that, for ran-
domly selected initial values of coefficients 0 ≤ ck ≤ 1, means
−∞ < μk < ∞ and standard deviation σk ≥ 0, both the se-
quential quadratic programming method and the particle-swarm
optimization method are carried out for finding the minimum
MSE Ro

m(f̃opt
η ) and the corresponding optimal PDF f̃opt

η of
added noise η. At each major iteration of the sequential quadratic
programming method, a positive definite quasi-Newton approx-
imation of the Hessian of the objective function is calculated
using the BFGS method [40], [41]. For different estimator
numbers m = 1, 2, 104 and ∞, we randomly choose 20 groups
of initial coefficients ck, means μk and standard deviation σk,
the minimum MSEs Ro

m(f̃opt
η ) with the corresponding vector

parameters ν = [ν1, ν2, . . . , νK ]�, μ = [μ1, μ2, . . . , μK ]� and
σ = [σ1, σ2, . . . , σK ]� are recorded in Table I. It is interest-
ing to note that, for a single estimator with m = 1, the op-
timal added noise PDF is f̃opt

η (η) = δ(η + 1.0091) with the
Dirac delta function δ(η). As the estimator number m = 104,
the approximate optimal added noise PDF f̃opt

η (η) have two
nonzero normalization coefficients and is composed of two
Gaussian window functions, yielding a rather small MSE of
0.2493. Interestingly, for the limiting case m → ∞, the optimal
added noise PDF obtained in Table I, as shown in Fig. 4 (red

TABLE I
OPTIMAL ADDED NOISE VIA THE SEQUENTIAL QUADRATIC

PROGRAMMING ALGORITHM

Fig. 4. Approximate PDFs f̃opt
η (η) of the optimal added noise for the esti-

mator θ̂i = θ̂qt of Eq. (22) with the threshold γ = 0 and the number m = ∞.
Here, f̃opt

η (η) is solved for the Gaussian (red solid line) and the Laplacian (blue
dashed line) background noise ξ. The other parameters are the same as in Fig. 2.

solid line), presents a minimum MSE Ro
∞(f̃opt

η ) = 0.2492,
which is just the MMSE achieved by the optimal estimator
of Eq. (19). We note that the solution f̃opt

η (η) of the optimal
added noise PDF is not unique, because the particle-swarm
optimization method also presents another solution as f̃opt

η (η) =

exp[−(η − μη)
2/2σ2

η]/
√

2πσ2
η withμη = −1 and ση = 2.004.

Using this solution, the corresponding MSE also achieves the
MMSE 0.2492. Of course, for various estimators θ̂i, different
prior PDF fθ and background noise PDF fξ, both the sequential
quadratic programming method and the particle-swarm opti-
mization method need to be applied anew.

Example 4: In Examples 1–3, the background noise ξ is
assumed to be Gaussian distributed. However, the background
noise ξ in the real data model of Eq. (1) can in some situations
come with non-Gaussian distributions, and its type results in
the variety of MMSE Bayesian estimators θ̂mmse and the corre-
sponding MMSE values. It is noted that the approximate PDF
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Fig. 5. Diagram of the noise-enhanced FIR filter. The combiner G�, repre-
senting module 1 plus module 2 in Fig. 1, processes the input sample xn−�. All
outputs of combiners G� and the bias weight ω0 applied at the filter output ẑn.

form in Eq. (25) of the optimal added noise and the constrained
nonlinear optimization algorithms remain valid. For a uniformly
distributed parameter θ buried in a given background noise ξ with
its PDF fξ and cumulative distribution function Fξ, the MMSE
Bayesian estimator of Eq. (19) becomes

θ̂mmse(x) = Eθ|x[θ|x] = x+

∫ x−a

x ufξ(u)du

Fξ(x)− Fξ(x− a)
. (26)

For instance, consider the uniform distributed parameter θ with
its PDF fθ(u) = 1/2 (u ∈ [0, 2]) corrupted by the the Laplace
noise ξ with its PDF fξ(ξ) = exp(−√

2|x|/σξ)/(
√
2σξ) and

standard deviationσξ =
√
2, the MMSE achieved by the estima-

tor of Eq. (26) is 0.2679. For the limiting case ofm → ∞, we use
the constrained nonlinear optimization algorithms as in Exam-
ple 3 with the numberK = 4 to optimize the designed Bayesian
estimator θ̂LC constructed by quantizer with threshold γ = 0.
Then, the approximate form of the optimal added noise PDF

is f̃opt
η (η) = [e−(x−m1)

2/(2σ2
η) + e−(x−m2)

2/(2σ2
η)]/(2

√
2πσ2

η)

with two nonzero coefficients ν1 = ν2 = 0.5, means m1 =
−1.3784, m2 = −0.6217 and standard deviations σ1 = σ2 =
ση = 0.3195 (see Fig. 4 in blue dashed line), which is effective
for obtaining the corresponding MSE 0.2679, the same as the
MMSE achieved by θ̂mmse(x) in Eq. (26). Therefore, a natural
question is that, for any type of background noise ξ, can we
always find an approximation form f̃opt

η of optimal noise PDF

for the designed estimator θ̂LC to achieve the MMSE? We have
shown this is feasible for the cases of great practical relevance of
a Gaussian background noise and a non-Gaussian (Laplacian)
background noise. For other cases, we here leave these interest-
ing open questions of the solution of Eq. (24) for further study.
We can extend the design of the Bayesian estimator to the finite
impulse response (FIR) filter as follows.

III. NOISE-ENHANCED FIR FILTERS

We can extend the noise-benefit combiner G, i.e. module 1
plus module 2 marked in Fig. 1, to estimate a desired signal
zn by the current sample xn and the past samples xn−1, xn−2,
. . . , xn−L, as illustrated in Fig. 5. Here, we assume that the
straight-forward observation xn can not be directly obtained
and goes through the distortion endowed by the nonlinearity
θ̂ in the combiner, representing for example neuronal models
[42], nonlinear estimators [1]–[3] or sensors [5], [9], [34]. In
this situation, for L+ 1 samples of xn, L+ 1 combiners G� are

equipped and each combiner G� contains m original estimators
ϑ̂�i, m added noise components η�i and the corresponding
adjustable weighting coefficients ω�i for � = 0, 1, . . . , L and
i = 1, 2, . . . ,m. Then, collecting all outputs of combiners G�

and adding the bias weight ω0, we have the designed noise-
enhanced finite impulse response (FIR) filter

ẑn = ω0 +

L∑

�=0

m∑

i=1

ω�iϑ̂�i(xn−� + η�i). (27)

Here, the number L+ 1 of combiners G� is the order of the
designed FIR filter of Eq. (27) and the error signal is defined as
εn = zn − ẑn.

