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Noise-Boosted Backpropagation Learning of
Feedforward Threshold Neural Networks for

Function Approximation
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Abstract— Aiming to ensure the feasibility of the backpropa-
gation training of feedforward threshold neural networks, each
hidden unit layer is designed to be composed of a sufficiently
large number of hard-limiting activation functions that are
excited by mutually independent external noise components
and the weighted inputs simultaneously. The application of
noise to nondifferentiable activation functions enables a proper
definition of the gradients, and the injected noise is treated
as a network parameter that can be adaptively updated by
a stochastic gradient descent learning rule. This noise-boosted
backpropagation learning process is found to converge to a
nonzero optimized level of noise, indicating that the injected
noise is beneficial both for the learning and for the ensuing
retrieval phase. For minimizing the total error energy of the
function approximation in the designed threshold neural network,
the proposed noise-boosted backpropagation learning method is
proven to be better than directly injecting noise into network
inputs or weight coefficients. The Lipschitz continuous property
of the noise-smoothed activation function in the hidden unit
layer is demonstrated to guarantee the local convergence of the
learning process. Beyond the Gaussian injected noise, the optimal
noise type is also numerically solved for training the designed
threshold neural network. Test experiments for approximating
nonlinear functions and real-world datasets verify the feasibility
of this noise-boosted backpropagation algorithm in the threshold
neural network. These results not only extend the analysis of
the beneficial effects of noise similar to stochastic resonance
and exploited here to the universal approximation capabilities
of threshold neural networks, but also allow backpropagation
training of neural networks with a much wider family of
nondifferentiable activation functions.

Index Terms— Function approximation, noise injection, noise-
boosted backpropagation, optimal noise, stochastic resonance,
threshold neural network.
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I. INTRODUCTION

NOISE injection [1]–[3], as a regularization method for
avoiding overfitting, has been extensively investigated

for improving the generalization performance of a neural
network by artificially adding noise to input data, weights,
the desired signal or gradients during the backpropagation
training [4]–[8]. By adding noise, only to the activation func-
tion in its hard-saturated regimes, it is found [9], [10] that the
training of neural networks becomes possible and easier to
optimize for a wider family of activation functions, yielding
the state-of-the-art competitive results on different datasets
and tasks. Interestingly, the noise injection also results in
lower training loss for very deep networks [10]–[18], and
the dropout or dropconnect technique can be also viewed as
injecting Bernoulli noise into the nodes and hidden layers of a
deep neural network during training [14], [19]. The injection
of noise in neural networks becomes a focused problem in
the research of exploiting the benefit of noise for machine
learning.

For information-network technologies, constraints on
cost, power consumption, or bandwidth limitations render
very attractive low-complexity sensors or devices such as
low-resolution quantizers [7]–[9], [20]–[22], [25]–[27]. Using
large numbers of such low-complexity devices is useful to
increase the robustness of sensor networks or the lifetime
of monitoring systems [7], [20]–[24]. Accordingly, activation
functions with hard-limiting input–output characteristics
stand as an appealing choice for implementing neural
networks in digital hardware [7], [9], [20]–[22]. However,
the conventional backpropagation algorithm [28] cannot be
used in such networks, because the gradients of the objective
function with respect to the network parameters are often
undefined due to the nondiffentiability of the activation
function [7], [9], [26]. Thus, noise injection has become a
useful alternative strategy in updating the weights of such
threshold neural networks [7], [9], [26].

It is interesting to notice that the benefits of injecting noise
whilst training threshold neural networks can be viewed as a
type of stochastic resonance effect [29]–[31], because there is
also a nonzero amount of noise for improving the performance
of nonlinear systems (in this case, threshold neural networks).
Actually, the suprathreshold stochastic resonance model of a
parallel array of McCulloch–Pitts neurons can be viewed as a
feedforward neural network with only one hidden layer [23],
[32]–[36]. A series of studies by Kosko et al. [13], [31],
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[37]–[40] demonstrated that the backpropagation algorithm
can be viewed as a special case of generalized Expectation–
Maximization, and the injection of carefully chosen noise
can speed convergence of backpropagation training with suf-
ficient guaranteed conditions. Recently, Ikemoto et al. [26]
established a stochastic resonance based feedforward threshold
neural network, as shown in Fig. 1, whose hidden units consist
of a number of threshold neurons. For a sufficiently large num-
ber of threshold neurons, these hidden units asymptotically
converge to a smooth input–output characteristic obtained as
the statistical mean of the threshold neuron with respect to the
noise probability function density (PDF) [26], [41], [42]. This
architectural feature indicated in Fig. 1 ensures the feasibility
of the proposed backpropagation training of threshold neural
networks in the framework of stochastic resonance.

However, in these noise-aided neural networks with
hard-limiting activation functions, the appropriate amount of
injected noise is manually configured, and not “intelligently”
or adaptively learned [9], [10], [14], [26], [32]–[35]. More
recently, we investigated the threshold neural networks for data
classification and handwritten digit recognition by adaptively
optimizing the injected Gaussian noise level during the learn-
ing process [41].

