IEEE SIGNAL PROCESSING LETTERS, VOL. 7, NO. 7, JULY 2000 205

Nonlinear Test Statistic to Improve Signal Detection
In Non-Gaussian Noise

Francois Chapeau-Blondeddember, IEEE

Abstract—\We compare two simple test statistics that a detector Il. LINEAR DETECTION
can compute from multiple noisy data in a binary decision problem . .
based on a maximurma posterioriprobability (MAP) criterion. One A random signals is assumed to take the constant vajye

of these statistics is the standard sample mean of the data (linear (hypothesis i) ors; > sq (hypothesis H), respectively, with
detector), which allows one to minimize the probability of detection probabilitiesP, andP, = 1— F,. The signak is additively cor-
error when the noise is Gaussian. The other statistic is even sim- rupted by a stationary white noigeof mean zero, varianaﬁi,

ler and consists of a sample mean of a two-state quantized version ; L . o .
gf the data (nonlinear detepctor). Although simplerolo compute, we cumulative distribution functiod’, (), and probability density

show that this nonlinear detector can achieve smaller probability function f,,(v) = dFy,(u)/du (not necessarily Gaussian). The
of error compared to the linear detector. This especially occurs for Noisy signals + 7 = « is sampled so as to provid€ obser-
non-Gaussian noises with heavy tails or a leptokurtic character.  vationsz; for & = 1 to N. The data samples;. are therefore

Index Terms—Detection, non-Gaussian noise, nonlinear statistic, independent random variables with either mearor s; and
threshold nonlinearity. varianceo-?]. We want to use the data = (z1,---zx) to de-
cide whether = sq or s1.

The maximuma posterioriprobability (MAP) criterion uses
the likelihood ratio [2]

INEAR procedures are useful in signal processing because
they usually allow a thorough theoretical treatment and \ = Pr{s = s1[x} _ P (X|51) Py 1)

can often be proved optimal when dealing with Gaussian noise. Pr{s =solx}  pa(x[s0)Fo
Yet linear procedures also come with inherent limitations. Non- . ) N
linear procedures are potentially richer but are also generafijf! the conditional density..(x[s1) = 1L;_; f,(x—s1), and
more difficult to theoretically tackle. Still, there are classes & Similar expression fqi.(x|so). Equivalently, one can use the
nonlinear systems that may prove simple enough for a theorl@glikelihood ratio
ical analysis (and for practical implementation), while offering N
improvement over _Iinear processes_in sp_e_cific situations. This In (\) = In (P/By) + Z In [f,(zx — 51)]
may be the case with threshold nonlinearities. Here, we study a ]
specific problem of signal detection, and we compare the perfor- N
mance of a standard linear detector with that of a simple two- — Z n [f, (21 — s0)]. )
state threshold nonlinearity. This nonlinear detector is simple b1
to implement and represents each data point by a parsimonious
single bit. These properties are especially useful for applicatiofdienevern (A) > 0, the decision is that = s, (decision
in a number of existing and future multisensor networks or diB1). Otherwise itiss = so (decision ). The performance of
tributed intelligent systems, so as to maximize the speed dhe detection can be assessed by the overall probability of error
efficacy of processing with limited resources for data handling,
storage, communication, and energy supply [1]. While simpler Per = Pr{Dy [Ho} Fo + Pr{Do[H, } P ©)
to compute, we show that with Gaussian noise, the nonlinear de-

tector comes close to the performance of the optimal linear de-1h€ MAP criterion leads to a very simple test statistic (the

tector. With non-Gaussian noise, the nonlinear detector can iffit@ntity the detector has to compute from the data to base its

prove the performance over a standard linear detector, and f#ff$iSion) when the noisgis Gaussian [2]. In this case, the MAP

especially occurs for generalized Gaussian noises with he&{ferion leads to decide = s, when

tails or a leptokurtic character.