Furthermore, in each combiner G�, Theorem 2 also holds.
Thus, consider the individual estimators ϑ̂�i = ϑ̂� in each G�

are identical, we have m identical optimum weight coefficients
ω�i = w�. In this case, we can label these weight coefficients w�

as the vector w = [w0, w1, . . . , wL]
� and rewrite the estimate

vector as θ̂ = [θ̂0, θ̂1, . . . , θ̂L]
� with θ̂� =

∑m
i=1 ϑ̂�(x+ ηi).

Using the unbiased condition Eẑ(ẑn) = Ez(zn), the designed
filter in Eq. (27) becomes

ẑn = Ez(zn) +w�(θ̂ − Ex,η(θ̂)
)
. (28)

Under this circumstance, the MSE Jm,L+1 of the FIR filter in
Eq. (28) is

Jm,L+1 = E[ε2n] = var(zn)− 2w�p+w�Cw. (29)

The covariance matrix C=Ex,η{[θ̂−Ex,η(θ̂)][θ̂−Ex,η(θ̂)]
�}

has diagonal elements

C�+1,�+1 = Exn−�
[Eη(θ̂

2
� )]− E2

xn−�
[Eη(θ̂�)]

= Exn−�
{mEη[ϑ̂

2
�(xn−� + η)] +m(m− 1)

× E2
η[ϑ̂�(xn−� + η)]}

−m2E2
xn−�

{Eη[ϑ̂�(xn−� + η)]}
and the non-diagonal elements (� �= κ)

C�+1,κ+1

= Exn−�,xn−κ
[Eη(θ̂�)Eη(θ̂κ)]− Exn−�

[Eη(θ̂�)]Exn−κ
[Eη(θ̂κ)]

= m2Exn−�,xn−κ
{Eη[ϑ̂�(xn−� + η)]Eη[ϑ̂κ(xn−κ + η)]}

−m2Exn−�
{Eη[ϑ̂�(xn−� + η)]}Exn−κ

{Eη[ϑ̂κ(xn−κ + η)]},
where Exn−�,xn−κ

(·) = ∫ ·fx(xn−�, xn−κ)dxn−�dxn−κ is with
respect to the second-order joint PDF fx(xn−�, xn−κ). The cen-
tralized cross-correlation vector p = Ex,η{[zn − Ez(zn)][θ̂ −
Ex,η(θ̂)]} has elements

p�+1 = mEzn,xn−�
{znEη[ϑ̂�(xn−� + η)]} −mEz(zn)

× Exn−�
{Eη[ϑ̂�(xn−� + η)]}.

Then, we obtain the optimum weight vectorwo = C−1p and the
optimized MSE J o

m,L+1 of the considered FIR filter in Eq. (28)
is given by

J o
m,L+1 = E(ε2n) = var(zn)− p�C−1p. (30)
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Fig. 6. Plots of the MSEJ o
m,2 of the designed filter in Eq. (28) as a function of

the added noise level ση for different numbers m = 1, 2, 31, 256, 103, 105 and
∞. Here, the saturation estimators of Eq. (31) are with the identical parameters
β = 5, and the external Gaussian noise level σξ = 0.1.

Notice the multiplicator m in each element p�+1 and the term
p�C−1p in Eq. (30), we find limits of elements as

C∞
�+1,�+1 = lim

m→∞C�+1�+1/m
2

= Exn−�
{E2

η[ϑ̂(xn−� + η)]} − E2
xn−�

{Eη[ϑ̂(xn−� + η)]},
C∞

�+1,κ+1 = lim
m→∞C�+1κ+1/m

2

= Exn−�,xn−κ
{Eη[ϑ̂�(xn−� + η)]Eη[ϑ̂κ(xn−κ + η)]}

− Exn−�
{Eη[ϑ̂�(xn−� + η)]}Exn−κ

{Eη[ϑ̂κ(xn−κ + η)]},
p∞�+1 = p�+1/m

= Ezn,xn−�
{znEη[ϑ̂�(xn−� + η)]} − Ez(zn)

× Exn−�
{Eη[ϑ̂�(xn−� + η)]}.

Substituting these limits into Eq. (30), we can also compute the
limit value of J o

∞,L+1 as m → ∞.
Example 5: Consider the noisy input xn = sn + ξn, where

the input signal sn = sin(2πn/N) is a sampled sinusoid with
N = 16 (N > 2) samples per period and the external white-
noise process ξn is Gaussian distributed. The desired signal is
also assumed to be the sampled sinusoid zn = 2 cos(2πn/N) at
the same frequency [43]. Due to the periodicity of the input and
desired signals, the expectations must be computed by averaging
over one period, i.e the operator

∑N
n=1(·)/N . Then, the variance

of the desired signal is var(zn) = 2. When the external Gaussian
noise ξn has a fixed noise level σξ = 0.1 and the added noise
components η�i are also Gaussian distributed, we plot the MSE
J o
m,2 of the filter in Eq. (28) as a function of the added noise

level ση for combiners with m identical saturation estimators

ϑ̂�(x) = tanh(βx), (31)

where the slope parameter β > 0. It is clearly seen in Fig. 6 that
the MSE J o

m,2 of the designed filter in Eq. (28) benefits from
the increase of the added noise level ση as the number m is
large enough. For instance, as m = 105 and at an optimal added

TABLE II
MSES OF FIR FILTERS

noise levelση = 0.890, a minimum value of the MSE is achieved
as J o

m,2 = 0.3558 (∗ marked in Fig. 6). In addition, Ref. [43]
(pp. 103, Fig. 6.3 in Sect. 6) also considered this example of
the two-sample FIR filter, namely Wiener filter, yielding the
MSE value of 0.4011. Notice that the weights of Wiener filter
are directly deduced by the covariance matrix of xn and the
cross-correlation vector between zn and samples of xn [43].
Obviously, with the benefit of added noise and for a sufficient
large order m = 105, the obtained result in Fig. 6 is better.
In fact, the sinusoid sn = A sin(2πn/N) can be viewed as a
variable with PDF fs(u) = 1/(π

√
A2 − u2) over the interval

u ∈ [−A,A], and the estimate of the desired signal from the
observation data is also a Bayesian estimation problem. The
corresponding MMSE filter is not the linear Wiener filtering.
The designed filter of Eq. (28) might achieve a better MSE than
the linear Wiener filter, as shown in Fig. 6.