In this direction, this article will now focus on the univer-
sal approximation capabilities of threshold neural networks
assisted by the optimized amount of injected noise for non-
linear functions and real-world multivariate datasets. We first
theoretically prove that, in the sense of a convex loss function
of total error energy, the method of injecting artificial noise
into the hidden layer is never worse than adding noise into
inputs or weight coefficients [1]–[3], [18] and it might even
outperform it. Then, we regard the injected noise as a learnable
network parameter as well as the connected weights, and
propose the online noise-boosted backpropagation learning
algorithm for adaptively adjusting the network parameters by
the stochastic gradient descent learning rule. In the training
process for supervised learning, the gradient descent learn-
ing rule of network parameters is continued until the last
training data are accounted for. This constitutes one epoch of
training neural networks. Then, the updated weights and the
adjusted noise level in the previous epoch are treated as the
initial network parameters for the next epoch, and the adjust-
ments to weights and noise are made on an epoch-by-epoch
basis.

After a certain number of learning epochs, the trained
weights and the converged noise level are recorded and
employed to establish the trained threshold neural network,
whose hidden units are with a finite (but large) number
of hard-limiting activation functions in practice. The weak
convergence of the learning process is proven based on the
Lipschitz continuous property of the noise-smoothed activation
function in the hidden layer. Moreover, beside the Gaussian
injected noise, the optimal noise type is also numerically
solved by the kernel function method for training the threshold
neural network. Experimental tests in approximating nonlinear
functions and multivariate regression of real-world bench-
mark datasets are conducted with the trained threshold neural
network. The obtained results show the applicability of the

Fig. 1. Block diagram representation of the constructed feedforward threshold
neural network with the noise injection in the hidden layer.

proposed noise-boosted backpropagation learning algorithm
and the enhanced threshold neural network performance it
entails.

II. THRESHOLD NEURAL NETWORK AND NOISE-BOOSTED

BACKPROPAGATION LEARNING ALGORITHM

Consider a three-layer feedforward neural network
(N × K × M) with the N × 1 input vector x and the M × 1
target output vector s, as shown in Fig. 1. The hidden layer
and the output layer have K and M neurons, respectively.
The K × N weight matrix W connects the hidden neurons to
the input vector x, and the M × K weight matrix U connects
the output layer to the hidden one. The M × 1 output vector
y is given by

y = ψ(Uh) (1)

where h is the K × 1 output vector of the hidden layer and
ψ(·) is the activation function of the neurons in the output
layer. As shown in Fig. 1, the kth hidden unit

hk = 1

T

T∑
t=1

φ(vk + ηkt ) (2)

which consists of T activation functions φ(·) activated by the
same local field vk = [W](k)x but T mutually independent
noise variables ηkt with a common PDF fη(η) for t =
1, 2, . . . , T . Here, [W](k) denotes the kth row of the weight
matrix W . It is noted that, for a sufficiently large number T ,
the hidden unit hk converges to

h∞k = lim
T→∞

1

T

T∑
t=1

φ(vk + ηkt ) = Eη[φ(vk + η)] (3)

where the expectation operator Eη(·) =
∫ · fη(η)dη [26], [32],

[34], [35], [42].
Let {x(�), s(�)}L�=1 denote L examples of the training set

to train the network in a supervised learning manner. For
each input vector x(�), the error between the output ym(�)
of neuron m in the output layer and the mth element sm(�)
of the desired response vector s(�) is em(�) = sm(�)− ym(�).
Summing all errors contributed by all neurons in the output
layer, the instantaneous error energy of the whole network is
defined as

E(�) = 1

2

M∑
m=1

e2
m(�) =

1

2
‖s(�)− y(�)‖2 (4)
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Fig. 2. Plots of the threshold activation function in (7), the noise-smoothed
activation function h∞k in (8) with σ = 1, the hard-sigmoid activation function
in (15) and the sigmoid function in (16). Here, the threshold parameter
θk = 1.5.

where the factor 1/2 is introduced for deriving the gradients
compactly in the following. With L examples of the training
set, the total error energy or the empirical risk is computed as

Etot =
L∑
�=1

E(�) = 1

2

L∑
�=1

‖s(�)− y(�)‖2. (5)

Lemma 1: When the activation function ψ(x) in the output
layer is an affine function, the total error energy Etot of the
threshold neural network with noise-boosted hidden layer in
Fig. 1 is no more than that obtained by injecting noise into
input data or weights of the network.

Proof of Lemma 1 is given in Appendix A. Lemma 1
indicates that, compared with the approach of injecting noise
into input data or weight coefficients [1]–[3] for training
the threshold neural network, the benefit of the added noise
components indicated in Fig. 1 consists in potentially achiev-
ing a smaller total error energy. Another motivation for the
architectural structure of Fig. 1 will be demonstrated by the
feasibility of the backpropagation training of the noise-boosted
threshold neural networks as follows.

Without the noise injection, the common backpropagation
algorithm [19], [26], [31] is not applicable for training a
feedforward threshold neural network, because the threshold
function is nondifferentiable at the discontinuity points and
with zero gradients for the piecewise constants [16], [43].
However, due to the injection of noise, it is seen that the hidden
unit hk in (3) is effectively equivalent to a noise-smoothed
differentiable activation function h∞k that is a function of the
input data x, the weight vector [W](k) and the noise PDF
fη (including the noise level σ ). A special example of the
noise-smoothed threshold activation function h∞k is shown
in Fig. 2 and its gradients become accessible. Therefore,
we can adopt the backpropagation learning rule to minimize
the instantaneous error energy E(�) through applying the
gradient descent method, and treat the noise-level σ as a learn-
able network parameter. Defining the gradients ∂E(�)/∂W ,
∂E(�)/∂U and ∂E(�)/∂σ of the instantaneous error energy
E(�) with respect to weight matrices W , U and the noise-
level σ , the update rule for the �th training example can be
expressed as

	(�) = 	(�− 1)− α∂E(�)
∂	

∣∣∣
	=	(�−1)

(6)

where the network parameter 	 ∈ {U,W, σ }, 	(0) denotes
the initial values and the learning rate α > 0.

