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Nonlinear Test Statistic to Improve Signal Detection
in Non-Gaussian Noise
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Abstract—We compare two simple test statistics that a detector
can compute from multiple noisy data in a binary decision problem
based on a maximuma posterioriprobability (MAP) criterion. One
of these statistics is the standard sample mean of the data (linear
detector), which allows one to minimize the probability of detection
error when the noise is Gaussian. The other statistic is even sim-
pler and consists of a sample mean of a two-state quantized version
of the data (nonlinear detector). Although simpler to compute, we
show that this nonlinear detector can achieve smaller probability
of error compared to the linear detector. This especially occurs for
non-Gaussian noises with heavy tails or a leptokurtic character.

Index Terms—Detection, non-Gaussian noise, nonlinear statistic,
threshold nonlinearity.

I. INTRODUCTION

L INEAR procedures are useful in signal processing because
they usually allow a thorough theoretical treatment and

can often be proved optimal when dealing with Gaussian noise.
Yet linear procedures also come with inherent limitations. Non-
linear procedures are potentially richer but are also generally
more difficult to theoretically tackle. Still, there are classes of
nonlinear systems that may prove simple enough for a theoret-
ical analysis (and for practical implementation), while offering
improvement over linear processes in specific situations. This
may be the case with threshold nonlinearities. Here, we study a
specific problem of signal detection, and we compare the perfor-
mance of a standard linear detector with that of a simple two-
state threshold nonlinearity. This nonlinear detector is simple
to implement and represents each data point by a parsimonious
single bit. These properties are especially useful for applications
in a number of existing and future multisensor networks or dis-
tributed intelligent systems, so as to maximize the speed and
efficacy of processing with limited resources for data handling,
storage, communication, and energy supply [1]. While simpler
to compute, we show that with Gaussian noise, the nonlinear de-
tector comes close to the performance of the optimal linear de-
tector. With non-Gaussian noise, the nonlinear detector can im-
prove the performance over a standard linear detector, and this
especially occurs for generalized Gaussian noises with heavy
tails or a leptokurtic character.
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II. L INEAR DETECTION

A random signal is assumed to take the constant value
(hypothesis H) or (hypothesis H), respectively, with
probabilities and . The signal is additively cor-
rupted by a stationary white noiseof mean zero, variance ,
cumulative distribution function , and probability density
function (not necessarily Gaussian). The
noisy signal is sampled so as to provide obser-
vations for 1 to . The data samples are therefore
independent random variables with either meanor and
variance . We want to use the data to de-
cide whether or .

The maximuma posterioriprobability (MAP) criterion uses
the likelihood ratio [2]

Pr
Pr

(1)

with the conditional density , and
a similar expression for . Equivalently, one can use the
loglikelihood ratio

(2)

Whenever , the decision is that (decision
D . Otherwise it is (decision D . The performance of
the detection can be assessed by the overall probability of error

Pr D H Pr D H (3)

The MAP criterion leads to a very simple test statistic (the
quantity the detector has to compute from the data to base its
decision) when the noiseis Gaussian [2]. In this case, the MAP
criterion leads to decide when

(4)

and to decide when , with the statistic given by
the sample mean of the data

(5)

1070–9908/00$10.00 © 2000 IEEE



206 IEEE SIGNAL PROCESSING LETTERS, VOL. 7, NO. 7, JULY 2000

and this procedure leads to a minimum of with value

erf

erf (6)

When the noise is non-Gaussian, the MAP procedure in
general does not lead to a simple test statistic, as simple as the
sample mean of (5) or simpler, in order to make an optimal
use of the complete data set to base the de-
tection. Yet, it is often desirable, especially for fast real-time
processing, to maintain a simple test statistic likeon which to
base the detection. One is thus faced with the question: “Given
the sample mean of (5) to represent the data set, what is the
best use of on which to base the detection?” This question re-
ceives a simple answer in the case of a large data set (i.e., when

is large), because in this case, the Gaussian condition is re-
covered. Irrespective of the distribution of the noisecorrupting
the data , provided can be assigned a finite variance, the
sample mean , thanks to the central limit theorem, gets nor-
mally distributed with variance and either mean or .

Thus, with an arbitrarily distributed noiseand large, the
optimal use of for the detection is again to apply the deci-
sion scheme of (4), and this procedure reaches the probability
of error (6), which is the minimal probability of error that can
be expected when basing the detection on the statistic.

III. N ONLINEAR DETECTION

We will now introduce another test statistic, even simpler to
compute than . We consider that the noisy signal is
not observed directly but through a two-state nonlinearity

sign (7)

with threshold . It is then the binary output
1 that is sampled to yield the binary data set ( ).

We next compute the sample mean of the binarized data

(8)

and ask what is the best use ofthat can be implemented to
detect whether or , and what is the performance of
this detection?