Upon increasing the order L+ 1 and at the corresponding
optimal added noise levels, we list the minimum values of the
MSE J o

m,L+1 in Table II for the designed FIR filter with the
number m = 105. As the order L+ 1 increases, Theorem 1
also holds and the minimum MSE J o

m,L+1 of Eq. (28) grad-
ually decreases from 0.3558 at order L+ 1 = 2 to 0.0069 at
order L+ 1 = 9. Compared with the results of Wiener filter,
the added noise η, as a potential designable variable, clearly
manifests its benefits with a performance that is always superior
in Table II for the nonlinear FIR filter. In addition, it is also
seen in Fig. 6 that, for a large enough level of added noise,
the MSE J o

m,2 keeps a stable value for a sufficiently large
numberm → ∞. This robust feature of the noise-enhanced filter
of Eq. (28) also suggests no need of tuning the added noise
level. Then, in Table II, we choose the number m = 105 and
list the MSE J o

m,L+1 of the noise-enhanced filter in Eq. (28)
at a fixed added noise level ση = 5, yielding a comparative
results of the MSE in Table II. Specially, forL+ 1 = 5, Fig. 7(a)
shows a realization of the input xn, and the saturation estimator
ϑ�(xn) = tanh(5xn) is illustrated in Fig. 7(b) at the added noise
level ση = 0. When the added noise level ση = 5 and m = 105,
we obtain the optimum weight vector wo = C−1p = 10−5 ×
[3.1082, 0.3873,−2.3912,−4.80578,−6.4904]� and plot the
output ẑn (◦) of the designed filter of Eq. (28) in Fig. 7(c).
Note that ẑn starts from n = 5, since it is a function of xn and
the past four samples xn−�. For comparison, the desired signal
zn = 2 cos(2πn/N) (red solid line) is also given in Fig. 7(c). In
this numerical realization of ẑn, the corresponding MSE 0.0261
agrees well with (is slightly larger than) the MSEJ o

m,5 = 0.0212
at the order L+ 1 = 5 shown in Table II.
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Fig. 7. (a) A realization of the input xn; (b) The saturation estimator
ϑ�(xn) = tanh(5xn) at the added noise level ση = 0; (c) Outputs of the
designed filter ẑn of Eq. (28) at the added noise level ση = 5 and for m = 105,
and the desired signal zn = 2cos(2πn/N). The other parameter are the same
as in Fig. 6.

IV. DISCUSSION

Using the Bayes risk for the MSE criterion, this paper mainly
investigates the benefits of added noise in the designed Bayesian
estimator composed of a combination of individual Bayesian
estimators multiplied by the corresponding optimum weighting
coefficients. We first demonstrate that the MSE of the com-
bined estimator gradually decreases as the number of individual
estimators increases, and then find two equivalent optimum
weight coefficients tied with any two identical estimators in
the combination. Then, some easily tractable properties of a
combination of identical estimators are deduced. It is shown that
the MSE of the combined estimator can be optimized not only
by the linear weighting coefficients but also by the added noise.
Moreover, when the individual estimator has an upper bound and
the number of the individual estimators is sufficiently large, we
find a robust feature of the combined Bayesian estimator, i.e. the
MSE approaching a plateau for a wide range of larger added
noise levels. This feature facilitates improvement of the MSE of
the designed estimator without tuning the added noise level, and
greatly extends the operating range of the designed estimator
in practical applications. For the Bayesian estimator composed
of identical quantizers, we prove that the injection of a small
amount of symmetrical scale-family noise into the observation
always improves the MSE of the Bayesian estimator. In order to
find the optimal added noise that achieves a “minimum” MSE as
close to the MMSE as possible, we adopt the sequential quadratic
programming and the particle-swarm optimization method to
obtain the approximate form of the optimal noise PDF. The
illustrative results show the effectiveness of these constrained
nonlinear optimization algorithms. We also extend the combined
Bayesian estimator to the nonlinear filtering. In addition, we can
extend the results of the scalar parameter model of Eq. (1) to the
vector observation model

x = Hϑ+ ξ, (32)

where the observation vector x = [x1, x2, . . . , xN ]�, the un-
known vector parameter ϑ = [ϑ1, ϑ2, . . . , ϑk]

�, the N × k

observation matrix is H and the background noise vector ξ =
[ξ1, ξ2, . . . , ξN ]�. In Appendix H, the Bayesian estimator ϑ̂ for
the parameter vectorϑ is derived in Eq. (56). The further discus-
sions of this general Bayesian estimator vector ϑ̂ in Eq. (56) is
significant to the theoretical research and practical applications
of noise benefits in the parameter estimation. Finally, two spe-
cially important questions that remain in this extended vector
model are how to prejudge whether the added noise is beneficial
or not, and how to find the exact expression of the optimal
added noise PDF that minimizes the MSE of the designed
Bayesian estimator formed by a combiner of suboptimal but
easily implementable nonlinear estimators.

APPENDIX A
PROOF OF Theorem 1

Let the subscript m to denote the dimension of a matrix of
m×m or a vector of m× 1. The positive definite covariance
matrix Cm has an unique lower-diagonal-upper decomposi-
tion Cm = LmDmL�

m, where Lm is a unit lower triangular
matrix and Dm = diag(d1, d2, . . . , dm) is a diagonal matrix
[44]. Since the determinant det(Lm) = 1, then det(Cm) =
det(Dm) =

∏m
i=1 dm and elements di= detCi/detCi−1> 0

for i = 2, 3, . . . ,m [44]. Notice the matrix Cm = LmDmL�
m

can be also partitioned as

Cm =

[
Cm−1 γm−1

γ�
m−1 Cmm

]

=

[
Lm−1 0

��m−1 1

][
Dm−1 0

0 dm

][
L�
m−1 �m−1

0 1

]

, (33)

where the sub-matrix Cm−1 is just the covariance matrix of
the combiner with m− 1 individual estimators. This is the
optimum nesting property of a matrix (vector) [44]. The diagonal
matrix Dm in Eq. (33) and the cross-correlation vector pm =
[p�

m−1, pm]� have the optimum nesting property. From Eq. (33),
the row �m−1 is uniquely given by Lm−1Dm−1�m−1 = γm−1,
and then Lm also possesses the optimum nesting property.
Defining an intermediate vectorkm = L�

mwo
m and from Eq. (7),

we find

Cmwo
m = LmDmL�

mwo
m = LmDmkm = pm (34)

and km = [k�
m−1, km]� has the optimum nesting property.