The update procedure of (6) is carried on example-by-
example, from the first training example {x(0), s(0)} to the last
one {x(L), s(L)}, which constitutes the epoch p of training
over the whole training set. Then, the adjustments to the
network parameters are continued on an epoch-by-epoch. For
clarity, the proposed noise-boosted backpropagation learning
for the designed threshold neural network in Fig. 1 is presented
in the Algorithm 1.

Algorithm 1 Noise-Boosted Backpropagation Learning

Input: {x(�), s(�)}L�=1, W (0), U(0), σ(0), P, α.
Output: 	(L) ∈ {[U]mk , [W ]kn, σ }.
for training epoch p = 1→ P do

Etot ← 0;
for training example � = 1→ L do

Feedforward procedure:
vk(�)← [W ](k)(�− 1)x(�);
h∞k (�)← Eη[φ(vk(�)+ η)];
ym(�)← ψ{[U](m)(�− 1)h(�)};
em(�)← sm(�)− ym(�);
E(�)← 1

2

∑M
m=1 e2

m(�);
Etot ← Etot + E(�);
Backpropagation procedure:

	(�)← 	(�− 1)− α ∂E(�)
∂	

∣∣∣
	=	(�−1)

;

end
	(0)← 	(L).

end

III. RESULTS OF THRESHOLD NEURAL NETWORKS

WITH NOISE INJECTION

A. Threshold Neuron

We first consider the hidden unit hk consisting of the thresh-
old activation function [32], [34], or the McCulloch–Pitts
neuron [44], as

φ(u) =
{

1, u ≥ θk

0, u < θk
(7)

where θk is the threshold parameter and also assumed
to be learnable. The mutually independent noise compo-
nents ηkt injected into the hidden units hk are assumed
to be with the common Gaussian PDF fη(x) =
exp(−x2/2σ 2)/(2πσ 2)1/2 and the same noise level σ . The
activation function in the output layer is taken as the linear
transformation ψ(x) = x .

With the noise-smoothed activation function of (7) and the
injected Gaussian noise, we can express the hidden unit h∞k
as

h∞k = Eη[φ(vk + η)] =
∫ ∞(

θk−vk
σ

) 1√
2π

exp
(
− x2

2

)
dx (8)

and deduce the gradients ∂E(�)/∂	 in Appendix B for the
network parameter 	 ∈ {U,W, σ }.

Lemma 2: For the designed threshold neural
network with the hidden units h∞k of (8), the
noise-boosted backpropagation Algorithm 1 is weakly
convergent.
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Fig. 3. Learning curves of (a) rms error (2Etot)
1/2/� (blue solid line) and

(b) injected Gaussian noise-level σ/� versus the number of epochs by the
noise-boosted backpropagation Algorithm 1 for the unidimensional function
in (9). Here, the maximum difference of the function in (9) is � = 3.005
in the interval [−2, 2]. The red dashed line represents the learning curve of
(2Etot)

1/2/� with the optimal injected noise obtained by the PDF f ∗η (η) of
(12) in Section III-C.

It is then proven in Appendix C that the gradients are
Lipschitz continuous in the definition domain of −∞ <
t < ∞ and σ ≥ 0, and the noise-boosted backpropagation
Algorithm 1 is weakly convergent. Thus, Lemma 2 holds.
Therefore, we can find a local optimum solution of the noise
level in the training procedure of threshold neural networks
by the Algorithm 1, and when the convergence is obtained at
a noise level σ > 0, the beneficial role of injected Gaussian
noise will be manifested.

First, we investigate the approximation capability of the con-
structed feedforward network for some benchmark nonlinear
functions. The training set {x(�), s(�)}L�=1 is generated from
an unidimensional function

f (x) = sin(2x)+ 2 exp(−10x2). (9)

Here, the length of data is L = 41, input examples x(�)
are generated equally spaced in the interval [−2, 2] and
the corresponding function values s(�) = f [x(�)] are also
recorded for � = 1, 2, . . . , L. Then, a feedforward neural
network (N × K × M) with N = 1 input neuron, K = 50
hidden units hk , and M = 1 output neuron is trained to fit the
training set {x(�), s(�)}L�=1 sampled from the target function
of (9). Here, the learning rate takes α = 0.01, the initial noise-
level σ(0) = 1, and the initial weight vectors W(0) and U(0)
are uniformly distributed in the interval [−1, 1].