The MAP detection based on the statisticrelies on the like-
lihood ratio

Pr
Pr

(9)

with the conditional densities and , which we
shall now address.

For a fixed and the noise distributed according to , the
random signal , defined by (7), has mean

E (10)

and variance

var (11)

Fig. 1. Detection algorithm based on the nonlinear test statisticy.

We now consider the case of large. Then, thanks to the
central limit theorem, the statistic gets normally distributed
with mean and variance

when and mean
and variance when

. The conditional densities in (9) are then given by

(12)

and

(13)

The loglikelihood ratio derived from (9) follows as

(14)

The MAP test is then to decide when and
decide otherwise. This leads to conditions on the test
statistic that are expressed in the algorithm of Fig. 1.

We have performed comparisons of the test statisticsand
based on the probability of detection error for different
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Fig. 2. Probability of detection errorP as a function of the root
mean-squared (RMS) amplitude� of the zero mean white noise�. The solid
lines areP from the algorithm of Fig. 1 with the nonlinear statisticy and for
various probability densities of� according to (15) with (a)� = 2, (b)� =
1, (c)� = 1=2, (d)� = 1=3, and (e)� = 1=4. The dashed line isP from
(6), with the detection scheme of (4), which is the optimal detection obtainable
with the linear statisticx, and which achievesP of (6) irrespective of the
probability density of�. The other parameters ares = 0, s = 1,P = 0.5,
andN = 100.

distributions of the noise. Typical results are shown in Fig. 2.
When the noise is Gaussian, the detection scheme of (4) based
on the linear statistic represents the best detection (lowest)
based on the complete data set. Therefore, in this case, the
nonlinear statistic cannot yield a lower , but its perfor-
mance still comes close to that of the best detector, as visible
in Fig. 2, while requiring only a more parsimonious single bit
per data point . When is non-Gaussian, the detection of (4)
represents the best detection (lowest) when basing the de-
tection on only. In this case, the nonlinear statistic, although
simpler to compute, can yield lower , as shown in Fig. 2.
Our analysis establishes that this superiority ofover espe-
cially occurs for non-Gaussian noiseshaving heavy tails or a
leptokurtic character. This is true whenbelongs to the family
of generalized Gaussian densities [3] ,
where the standardized density

(15)

with and
is parameterized by the positive ex-

ponent . For 2, one recovers the Gaussian density. For
, one obtains leptokurtic densities with tails thicker

than the Gaussian, but yet having all their moments finite,
especially the variance required in the detection. In the range

, the nonlinear detection with systematically
outperforms the linear detection with, as illustrated by Fig.
2, which shows conditions wherecan sometimes achieve a
probability of error ten times smaller than that of.

Fig. 3 offers a validation of the nonlinear detection of Fig. 1
through the numerical evaluation of as the relative frequency
of error made over a large number of detection trials. The re-
sults of Fig. 3 are obtained on data sets of size 10. They
show that the scheme of Fig. 1 and the associated expressions
for , although valid in principle in the large limit, also

Fig. 3. Probability of detection errorP as a function of the RMS amplitude
� of the zero mean white noise�. The smooth lines are the theoreticalP
from Fig. 1 or (6). The discrete data points are the corresponding numerical
estimations ofP over 10 trials. The solid lines areP from the algorithm
in Fig. 1 with the nonlinear statisticy and for various probability densities of�
according to (15) with:(�),� = 2 (� Gaussian),( ) � = 1 (� Laplacian),(})
� =1 (� uniform). The dashed line and (*) isP from (6) with the detection
scheme of (4). The other parameters ares = 0, s = 1,P = 0.5, andN =
10.

constitute very good approximation for small, and therefore,
the superiority observed for over is robustly preserved for
small data sets.

IV. CONCLUSION

A MAP detetector based on the nonlinear statistichas been
studied. The scheme is intrinsically appealing, as it uses a parsi-
monious single bit for each data point. Compared to the standard
linear statistic , its performance measured by the probability
of error comes close for Gaussian noise and is better for
non-Gaussian leptokurtic noises. The linear statisticoperates
on a continuous (analog) representation of the data or with prac-
tical hardware on a 16-, 12-, or 8-bit representation, to be con-
trasted with the one bit per data point of the nonlinear statistic
. Thus, if some notion of hardware requirement is included in

the evaluation of the performance, the interest of the nonlinear
detector becomes even more manifest. The superiority ofover

would also be reflected with alternative detection strategies
based on a Neyman-Pearson criterion or the minimization of a
cost function. Other forms of detection problems, (for instance,
involving multiple hypotheses or other types of signals) may
also be candidates for receiving improvement from nonlinear
schemes like the one considered here [4].
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