Therefore, the MSE Ro
m of Eq. (9) can be expressed as

Ro
m = var(θ)− (wo

m)�Cmwo
m

= var(θ)− k�
mDmkm

= var(θ)−
[
km−1

km

]� [
Dm−1 0
0� dm

] [
km−1

km

]

= var(θ)− k�
m−1Dm−1km−1 − dmk2m

= Ro
m−1 − dmk2m, (35)

where Ro
m−1 = var(θ)− k�

m−1Dm−1km−1 is just the MSE of
the combined estimator θ̂LC with the number m− 1. From the
positive-definiteness ofCm,dm > 0 andk2m > 0. Thus, Eq. (10)
holds.
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APPENDIX B
PROOF OF Theorem 2

Without loss of generality, we label two identical estimators
as θ̂1 = θ̂2. Let Cij denote the element of C at the ith row and
the jth column for i, j = 1, 2, . . . ,m. From Eqs. (5) and (6), it
is seen that the covariance matrix C has equivalent elements
C11 = C22, C21 = C12 and C1k = C2k for k = 3, 4, . . . ,m.
The inverse matrix C−1 = A/det (C), and the matrix A is
the cofactor of C with its elements Aij = (−1)i+jBij . The
minor Bij of Cij is obtained by deleting the ith row and the
jth column of C. Immediately, we find B11 = B22, B21 = B12

and B1k = −B2k, yielding A11 = A22, A21 = A12 and A1k =
A2k. Furthermore, for identical estimators θ̂1 = θ̂2, the cross
correlation vector p has equivalent elements p1 = p2. Thus,
the optimum weight vector wo = C−1p = Ap/det (C) has
equivalent elements

wo
1 =

m∑

j=1

A1jpj
det (C)

=

m∑

j=1

A2jpj
det (C)

= wo
2. (36)

APPENDIX C
PROOF OF COROLLARY 1

For a combiner ofm identical estimators θ̂i = θ̂ and according
to Theorem 1, all weight coefficients wi = w are equivalent
for i = 1, 2, . . . ,m. In this case, the weight vector w = w1
for a m× 1 dimensional vector 1 of all ones and the estimate
vector θ̂ = [θ̂(x+ η1), θ̂(x+ η2), . . . , θ̂(x+ ηm)]�. Thus, the
combined estimator θ̂LC in Eq. (2) can be simplified as Eq. (11).
In addition, due to identical estimators θ̂i = θ̂, Eq. (4) becomes

pi = Ex{θEη[θ̂(x+ η)]} − Eθ(θ)Ex{Eη[θ̂(x+ η)]}, (37)

which indicates the centralized cross-correlation vector p has
m equivalent elements pi. Similarly, from Eqs. (5) and (6), the
covariance matrix C has m equivalent diagonal elements

Cii = Ex{Eη[θ̂
2(x+ η)]} − E2

x{Eη[θ̂(x+ η)]} (38)

and m(m− 1) equivalent non-diagonal elements

Cij = Ex{E2
η[θ̂(x+ η)]} − E2

x{Eη[θ̂(x+ η)]}. (39)

Then, the MSE Rm of θ̂LC in Eq. (11) can be computed as

Rm = Ex,η

[(
θ − θ̂LC

)2]

= var(θ)− 2w
m∑

i=1

pi + w2
m∑

i=1

m∑

j=1

Cij

= var(θ)− 2mwpi +mw2[Cii + (m− 1)Cij ]. (40)

Since the covariance matrix C is positive definite and
1�C1 > 0, then Cii + (m− 1)Cij > 0. Setting the derivative
∂Rm/∂w = 0, we obtain the optimum weight wo of Eq. (12)
achieving the minimum of Eq.(40). Substituting the optimum
weight wo into Eq. (40), the MSE Ro

m can be simplified as
Eq. (13). As the number m → ∞ and Cii < ∞, we have the
limit Ro

∞ = limm→∞ Ro
m in Eq. (14).

APPENDIX D
PROOF OF COROLLARY 2

For the Bayesian estimator in Eq. (15), the corresponding
MSE is given by

R = Ex

[(
θ − θ̂LC

)2]

= var(θ)− 2wEx

[(
θ − Eθ(θ)

)(
θ̂NE(x)− Ex(θ̂NE)

)]

+ w2Ex

[(
θ̂NE(x)− Ex(θ̂NE)

)2]
. (41)

Then, setting the derivative ∂R/∂w = 0, the optimum weight
wo is solved as Eq. (17). Substituting the optimum weight wo

of Eq. (17) into Eq. (41), we have the minimum MSE

Ro = var(θ)− E2
x

[(
θ − Eθ(θ)

)(
θ̂NE(x)− Ex(θ̂NE)

)]

Ex

[(
θ̂NE(x)− Ex(θ̂NE)

)2] .

(42)

Substituting θ̂NE(x)=Eη[θ̂(x+η)] of Eq. (16) into Eq. (42), we
find the numerator E2

x

[(
θ − Eθ(θ)

)(
θ̂NE(x)− Ex(θ̂NE)

)]
=

pi of Eq. (37) and the denominator Ex[(θ̂NE(x)− Ex(θ̂NE))
2]

= Cij of Eq. (39). Therefore, the MSE Ro of Eq. (42) is just the
limit Ro

∞ of Eq. (14). We also find that Ro of Eq. (42) satisfies

Ro = min
w

Ex

[(
θ − θ̂LC

)2]

= min
w

Ex

{[
θ − Eθ(θ)− w

(
θ̂NE − Ex(θ̂NE)

)]2}

≤ Ex

{[
θ − Eθ(θ)−

(
θ̂NE − Ex(θ̂NE)

)]2}|w=1

= Ex

[(
θ − θ̂NE

)2]
, (43)

where the unbiased condition Ex(θ̂NE) = Eθ(θ). This inequal-
ity of Eq. (43) clearly shows that the estimator θ̂LC in Eq. (15)
presents a better or at lest equivalent MSE compared to that
of the estimator θ̂NE in Eq. (16), and this is obtained thanks
to purposeful addition of noise and the adjustable weighting
coefficients in the combiner of Fig. 1.