Using the proposed noise-boosted backpropagation
Algorithm 1, the learning curves of the total error energy
Etot and the noise-level σ can be obtained as a function of

Fig. 4. (a) Surface and (b) corresponding contour of the rms error
(2Etot)

1/2/� as a function of the element [W ]31 of the weight matrix W
and the noise-level σ/� with respect to the unidimensional function in (9).
The learning curve of (2Etot)

1/2/� (red triangle trajectory) versus [W ]31 and
σ/� is also plotted. The other parameters are the same as shown in Fig. 3.

the number of epochs. Here, for reference, the maximum
difference � of the target function in the interval [a, b] is
defined as

� = max f (x)−min f (x) ∀x ∈ [a, b]. (10)

For the unidimensional target function in (9) in the interval
[−2, 2], the maximum difference � = 3.005. Then, the root-
mean-square (rms) error (2Etot)

1/2/� (blue solid line) and
the noise-level σ/� are plotted as a function of the number
of epochs in Fig. 3(a) and (b), respectively. It is shown in
Fig. 3(a) that, upon increasing the epoch number, the rms
error (2Etot)

1/2/� first greatly decreases and then reaches
convergence effectively. For instance, (2Etot)

1/2/� ≤ 10−1

after about 45 epochs of training. In addition, it is also
observed in Fig. 3(b) that, after 200 epochs of training, the
noise-level σ/� (∗) also converges to 0.054, which clearly
indicates a (local) optimized nonzero Gaussian noise being
necessary to achieve the best performance Etot of the trained
threshold neural network. However, the noise-level σ/� does
not stay at the local optimized point 0.054 and experiences
a slight increase as the training epoch number increases,
as shown in Fig. 3(b). The reason causing this result can
be explained in Fig. 4: the total error energy Etot is not a
strictly convex function of the noise level and the weight
coefficients (for simplicity, only illustrating the element [W]31

of the weight matrix W), and the learning curve of the rms
error (2Etot)

1/2/�moves slowly in the flat bottom of the valley.
Next, we validate whether the converged noise level σ/� =

0.054 in the above training experiment is consistent with
the optimized one that corresponds to the minimum total
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Fig. 5. RMS error (2Etot)
1/2/� of the total error energy Etot as a function of

noise-level σ/� for the target function in (9). Here, each point of (2Etot)
1/2/�

is obtained by fixing noise-level σ/� but training other network parameters
with the backpropagation learning rule. The other parameters are the same as
shown in Fig. 2.

Fig. 6. RMS error (2Etot)
1/2/� for 103 testing points of the target

unidimensional function of (9) versus the number T of threshold elements.
Here, 102 trials are realized for each point of experimental results, and other
parameters are the same as shown in Fig. 3.

error energy obtained by the conventional stochastic resonance
method. By fixing the noise-level σ , the weight matrices W ,
U and the threshold θk of the feedforward neural network
are trained for 5000 epochs by the backpropagation learning
rule. Then, the resonance curve of the rms error (2Etot)

1/2/�
of the total error energy Etot is illustrated as a function of
the noise level σ/� in Fig. 5. It is seen in Fig. 5 that the
optimized noise-level σ/� (�) corresponding to the lowest
(2Etot)

1/2/� agrees well with the converged value of 0.054
shown in Fig. 3(b). This fact also demonstrates the validity and
practicability of the proposed noise-boosted backpropagation
learning algorithm to adaptively optimize the noise level as
part of the learning process of function approximations.

After 5000 times of training epochs, the trained network
parameters W , U , θk and the converged noise-level σ define
the designed threshold neural network. However, it is noted
that the hidden unit h∞k in (3) is a limit expression that
would be obtained with threshold neurons activated by an
infinite number of mutually independent noise components,
which is impossible to implement in practice. Therefore, in the
test experiments, the hidden unit hk is composed of a finite
number T of threshold activation functions in (7), which are
activated by mutually independent noise components with the
same converged noise-level σ . For 103 test input data x(�)
equally spaced in the interval [−2, 2], we simulate the trained
threshold neural network for 102 times. For each trail, the
K × T mutually independent noise components are randomly

Fig. 7. Approximation (red dashed line) of the target function of (9) obtained
by the trained feedforward neural network for 103 testing points. The L = 41
training data (∗) and the target function (blue solid line) of (9) are also plotted.
Other parameters are the same as shown in Fig. 3.

generated and injected into the hidden units hk in (2) for
k = 1, 2, . . . , K . Then, we average the outputs of the network
as the approximated function for testing the target function
of (9). For different numbers T of threshold elements, the
rms error (2Etot)

1/2/�, as shown in Fig. 6, are experimentally
obtained for 102 trials. It is seen in Fig. 6 that, for a sufficiently
large number T = 104 of the threshold elements, the rms
error (2Etot)

1/2/� has a relatively small statistical mean value
0.0316. Then, using the T = 104 threshold elements in each
hidden units in the testing phase, the outputs (red dashed line)
of the proposed threshold network are presented in Fig. 7. For
comparison, the target function of (9) (blue line covered by
the network outputs) and the L = 41 training data (∗) are also
plotted in Fig. 7. It is seen in Fig. 7 that the trained threshold
neural network assisted by the addition of noise performs
well on the test for approximating the target unidimensional
function of (9).

We also test a benchmark 2-D function [26]

f (x1, x2) = max{e−10x2
1 , e−50x2

2 , 1.25e−5(x2
1+x2

2 )}. (11)

The designed threshold neural network is with the layer size
of N × K × M = 2 × 100 × 1. The L = 11 × 11 training
set contains the data x(�) = [x1(�), x2(�)]� that are equally
spaced in the range [−1, 1] × [−1, 1] and the corresponding
function values s(�) = f [x1(�), x2(�)] of (11). Here, for the
target function in (11), the maximum difference � = 1.2499
in the range [−1, 1] × [−1, 1]. Using the proposed back-
propagation learning Algorithm 1, the rms error (2Etot)

1/2/�
is obtained as (2Etot)