I. INTRODUCTION

50 + 51 UE;/N
+
2 S1 — So

111 (Po/Pl)I.’L'T (4)

and to decides = s whenz <z, with the statistic given by
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and this procedure leads to a minimumiaf with value Lo > o
Let 03 = /o — o}
P, = E 14 P erf VNI 3 U (y1 — w0)* + 203 Inf(aoP)/(0:110)] > 0
2 V20, Let y2 = /(y1 — v0)? + 203 In[(0oP1) /(01 o)}
Let yr1 = (03y1 — 01yo — Goo1y2)/ 0}
—Fy erf <\/NxT — SO)] . (6) Let yr2 = (031 — o1y + 0001y2)/ 03
V20, If yr1 < < yro decide s = s; Else decide s = so Endf
. X . X _ 1 [ Y12 — Yo f Y11 — Yo
When the noise; is non-Gaussian, the MAP procedure in Fa=g [e“ m) —erf(mﬂ ot
general does not lead to a simple test statistic, as simple as the [1 N ler(yﬂ - yl) B lerf(yﬁ - ylﬂ P
sample mearr of (5) or simpler, in order to make an optimal 2 V2o, 2 V20, !
use of the complete data set= (xz1,---xn) to base the de- Else
tection. Yet, it is often desirable, especially for fast real-time dPe”_d;s = %o
processing, to maintain a simple test statistic liken which to Egi'l_f— '
base the detection. One is thus faced with the question: “Given Else If oy < oy
the sample meanm of (5) to represent the data set, what is the Let o3 = y/of — a8
best use of on which to base the detection?” This question re- If (1 = yo)* + 208 In[(01 /) /(002 )] > O
ceives a simple answer in the case of a large data set (i.e., when Lt 2 = /(s — %0)* + 20} In[(01P0)/ (00 )]
N is large), because in this case, the Gaussian condition is re- Let yr = ("}23’0 — oy~ "0"”’2)/"?
covered. Irrespective of the distribution of the nejsmrrupting Let yrz - (oo — "3?1 +o0a1y2)/o} )
the datary,, provideds can be assigned a finite varianeg, the Byr <y o decide s = 5°1E—ls—e decide s = s; EndIf
sample mearT, thanks to the central limit theorem, gets nor- Po= 1+ §erf(%;@) - §erf(yf;{ay°)] Po+
mally distributed with variance? /N and either meas, or ;. V[ (yra—w ° yr1 — g ’
Thus, with an arbitrarily distributed noisgand N large, the 2 [eri <_\/§—al> N i(ﬁ?)] A
optimal use ofz for the detection is again to apply the deci- Else
sion scheme of (4), and this procedure reaches the probability ;ec‘_d‘;s =8
of error (6), which is the minimal probability of error that can EndIf ¢
be expected when basing the detection on the statistic Else If 0 = o,

P 2
Letyr = 228 4 %y
[Il. N ONLINEAR DETECTION _ Wi~ )

U7 >yr decide s =s; Else decide s = sy End If

We will now introduce another test statistic, even simpler to p= L [1 -(yT_yl) , <yT yo)]
. R . K er = = |1+ Pyerf -~ Pyerf
compute tharg. We consider that the noisy signafn = x is 2 V2 V20,
not observed directly but through a two-state nonlinearity End J

y = sign(s +n — 0) (7) Fig. 1. Detection algorithm based on the nonlinear test stagstic

with thresholdé = (sy + s1)/2. It is then the binary output
y = £1 that is sampled to yield the binary data sgt (- - y~).
We next compute the sample mean of the binarized data

We now consider the case &f large. Then, thanks to the
central limit theorem, the statistig gets normally distributed
with meanyy = 1 — 2F, (6 — so) and variances = 4F,(6 —

1 & s0)[1—F,(6—s0)]/N whens = so and meany; = 1—-2F, (6 —
V=N Z Yk (8) s1) and variancer? = 4F,(0 — s1)[1 — F,,(6 — s1)]/N when
k=1 s = s1. The conditional densities in (9) are then given by
and ask what is the best usemthat can be implemented to _ 9
detect whethes = 50 or s;, and what is the performance of py(Flso) = exp {_w} (12)
this detection? ooV 2w 20

The MAP detection based on the statigtielies on the like- gng

lihood ratio

N T —y)?
) py(Fls1) = mexp [_Tf} . (13)

The loglikelihood ratio derived from (9) follows as

_ Pr{s = s [y} _ py(¥ls1) P

Y Pr{s=soly}  pu(Flso)Po

with the conditional densities, (7| so) andp, (7|s1 ), which we

shall now address. B oo Py @—v)? G—u)?