APPENDIX E
PROOF OF COROLLARY 3

From the MSE Ro
∞ of Eq. (14), i.e. Eq. (42), achieved by

the estimator θ̂LC of Eq. (15) and by using the Cauchy-Schwarz
inequality, we find the numerator

E2
x

[(
θ − Eθ(θ)

)(
θ̂NE(x)− Ex(θ̂NE)

)]

= E2
x

[
Eθ|x

(
θ − Eθ(θ)

)(
θ̂NE(x)− Ex(θ̂NE)

)]

= E2
x

[(
θ̂mmse − Eθ(θ)

)(
θ̂NE(x)− Ex(θ̂NE)

)]

≤ Ex

[(
θ̂mmse(x)− Eθ(θ)

)2
]Ex[

(
θ̂NE(x)− Ex(θ̂NE)

)2]
,

(44)

where the equality occurs when θ̂mmse(x)− Eθ(θ) = κ[θ̂NE(x)

− Ex(θ̂NE)], i.e. Eq. (20), and κ is an arbitrary constant. Sub-
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stituting the inequality of Eq. (44) into Eq. (42), we have

Ro
∞ ≥ var(θ)− Ex

[(
θ̂mmse(x)− Eθ(θ)

)2
]

= var(θ)− Ex

(
θ̂2mmse

)
+ 2Ex

(
θ̂mmse

)
Eθ(θ)− E2

θ(θ)

= Eθ(θ
2)− Ex

(
θ̂2mmse

)

= Ex

[(
θ − θ̂mmse

)2]

= Rms,

where the unbiased condition Eθ(θ) = Ex(θ̂mmse) and
Ex(θθ̂mmse) = Ex[Eθ|x(θ)θ̂mmse] = Ex(θ̂

2
mmse). Thus,

Eq. (18) holds.

APPENDIX F
PROOF OF COROLLARY 4

From Eq. (14), we have the derivative

∂Ro
∞

∂ση
=

p2i
∂Cij

∂ση
− 2piCij

∂pi

∂ση

C2
ij

. (45)

From Eq. (37) and Eq. (39) and noting the interchange of
the order of differentiation and integration in Eq. (45), both
derivatives ∂pi/∂ση and ∂Cij/∂ση contain the term

∂Eη[θ̂(x+ η)]

∂ση
=

∫
θ̂(x+ η)

∂fη(η, ση)

∂ση
dη

=

∫
θ̂(x+ η)

(

−
fη̃(

η
ση

)

σ2
η

−
ηf ′

η̃(
η
ση

)

σ3
η

)

dη

=

∫
θ̂(x+ σηη̃)

(

−fη̃(η̃)

ση
− η̃f ′

η̃(η̃)

ση

)

dη̃,

(46)

where η̃ = η/ση and f ′
η = dfη/dη. Since θ̂(x)|x→∞ = Θ < ∞,∫

fη̃(η̃)dη̃ = 1 and the derivative with respect to ση allowing us
to interchange the order of integration and differentiation [8],
we find

lim
ση→∞

∫
θ̂(x+ ση η̃)

fη̃(η̃)

ση
dη̃ =

∫
lim

ση→∞ θ̂(x+ σηη̃)
fη̃(η̃)

ση
dη̃

= lim
ση→∞

Θ
∫
fη̃(η̃)dη̃

ση
= 0,

and

lim
ση→∞

∫
θ̂(x+ σηη̃)

η̃f ′
η̃(η̃)

ση
dη̃

= lim
ση→∞

Θ
[
η̃fη̃(η̃)|∞−∞ − ∫

fη̃(η̃)dη̃
]

ση

= lim
ση→∞Θ

[
ηfη(η)|∞−∞

σ2
η

− 1

ση

]

= 0,

where fη(±∞) = 0 and limση→∞,η→±∞ ηfη(η)/σ
2
η is infinites-

imal of higher order. Thus, limση→∞ ∂Eη[θ̂(x+ η)]/∂ση = 0.
Substituting this limit into Eq. (45), we have

lim
ση→∞

∂Ro
∞

∂ση
= 0. (47)

Therefore, under the considered conditions in Corollary 4, the
MSERo

∞ of Eq. (14) tends to a (local) extremum asymptotically
for large added noise levels.

APPENDIX G
PROOF OF COROLLARY 5

For a combiner of identical quantizer estimators θ̂i = θ̂qt
of Eq. (22), the terms Eη[θ̂qt(x+ η)] = Eη[θ̂

2
qt(x+ η)] = 1−

Fη(γ − x) = Fη(x− γ) = Fη̃[(x− γ)/ση], where Fη(x) =
Fη̃(x/ση) is the cumulative distribution function of added noise
η and Fη̃ corresponds to the cumulative distribution function of
standardized noise η̃ = η/ση . From Eq. (13), the derivative of
Ro

m with respect to the added noise level ση is

∂Ro
m

∂ση
=

mp2i

[
∂Cii

∂ση
+ (m− 1)

∂Cij

∂ση

]

[Cii + (m− 1)Cij ]2
−

2mpi
∂pi

∂ση

Cii + (m− 1)Cij
.

Since the symmetrically-distributed noise η̃ has zero mean∫
fη̃(η̃)η̃dη̃ = 0 and let η̃ = (x− γ)/ση , we have

lim
ση→0

∂Ex{θEη[θ̂qt(x+ η)]}
∂ση

= lim
ση→0

∫
θfθ(θ)

∫ ∂Fη̃

(
x−γ
ση

)

∂ση
fξ(x− θ)dxdθ

=

∫
θfθ(θ)

∫
lim
ση→0

fη̃

(
x− γ

ση

) −(x− γ)

σ2
η

fξ(x− θ)dxdθ

=

∫
θfθ(θ)

∫
lim
ση→0

fη̃(η̃)(−η̃)fξ(ση η̃ + γ − θ)dη̃dθ

=

∫
−θfθ(θ)fξ(γ − θ)dθ

∫
fη̃(η̃)η̃dη̃ = 0, (48)

and

lim
ση→0

∂Ex{Eη[θ̂qt(x+ η)]}
∂ση

= −fx(γ)

∫
fη̃(η̃)η̃dη̃ = 0.