1/2/� = 0.1864 and the converged
noise-level σ/� = 0.0258 after training 2 × 104 epochs,
as shown in Fig. 8(a) (blue solid line) and (b), respectively.
The approximation (patched surface) of the trained neural
network and the training data () are illustrated in Fig. 9(a),
and the relative error |y(x1, x2) − f (x1, x2)|/� between the
neural network outputs y(x1, x2) and the training function
f (x1, x2) is plotted in Fig. 9(b). The maximum relative error
max |y(x1, x2) − f (x1, x2)|/� = 0.0450. For L = 21 × 21
testing data equally spaced in the range [−1, 1] × [−1, 1], the
rms error (2Etot)

1/2/� is given by (2Etot)
1/2/� = 2.0625 and

the maximum relative error max |y(x1, x2) − f (x1, x2)|/� =
0.5067.
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Fig. 8. Learning curves of (a) rms error (2Etot)
1/2/� by injecting the

Gaussian noise (blue solid line) and the optimal noise (red dashed line)
with the PDF f̃ ∗η of (12) in Section III-C. (b) Gaussian noise level σ/� in
(12) versus the number of epochs. Here, the noise-boosted backpropagation
Algorithm 1 is applied to the threshold neural network for approximating
the 2-D function in (11). The maximum difference of the function in (11) is
� = 1.2499 in the interval [−1, 1] × [−1, 1].

Fig. 9. (a) Outputs y(x1, x2) of the trained neural network as the approxi-
mation (patched surface) to the training data () of the 2-D function f (x1, x2)
in (11) in the range [−1, 1] × [−1, 1]. (b) Corresponding relative error
|y(x1, x2)− f (x1, x2)|/� between the neural network output and the testing
data.

B. Validation of the Threshold Neural Network on the
Real-World Dataset

Furthermore, we validate the proposed backpropagation
learning Algorithm 1 on five real-world datasets [45]–[48]
in the designed feedforward threshold neural network. The
N × K × 1 (K = 5, 20, and 30) three-layer network is
trained by the real-world N-dimensional datasets of Auto
MPG (N = 7) [45], Housing (N = 13) [46], Airfoil noise
(N = 5) [45], Wine quality (N = 11) [47], and QSAR fish
toxicity (N = 6) [48] in a computer equipped with CPU of

TABLE I

COMPARISON OF TESTING RESULTS OF (2Etot)
1/2/� OF THE

NOISE-BOOSTED THRESHOLD NEURAL NETWORK AND THE ONE

WITH THE SIGMOID ACTIVATION FUNCTION

TABLE II

COMPARISON OF THE CONVERGENCE TIME OF TRAINING THE

NOISE-BOOSTED THRESHOLD NEURAL NETWORK AND THE

NETWORK WITH THE SIGMOID ACTIVATION FUNCTION
FOR ATTAINING THE SAME VALUE OF THE RMS ERROR

(2Etot)
1/2/� (UNIT: SECOND)

Intel Core i7-7820HK at 2.90 GHz and 32G RAM DDR4
at 2400 MHz. Here, the datasets contain 198, 253, 300, 980,
and 908 examples, respectively. Using the two-eight rule, 80%
of data are used for training, while 20% of data are employed
to test the trained threshold neural network.

Table I reports the test results of the rms error (2Etot)
1/2/�

of the noise-boosted neural network with the threshold acti-
vation function. For comparison, the classical neural network
with the smooth sigmoid activation function of (16) is also
tested, and the corresponding rms error (2Etot)

1/2/� is pre-
sented in Table I. It is interesting to note in Table I that, for
testing five real-world datasets, the proposed threshold neural
network can predict the test data with a smaller rms error
(2Etot)

1/2/� than the neural network with the smooth sigmoid
activation function does. This demonstrates the superiority of
the proposed backpropagation learning method in the threshold
neural network for solving the practical multivariate regression
problem. Of course, the apparent cost of employing the
noise-boosted threshold neural network is the demand of more
memory storage for storing the mutually independent K T
noise samples and requiring more addition and XOR operations
in the testing phase. For instance, when the number T in
K = 30 hidden units of the threshold neural network takes
104, the memory storage of the noise samples occupies about
2-Mb memory in the computer RAM.

In Table II, we also compare convergence times of training
both the noise-boosted threshold neural network and the
network with the sigmoid activation function to attain the
same level of the rms error (2Etot)

1/2/� of a given dataset.
Although the noise-boosted threshold neural network has extra
parameters of noise-level σ and threshold θ to be learned,
it is shown in Table II that the convergence time of training
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Fig. 10. Approximated optimal noise PDF f ∗η (η) for the threshold neural
networks with respect to the unidimensional function in (9) (blue dashed line)
and the 2-D function in (11) (red solid line). The kernel function number
J = 4. Other parameters are the same as shown in Figs. 3(a) and 8(a).

the noise-boosted threshold neural network is lower than that
of the network with the sigmoid activation function in most
cases. The reason is that the designed neural network with
its size N × K × 1 (K ≤ 30) is actually not deep, and the
extra network parameters have low memory requirement in the
training phase. The introduction of the learnable parameters
of noise level σ and threshold θ leads to a more powerful
learning capacity of the noise-boosted threshold neural net-
work. Therefore, for reaching the same value of the rms error
(2Etot)

1/2/� = 0.009, 0.012, 0.017, 0.017 and 0.01 for five
real-world datasets respectively, Table II demonstrates another
superiority of the noise-boosted threshold neural network in
the convergence time of training phase.