For a fixeds and the noise distributed according t#;,, the In (A) = In <glp0> - 202 207 (14)
random signay, defined by (7), has mean

The MAP test is then to decide= s; whenln (A,) > 0 and
E(y) =1-2F,(6 - s) (10) decides = s, otherwise. This leads to conditions on the test
statisticy that are expressed in the algorithm of Fig. 1.
We have performed comparisons of the test statigtiasd
var(y) = 4F,(0 — s)[1 — F,(6 — s)]. (11) =z based on the probability of detection erdgr, for different

and variance
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Fig. 2. Probability of detection errof’.; as a function of the root Fig 3. Probability of detection errdr,, as a function of the RMS amplitude
mean-squared (RMS) amplitudg, of the zero mean white noisg The solid 5 " of the zero mean white noisg The smooth lines are the theoretida),

lines areP. from the algorithm of Fig. 1 with the nonlinear statisi@nd for  from Fig. 1 or (6). The discrete data points are the corresponding numerical
various probability densities of according to (15) with (av = 2, (b)o = estimations ofP., over 1@ trials. The solid lines aré’., from the algorithm

1, (©)a = 1/2,(d)a = 1/3,and (e)a = 1/4. The dashed line i¥. from iy Fig. 1 with the nonlinear statistig and for various probability densities gf

(6), with the detection scheme of (4), which is the optimal detection obtalnakggcording to (15) withfo), o = 2 (y Gaussian) ) « = 1 (5 Laplacian){<{)

with the linear statisticr, and which achieve#’., of (6) irrespective of the ,, — (1 uniform). The dashed line and (*) ., from (6) with the detection
r>r%|b$bility1 ggnsity ofi. The other parameters asg = 0,51 = 1, /o = 0.5, scheme of (4). The other parameters @ye= 0, s; = 1, P, = 0.5, andV =
andi = . 10.

distributions of the noisg. Typical results are shown in Fig. 2.constitute very good approximation for smail and therefore,
When the noisg is Gaussian, the detection scheme of (4) bas#te superiority observed faf overz is robustly preserved for
on the linear statistiz represents the best detection (lonBsf) small data sets.

based on the complete data setTherefore, in this case, the

nonlinear statistig; cannot yield a lower”.,, but its perfor- IV. CONCLUSION

mance still comes close to that of the best detector, as visibleA MAP detetector based on the nonlinear statigtias been

in Fig. 2, while requiring only a more parsimonious single bity gied. The scheme is intrinsically appealing, as it uses a parsi-
per data poink.. Wheny is non-Gaussian, the detection of (4},5nious single bit for each data point. Compared to the standard
represents the best detection (low&st) when basing the de- |inear statisticz, its performance measured by the probability
tection orw only. In this case, the nonlinear statigficalthough  of error P., comes close for Gaussian noise and is better for
simpler to compute, can yield lowdf., as shown in Fig. 2. non-Gaussian leptokurtic noises. The linear statistiperates
Our analysis establishes that this superiorityyaverz espe- on a continuous (analog) representation of the data or with prac-
cially occurs for non-Gaussian noisgfiaving heavy tails or a tical hardware on a 16-, 12-, or 8-bit representation, to be con-
leptokurtic character. This is true wherbelongs to the family trasted with the one bit per data point of the nonlinear statistic
of generalized Gaussian densities f3[u) = frea(u/oy)/oy, 7. Thus, if some notion of hardware requirement is included in

where the standardized density the evaluation of the performance, the interest of the nonlinear
detector becomes even more manifest. The superiorifogér

Jrea(u) = Aexp(—|bu|”) (15) = would also be reflected with alternative detection strategies

based on a Neyman-Pearson criterion or the minimization of a

with A = (a/2)[[(3/a)]Y?/[I'(1/a)]*/? and b = costfunction. Other forms of detection problems, (for instance,

[['(3/a)/T(1/a)]*/? is parameterized by the positive exinvolving multiple hypotheses or other types of signals) may
ponenta. For @ = 2, one recovers the Gaussian density. Fé{so be candidates for receiving improvement from nonlinear
0 < a < 2, one obtains leptokurtic densities with tails thickechemes like the one considered here [4].
than the Gaussian, but yet having all their moments finite,
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