(49)

Then, we find

lim
ση→0

∂pi
∂ση

= 0, lim
ση→0

∂Cii

∂ση
= 0. (50)

Due to Fη̃(−η̃)=1−Fη̃(η̃) and fη̃(−η̃)=fη̃(η̃), the derivative

lim
ση→0

∂Ex{E2
η[θ̂qt(x+ η)]}
∂ση

= lim
ση→0

∫ ∞

−∞
2Fη̃

(
x− γ

ση

) ∂Fη̃

(
x−γ
ση

)

∂ση
fx(x)dx

=

∫ ∞

−∞
lim
ση→0

2Fη̃

(
x− γ

ση

)

fη̃

(
x− γ

ση

) −(x− γ)

σ2
η

fx(x)dx

= 2fx(γ)

[∫ 0

−∞
Fη̃(η̃)fη̃(η̃)(−η̃)dη̃ −

∫ ∞

0

Fη̃(η̃)fη̃(η̃)η̃dη̃

]

= 2fx(γ)

∫ ∞

0

[1− 2Fη̃(η̃)]fη̃(η̃)η̃dη̃. (51)
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Thus, for the quantizer number m > 1, fx(γ) �= 0 and Fη̃(η̃) >
1/2 over the range of η̃ > 0, we find

lim
ση→0

∂Ro
m

∂ση
= lim

ση→0

m(m− 1)p2i
∂Cij

∂ση

[Cii + (m− 1)Cij ]2

=

∫ ∞

0

[1− 2Fη̃(η̃)]fη̃(η̃)η̃dη̃

× 2m(m− 1)fx(γ)p
2
i

[Cii + (m− 1)Cij ]2

∣
∣
∣
ση=0

< 0, (52)

where p2i > 0 and Cii + (m− 1)Cij > 0 for the positive defi-
nite covariance matrix C.

APPENDIX H
DERIVATION OF PARAMETER VECTOR ESTIMATION

For the observation data model in Eq. (32), the unknownk × 1
parameter vector ϑ is with the k × 1 known mean vector Eϑ(ϑ)
and the k × k covariance matrix Cϑ. Let the N × k observation
matrix H be represented in row form H = [h�

1 ,h
�
2 , . . . ,h

�
N ]�

with its 1× k row vectors hn, and assume that the N × 1
noise vector ξ is with the common distribution fξ for mutually
independent samples ξn for n = 1, 2, . . . , N , we have the scalar
observation

xn = hnϑ+ ξn, (53)

which can be also analyzed by the theory developed in Sec. II
with the parameter θ replaced by hnϑ in Eq. (53). We add
m noise components ηin to the observation xn, respectively,
resulting in m× 1 estimate vector

ϑ̂n =
[
ϑ̂1n(xn + η1n), ϑ̂2n(xn + η2n), . . . , ϑ̂mn(xn + ηmn)

]�
.

Then, for the observation xn, the centralized correlation vector
between ϑ and ϑ̂n is

pn = Exn,η[hn(ϑ− Eϑ(ϑ))(ϑ̂n − Exn,η(ϑ̂n))] = G�
nh

�
n

with the k ×m cross-covariance matrix Gn = Exn,η[(ϑ−
Eϑ(ϑ))(ϑ̂n − Exn,η(ϑ̂n))

�], and them×m covariance matrix

Cn = Exn,η

[(
ϑ̂n − Exn,η(ϑ̂n)

)(
ϑ̂n − Exn,η(ϑ̂n)

)�]
. Thus,

using the designed Bayesian estimator of Eq. (8), we obtain

ϑ̂LC,n = hnϑ̂

= Eϑ(hnϑ) + p�
nC

−1
n

(
ϑ̂n − Exn,η(ϑ̂n)

)

= hnEϑ(ϑ) + hnGnC
−1
n

(
ϑ̂n − Exn,η(ϑ̂n)

)
. (54)

These scalar estimators of Eq. (54) can be combined into a vector
estimator as

ϑ̂LC =

⎡

⎢
⎢
⎢
⎣

ϑ̂LC,1

ϑ̂LC,2

...
ϑ̂LC,N

⎤

⎥
⎥
⎥
⎦
= Hϑ̂

= HE(ϑ) +

⎡

⎢
⎢
⎢
⎣

h1G1C
−1
1

(
ϑ̂1 − Ex1,η(ϑ̂1)

)

h2G2C
−1
2

(
ϑ̂2 − Ex2,η(ϑ̂2)

)

...
hNGNC−1

N

(
ϑ̂N − Exn,η(ϑ̂N )

)

⎤

⎥
⎥
⎥
⎦
. (55)

Assuming that H�H is invertible, the estimate vector ϑ̂ is
given by

ϑ̂ = (H�H)−1H�ϑ̂LC

= E(ϑ) + (H�H)−1H�

⎡

⎢
⎢
⎢
⎣

h1G1C
−1
1

(
ϑ̂1 − Ex1,η(ϑ̂1)

)

h2G2C
−1
2

(
ϑ̂2 − Ex2,η(ϑ̂2)

)

...
hNGNC−1

N

(
ϑ̂N − Exn,η(ϑ̂N)

)

⎤

⎥
⎥
⎥
⎦
,

(56)

with the MSE of each estimation parameter ϑ̂i as the i-th
diagonal element of covariance matrix Ex,η[(ϑ− ϑ̂)(ϑ− ϑ̂)�]
for i = 1, 2, . . . , k.

REFERENCES

[1] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. vol. 1. Upper Saddle River, NJ, USA: Prentice-Hall, 1998.

[2] D. L. Alspach and H. W. Sorenson, “Nonlinear Bayesian estimation using
Gaussian sum approximations,” IEEE Trans. Autom. Control, vol. AC-17,
no. 4, pp. 439–448, Aug. 1972.

[3] H. Z. Fang, N. Tian, Y. B. Wang, M. C. Zhou, and M. A. Haile, “Non-
linear Bayesian estimation: From Kalman filtering to a broader horizon,”
IEEE/CAA J. Automatica Sinica, vol. 5, no. 2, pp. 401–407, Mar. 2018.

[4] D. Rousseau and F. Chapeau-Blondeau, “Noise-improved Bayesian esti-
mation with arrays of one-bit quantizers,” IEEE Trans. Instrum. Meas.,
vol. 56, no. 6, pp. 2658–2662, Dec. 2007.