C. Optimal Noise Type for Threshold Neural Networks

In the above-mentioned experiments, only the Gaussian
noise injected into the feedforward threshold neural network
is taken into account. It is natural to consider the injection
of other noise types into the network and find the optimal
injected noise type to achieve the minimum total error energy
Etot with respect to the noise PDF fη(η). However, it is
usually analytically intractable to obtain the optimal noise PDF
f opt
η (η) [35], [42]. Usually, a kernel method with the form

as [35], [42]

f ∗η (η) =
J∑

j=1

λ j g
(
η,μ j , σ j

)
(12)

is employed to approximate the optimal noise PDF f opt
η (η),

where the normalization coefficients λ j ≥ 0 satisfy the
constraint

∑J
j=1 λ j = 1, and the Gaussian kernel function

g
(
η,μ j , σ j

) = exp[−(η−μ j)
2/2σ 2

j ]/(2πσ 2
j )

1/2 is with mean
μ j and standard deviation σ j ≥ 0 for j = 1, 2, . . . , J . With
this approximate PDF of (12), the outputs of the hidden units
in (3) can be reexpressed as

h∞k = Eη[φ(vk + η)] =
J∑

j=1

λ j Eg[φ(vk + η)] (13)

where the expectation operator Eg(·) =
∫ · g

(
η,μ j , σ j

)
dη.

Therefore, for a given kernel function number J > 1, the
minimization problem of the total error energy Etot with respect
to the optimal noise can be simplified as a finite-dimensional

constrained optimization

min{λ j ,μ j ,σk }
Etot

s.t. λ j ≥ 0,
J∑

j=1

λ j = 1, σ j ≥ 0 (14)

with respect to parameters λ j , μ j and σ j for j = 1, 2, . . . , J .
Under such circumstances, the training procedure of (6)
updates the weight matrices W and U by the gradients
∂E(�)/∂W and ∂E(�)/∂U , but searches the approximate
optimal PDF f ∗η (η) of (12) by the sequential quadratic
programming (SQP) method [35], [42], [49], which can resort
to the existing commercial software package of constrained
nonlinear optimization [53]. At each iteration of a quadratic
programming subproblem, an approximation is made of the
Hessian of the Lagrangian function using a quasi-Newton
(BFGS) updating method [49]. Then, in the proposed
backpropagation Algorithm 1, the Gaussian noise needs to
be replaced by the updating procedure of the PDF f ∗η (η),
while the learning rules of the weight matrices still keep
updating by their corresponding gradients. For clarity, the
optimal noise-boosted backpropagation learning is described
in Algorithm 2. Moreover, it is seen that the hidden unit in
(13) is a linear combination of the expectations Eg[φ(vk+η)],
therefore the Lemma 2 holds and the optimal noise-boosted
backpropagation Algorithm 2 with online searching the
optimal noise type is still weakly convergent.

Algorithm 2 Optimal Noise-Boosted Backpropagation
Learning

Input: {x(�), s(�)}L�=1, W (0), U(0), λ j (0), μ j (0), σ j (0), P, α.
Output: 	(L) ∈ {[U]mk , [W ]kn}, f ∗η (η).
for training epoch p = 1→ P do

Etot ← 0;
for training example � = 1→ L do

Feedforward procedure:
vk(�)← [W ](k)(�− 1)x(�);
h∞k (�)←

∑J
j=1 λ j Eg[φ(vk + η)];

ym(�)← ψ{[U](m)(�− 1)h(�)};
em(�)← sm(�)− ym(�);
E(�)← 1

2

∑M
m=1 e2

m(�);Etot ← Etot + E(�);
Backpropagation procedure:
	(�)←	(�− 1)−α ∂E(�)

∂	

∣∣∣
	=	(�−1)

;

{λ j (�), μ j (�), σ j (�)} ← SQP method;
end
	(0)← 	(L).

end

Using this optimal noise-boosted backpropagation learning
rule in Algorithm 2, the learning curves of the rms error
(2Etot)

1/2/� for the unidimensional function in (9) and the
2-D function in (11) are shown in Figs. 3(a) and 8(a) (red
dashed lines), respectively. It is seen in Figs. 3(a) and 8(a)
that the trained threshold neural network with the optimized
noise indicated by the PDF f ∗η (η) can outperform that with
the injected Gaussian noise. The finally obtained noise PDFs
f ∗η (η) after the training procedure are also shown in Fig. 10.
According to the optimized noise PDF f ∗η (η), we generate
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Fig. 11. Outputs of the trained threshold neural network as the approximation
(patched surface) to the 21 × 21 testing data () of the 2-D function f (x1, x2)
in (11) in the range [−1, 1] × [−1, 1]. The number of threshold activation
functions in each hidden unit is T = 104 and other parameters are the same
as shown in Fig. 9.