[5] F. Chapeau-Blondeau, S. Blanchard, and D. Rousseau, “Noise-enhanced
Fisher information in parallel arrays of sensors with saturation,” Phys. Rev.
E, vol. 74, no. 3, 2006, Art. no. 031 102.

[6] H. Chen, P. K. Varshney, and J. H. Michels, “Noise enhanced parameter
estimation,” IEEE Trans. Signal Process., vol. 56, no. 10, pp. 5074–5081,
Oct. 2008.

[7] S. Uhlich, “Bayes risk reduction of estimators using artificial observation
noise,” IEEE Trans. Signal Process., vol. 63, no. 20, pp. 5535–5545,
Oct. 2015.

[8] A. Patel and B. Kosko, “Optimal mean-square noise benefits in quantizer-
array linear estimation,” IEEE Signal Process. Lett., vol. 17, no. 12,
pp. 1005–1009, Dec. 2010.

[9] M. D. McDonnell, N. G. Stocks, C. E. M. Pearce, and D. Abbott, Stochas-
tic Resonance: From Suprathreshold Stochastic Resonance to Stochastic
Signal Quantization. New York, NY, USA: Cambridge Univ. Press, 2008.

[10] G. O. Balkan and S. Gezici, “CRLB based optimal noise enhanced param-
eter estimation using quantized observations,” IEEE Signal Process. Lett.,
vol. 17, no. 5, pp. 477–480, May 2010.

[11] L. Xu, F. Duan, X. Gao, D. Abbott, and M. D. McDonnell, “Adaptive recur-
sive algorithm for optimal weighted suprathreshold stochastic resonance,”
Roy. Soc. Open Sci., vol. 4, no. 9, 2017, Art. no. 160 889.

[12] Y. Pan, F. Duan, F. Chapeau-Blondeau, and D. Abbott, “Noise enhance-
ment in robust estimation of location,” IEEE Trans. Signal Process.,
vol. 66, no. 8, pp. 1953–1966, Apr. 2018.

[13] Q. Zhai and Y. Wang, “Noise effect on signal quantization in an array of
binary quantizers,” Signal Process., vol. 152, no. 11, pp. 265–272, 2018.

[14] J. Zhu, X. Li, R. S. Blum, and Y. Gu, “Parameter estimation from quantized
observations in multiplicative noise environments,” IEEE Trans. Signal
Process., vol. 63, no. 15, pp. 4037–4050, Aug. 2015.

[15] H. Soganci, S. Gezici, and O. Arikan, “Optimal stochastic parameter
design for estimation problems,” IEEE Trans. Signal Process., vol. 60,
no. 9, pp. 4950–4956, Sep. 2012.

[16] H. Chen, L. R. Varshney, and P. K. Varshney, “Noise-enhanced information
systems,” Proc. IEEE, vol. 102, no. 10, pp. 1607–1621, Oct. 2014.



DUAN et al.: NOISE BENEFITS IN COMBINED NONLINEAR BAYESIAN ESTIMATORS 4623

[17] D. Wang, L. Li, Y. Ji, and Y. Yan, “Model recovery for Hammerstein
systems using the auxiliary model based orthogonal matching pursuit
method,” Appl. Math. Model., vol. 54, no. 2, pp. 537–550, 2018.

[18] M. Zeng, N. Nam-Phong, O. A. Dobre, and H. V. Poor, “Securing downlink
massive MIMO-NOMA networks with artificial noise,” IEEE J. Sel. Topics
Signal Process., vol. 13, no. 3, pp. 685–699, Jun. 2019.

[19] A. Patel and B. Kosko, “Optimal noise benefits in Neyman–Pearson and
inequality-constrained statistical signal detection,” IEEE Trans. Signal
Process., vol. 57, no. 5, pp. 1655–1669, May 2009.

[20] S. Kay, “Can detectability be improved by adding noise?” IEEE Signal
Process. Lett., vol. 7, no. 1, pp. 8–10, Jan. 2000.

[21] S. Zozor and P. O. Amblard, “Stochastic resonance in locally optimal
detectors,” IEEE Trans. Signal Process., vol. 51, no. 12, pp. 3177–3181,
Dec. 2003.

[22] F. Chapeau-Blondeau and D. Rousseau, “Noise-enhanced performance
for an optimal Bayesian estimator,” IEEE Trans. Signal Process., vol. 52,
no. 5, pp. 1327–1334, May 2004.

[23] H. Chen, P. K. Varshney, S. M. Kay, and J. H. Michels, “Theory of the
stochastic resonance effect in signal detection: Part I–Fixed detectors,”
IEEE Trans. Signal Process., vol. 55, no. 7, pp. 3172–3184, Jul. 2007.

[24] H. Chen and P. K. Varshney, “Theory of the stochastic resonance effect in
signal detection–Part II: Variable detectors,” IEEE Trans. Signal Process.,
vol. 56, no. 10, pp. 5031–5041, Oct. 2008.

[25] A. B. Akbay and S. Gezici, “Noise benefits in joint detection and estimation
problems,” Signal Process., vol. 118, no. 1, pp. 235–247, 2016.

[26] H. Soganci, S. Gezici, and O. Arikan, “Optimal signal design for multi-
parameter estimation problems,” IEEE Trans. Signal Process., vol. 63,
no. 22, pp. 6074–6085, Nov. 2015.

[27] G. Zeitler, G. Kramer, and A. C. Singer, “Bayesian parameter estima-
tion using single-bit dithered quantization,” IEEE Trans. Signal Process.,
vol. 60, no. 6, pp. 2713–2726, Jun. 2012.

[28] H. C. Papadopoulos, G. W. Wornell, and A. V. Oppenheim, “Sequential
signal encoding from noisy measurements using quantizers with dynamic
bias control,” IEEE Trans. Inf. Theory, vol. 47, no. 3, pp. 978–1002,
Mar. 2001.

[29] H. Chen and P. K. Varshney, “Performance limit for distributed estimation
systems with identical one-bit quantizers,” IEEE Trans. Signal Process.,
vol. 58, no. 1, pp. 466–471, Jan. 2010.

[30] H. Chen and P. K. Varshney, “Nonparametric one-bit quantizers for dis-
tributed estimation,” IEEE Trans. Signal Process., vol. 58, no. 7, pp. 3777–
3787, Jul. 2010.

[31] O. Dabeer and A. Karnik, “Signal parameter estimation using 1-bit dithered
quantization,” IEEE Trans. Inf. Theory, vol. 52, no. 12, pp. 5389–5405,
Dec. 2006.

[32] M. D. McDonnell, “Is electrical noise useful?” Proc. IEEE, vol. 99, no. 2,
pp. 242–246, Feb. 2011.

[33] G. P. Harmer, B. R. Davis, and D. Abbott, “A review of stochastic reso-
nance: Circuits and measurement,” IEEE Trans. Instrum. Meas., vol. 51,
no. 2, pp. 299–309, Apr. 2002.

[34] N. G. Stocks, “Suprathreshold stochastic resonance in multilevel threshold
systems,” Phys. Rev. Lett., vol. 84, no. 11, pp. 2310–2313, 2000.

[35] L. Xu, T. Vladusich, F. Duan, L. J. Gunn, D. Abbott, and M. D. McDonnell,
“Decoding suprathreshold stochastic resonance with optimal weights,”
Phys. Lett. A, vol. 379, no. 38, pp. 2277–2283, 2015.

[36] R. Benzi, A. Sutera, and A. Vulpiani, “The mechanism of stochastic
resonance,” J. Phys. A, Math. General, vol. 14, no. 11, pp. L453–L457,
1981.

[37] S. Bayram, S. Gezici, and H. V. Poor, “Noise enhanced hypothesis-testing
in the restricted Bayesian framework,” IEEE Trans. Signal Process.,
vol. 58, no. 8, pp. 3972–3989, Aug. 2010.

[38] E. Zeidler, Nonlinear Functional Analysis and Its Applications, Part 3:
Variational Methods and Optimization. Berlin, Germany: Springer-Verlag,
1984.

[39] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. New York,
NY, USA: Wiley, 2000.

[40] J. Nocedal and S. J. Wright, Numerical Optimization. New York, NY, USA:
Springer-Verlag, 2006.

[41] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Englewood Cliffs, NJ, USA:
Prentice-Hall, 1983.

[42] J. J. Collins, C. C. Chow, and T. T. Imhoff, “Stochastic resonance without
tuning,” Nature, vol. 376, no. 6537, pp. 236–238, 1995.

[43] B. Widrow and S. D. Stearns, Adaptive Signal Processing. Upper Saddle
River, NJ, USA: Prentice-Hall, 1985.

[44] D. G. Manolakis, V. K. Ingle, and S. M. Kogon, Statistical and Adaptive
Signal Processing. New York, NY, USA: McGraw-Hill, 2000.

Fabing Duan was born in China, in 1974. He received
the master’s degree in engineering mechanics from
China University of Mining and Technology, Beijing,
China, in 1999 and the Ph.D. degree in solid me-
chanics from Zhejiang University, Hangzhou, China.
From 2002 to 2003, he was a Postdoctoral Fellow
with the University of Angers, France. Since 2004,
he has been with the Institute of Complexity Science,
Qingdao University, Qingdao, China, and is currently
a Professor of System Science. His research interests
include nonlinear systems and signal processing.

Yan Pan was born in China, in 1987. She received
the master’s degree in system science and the Ph.D.
degree in system science from Qingdao University,
Qingdao, China, in 2013 and 2019, respectively.
She was a Computer Programmer with the Qingdao
Software Area from 2013 to 2016. Since February
2019, she has been supported by the overseas schol-
arship of the doctoral students of Shandong Province,
China, and studies in the Laboratoire Angevin de
Recherche en Ingénierie des Systèmes (LARIS),
Université d’Angers, France, under the guidance of

Prof. François Chapeau-Blondeau. Since July 2019, she has been with the
College of Mathematics and System Science, Shandong University of Science
and Technology, China. Her research interests are in robust signal estimation
and machine learning.

François Chapeau-Blondeau was born in France,
in 1959. He received the Engineer Diploma from
ESEO, Angers, France, in 1982, the Ph.D. degree
in electrical engineering from the University Pierre
et Marie Curie, Paris 6, France, in 1987, and the
Habilitation degree from the University of Angers,
Angers, France, in 1994. In 1988, he was a Research
Associate with the Department of Biophysics, Mayo
Clinic, Rochester, MN, USA, working on biomedical
ultrasonics. Since 1990, he has been with the Uni-
versity of Angers, France, where he is currently a

Professor of electrical and electronic engineering. His research interests include
information theory, signal processing and imaging, and the interactions between
physics and information sciences.

Derek Abbott (M’85–SM’99–F’05) was born in
London, U.K., in 1960. He received the B.Sc.(Hons.)
degree in physics from Loughborough University,
Leicestershire, U.K., in 1982 and the Ph.D. degree
in electrical and electronic engineering from The
University of Adelaide, Adelaide, SA, Australia, in
1995, under K. Eshraghian and B. R. Davis.

From 1978 to 1986, he was a Research Engineer
with the GEC Hirst Research Centre, London, U.K.
From 1986 to 1987, he was a VLSI Design Engineer
with Austek Microsystems, Australia. Since 1987, he

has been with The University of Adelaide, where he is currently a Full Professor
with the School of Electrical and Electronic Engineering. He has authored or
coauthored more than 1000 publications and a number of patents. He has been
an invited speaker at more than 100 institutions. He coedited Quantum Aspects
of Life (Imperial College Press, 2008), and coauthored Stochastic Resonance
(Cambridge Univ. Press, 2008), and Terahertz Imaging for Biomedical Applica-
tions (Springer-Verlag, 2012). His research interests include multidisciplinary
physics and electronic engineering applied to complex systems, networks, game
theory, energy policy, stochastics, and biophotonics.

Dr. Abbott is currently a Fellow of the Institute of Physics. He has been
an Editor and/or a Guest Editor for a number of journals, including the IEEE
JOURNAL OF SOLID-STATE CIRCUITS, Journal of Optics B, Microelectronics
Journal, PLOS ONE, PROCEEDINGS OF THE IEEE, and the IEEE PHOTONICS

JOURNAL. He is currently on the Editorial Boards of IEEE ACCESS, Nature’s
Scientific Reports, Royal Society Open Science, and Frontiers in Physics. He
was the recipient of the number of awards, including the Tall Poppy Award
for Science (2004), the Premier’s SA Great Award in Science and Technology
for outstanding contributions to South Australia (2004), an Australian Research
Council Future Fellowship (2012), the David Dewhurst Medal (2015), the Barry
Inglis Medal (2018), and the M. A. Sargent Medal (2019) for eminence in
engineering.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