T = 104 samples of the noise using the slice-sampling
method [50] and inject them into each hidden unit of the
threshold networks for testing data. For instance, the approxi-
mation (patched surface) of the trained neural network and the
21 × 21 testing data () of the 2-D function in (11) are illus-
trated in Fig. 11 in the range of (x1, x2) ∈ [−1, 1] × [−1, 1].
The rms error (2Etot)

1/2/� = 0.6254 and the maximum rela-
tive error max |y(x1, x2)− f (x1, x2)|/� = 0.2048. Compared
with the results of (2Etot)

1/2/� = 2.0625 and the maximum
relative error max |y(x1, x2) − f (x1, x2)|/� = 0.5067 by
injecting Gaussian noise, the trained feedforward neural net-
work with the optimized noise performs well on the test data.
There are also some distinct differences between the network
outputs and the testing points of the 2-D function in (11), and
the reason lies in the finite number J of the kernel function
in (12). It is known that, as the number of kernel functions
J increases, the approximate optimal noise PDF f ∗η (η) can
converge to the optimal one f opt

η (η) if it exists [42], [49].
However, the acceleration of the training procedure is an open
problem for the application of the noise-boosted backpropa-
gation learning algorithm to the threshold neural network, and
further studies of the optimal-injected noise type are being car-
ried out for function approximation and pattern classification.

D. Hard-Sigmoid and Sigmoid Thresholds

Next, it is interesting to investigate whether the proposed
algorithm is applicable to other activation functions or not.
Here, we consider a kind of piecewise linear functions named
as the hard-sigmoid [9]

φ(u) =

⎧⎪⎨⎪⎩
1, u > θ̄k

0.25(u − θk)+ 0.5, θ k ≤ u ≤ θ̄k

0, u < θ k

(15)

and a frequently-used sigmoid activation function defined as

φ(u) = [1+ e−(x−θk )]−1 (16)

where the threshold parameters are θk , θ̄k = θk + 2 and θ k =
θk − 2 [1]–[3], [9]. For a special threshold value θk = 1.5,
the input–output characteristics of the hard-sigmoid function

Fig. 12. Learning curves of the noise-level σ/� versus the number of
epochs for the noise-boosted backpropagation algorithm with respect to the
unidimensional function in (9). Here, hidden units hk of the feedforward
neural networks (1 × 50 × 1) are composed of the hard-sigmoid function
in (15) and the sigmoid function in (16), respectively. The other parameters
are the same as in Fig. 3.

in (15) and the sigmoid function in (16) are illustrated in
Fig. 2.

In Appendix B, the partial derivatives of the instantaneous
error energy E(�) with respect to network parameter 	 ∈
{W,U, θk, σ } are derived. Using the Algorithm 1, we train the
feedforward neural networks (N × K × M = 1 × 50 × 1)
with hidden units composed of the hard-sigmoid function
in (15) and the sigmoid function in (16), respectively. For
approximating the unidimensional function in (9), the learning
curves of the noise level σ/� are plotted in Fig. 12. It is inter-
esting to note that the converged noise-level σ/� = 0.0677
is not zero, and the injection of noise improves training the
feedforward neural networks composed of the hard-sigmoid
function in (15). However, it is seen in Fig. 12 that the injec-
tion of noise is unnecessary for the neural networks composed
of the sigmoid function in (16). The reason is that the sigmoid
function in (16) is continuous and has no constant parts, and
then the gradient of the total error energy with respect to the
network parameters is always accessible and nonzero for the
backpropagation learning. However, the feedforward network
with the zero-gradient activation function, e.g. (7) and (15),
could benefit from the noise injection into the hidden layer
for approximating function approximation via the proposed
backpropagation learning.

IV. CONCLUSION

In this article, an online backpropagation learning algorithm
enhanced with the injection of noise is proposed for training
the feedforward threshold neural network. When the activation
function has hard-limiting input–output characteristics, the
conventional gradient-based backpropagation learning proce-
dure meets the difficulty of zero or undefined gradients but is
inapplicable in practice. The proposed backpropagation learn-
ing algorithm complements the conventional one by injecting
mutually independent noise components into a sufficiently
large number of activation functions. Due to the noise injec-
tion, the hidden unit in the hidden layer of networks can be
viewed as a noise-smoothed function, and the loss function
with respect to the network parameter becomes continuously
differentiable, with a nonvanishing gradient everywhere that
can be used for efficient backpropagation training.
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Fig. 13. Examples of (a) input handwritten image and (b) output image of
the autoencoder with size of (784 × 256 × 64 × 10) × (64 × 256 × 784).
(c) Generated image of the decoder part of the autoencoder by feeding a
deviated low-dimensional vector into the code layer.

A key feature of the proposed noise-boosted backpropaga-
tion learning algorithm is that the noise level or the noise PDF,
as well as other network parameters, are learnable and updated
by the gradient-based rule. An essential observation is that the
learning process is generally found to converge to a nonzero
optimized level of noise, indicating that the nonzero optimized
noise has a beneficial effect, both in the learning but also in the
retrieval phase of the neural network. With the trained weights
and the converged nonzero noise level or the approximated
optimal noise PDF, experimental results show the applicability
of the designed noise-boosted backpropagation algorithm for
approximating nonlinear functions and practical multivariate
regression of real-world dataset by the trained threshold neural
networks operated with the injection of mutually independent
noise components in hidden layers.

This proposed noise-boosted backpropagation learning algo-
rithm benefits from the noise in the hidden layer to allow
the training of neural networks with a much wider family
of activation functions that are nondifferentiable or with
zero derivatives. However, some open questions remain. For
instance, the numerical computation of the gradient of the total
error energy with respect to model parameters is time consum-
ing, the convergence rate of the training procedure is rather
low, and the convergent noise-level sways and is not stable
(see learning curves in Figs. 3 and 8). Thus, some improved
learning rules, such as Adam [51] and Levenberg–Marquardt
method [49], can potentially be developed to accelerate the
training process of the studied neural networks in this article.
Although the optimal noise type is analyzed, a crucial problem
of the existence and uniqueness of the optimal injected noise
for the threshold neural networks remains to be solved.

In addition, the improvement of injecting noise into the
hidden layer on the generalization performance of the thresh-
old neural network is not studied for the inputs corrupted by
some preexisting noise. In the line with the argument of noise
injection equivalent to a smooth Tikhonov regularization [1] of
the total error energy, the noise injected into the hidden layer
of the threshold neural network is also expected to possibly
play a regularization role in constraining the network model
to be less sensitive to the noisy inputs.

Finally, the noise-boosted threshold neural network con-
sidered in this article has a shallow and simple size of
N × K × M . A natural question is whether the proposed
backpropagation learning algorithm can potentially be applied
to deeper neural networks, e.g. deep convolutional neural net-
works [13] and long-short-term memory (LSTM) networks [9],
[18], or not. Moreover, the learning manner of the proposed
neural network is based on the supervised learning principle.
To investigate the possibility of also operating this network in
an unsupervised manner, we here make a trial of the proposed

backpropagation learning algorithm in an autoencoder with a
deep size of (784 × 256 × 64) × 10 × (64 × 256 × 784).
Besides the first input layer with the linear activation function,
other layers are all composed of the noise-smoothed function
defined in (8). The fourth layer is the code layer, and the
784 × 256 × 64 × 10 network part performs the encoding
or compressing function of transforming the high-dimensional
784 × 1 vector into a low-dimensional 10 × 1 code vector,
and the decoder with the 10 × 64 × 256 × 784 network part
does the exact opposite of the compression for recovering the
low-dimensional data from the code layer [19]. The whole
(784 × 256 × 64) × 10 × (64 × 256 × 784) network is
called an autoencoder [19]. From the MNIST dataset [54]
without labels, each black-and-white 28 × 28 pixel hand-
written image is mapped into a 784 × 1 input vector x
for training the designed autoencoder via the unsupervised
learning method [19]. It is interesting to note that this deep
autoencoder with the noise-smoothed activation function can
learn well and yields the low-dimensional code as a tool to
reduce the dimensionality of data. For example, after 103

epochs of the unsupervised learning of 5 × 104 handwritten
images, an input handwritten image illustratively shown in
Fig. 13(a) is compressed by the encoder as a low-dimensional
vector [0.3366, 0.6974, 0.2757, 0.6797, 0, 0.4564, 0.2855, 0,
0.6105, 1.0]� at the code layer. By contrast, with this low-
dimensional vector, the decoder produces a visualization of
data in Fig.13(b). The unsupervised learning rule of mini-
mizing the cross-entropy error between the pixel intensities
of the original image and the reconstructed one [19] is also
generalized via the introduction of noise into deep autoencoder
networks.

To test the fast retrieval of the designed autoencoder,
a vector [0.3, 0.7, 0.3, 0.7, 0.1, 0.4, 0.3, 0.1, 0.6, 0.7]�, devi-
ating from the encoded vector with the 10◦ intersection
angle, is feed into the decoder part of the autoencoder, and
generates the reconstructed image as shown in Fig. 13(c). It is
seen in Fig. 13(a) and (c) that the generated image is very
similar to the original input one and clearly reestablishes the
handwritten numeral of 7, which effectively demonstrates the
generalization of the noise-boosted autoencoder. This exam-
ple also illustrates that the noise-boosted proposed threshold
neural network can be used in deeper architectures and with
unsupervised learning. Therefore, further investigations of the
noise-boosted backpropagation learning of feedforward thresh-
old neural networks can be extended in various directions.

APPENDIX A
PROOF OF LEMMA 1

Proof: When we inject noise ξ into the input x, the kth
hidden unit has the same local field vk = [W](k)(x + ξ ) and
the output hk =∑T

t=1 φ(vk)/T = φ(vk). In this circumstance,
the total error energy in (5) can be calculated as

Ẽtot = 1

2
Eξ

[
L∑
�=1

M∑
m=1

(
sm(�)− ym(�)

)2

]

=
L∑
�=1

1

2
Eξ

{∥∥∥s(�)−ψ
[
Uφ

(
W

(
x(�)+ξ (�)

))]∥∥∥2
}

(17)
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where ‖ · ‖ denotes the Euclidean norm of a vector x. For the
convex function ‖x‖2 and using the Jensen inequality, we find

Ẽtot ≥
L∑
�=1

1

2

∥∥∥s(�)−Eξ{ψ
[
Uφ

(
W

(
x(�)+ξ (�)

))]
}
∥∥∥2

=
L∑
�=1

1

2

∥∥∥s(�)−ψ
{

UEξ

[
φ
(

W x(�)+Wξ (�)
)]}∥∥∥2

=
L∑
�=1

1

2

∥∥∥s(�)−ψ
{

UEη

[
φ
(

W x(�)+η(�)
)]}∥∥∥2

=
L∑
�=1

1

2

∥∥∥s(�)−ψ{
Uh∞

}∥∥∥2 = Etot (18)

where the injected noise vector η(�) = Wξ (�) and the
output vector h∞ = [h∞1 , h∞2 , . . . , h∞K ]� of the hidden layer.
Moreover, the proof is the same for injecting noise into the
weight matrix W by replacing the injected noise vector with
η(�) = W x(�). Thus, the Lemma 1 holds.

APPENDIX B
PARTIAL DERIVATIVES IN (6)

The partial derivative of E(�) with the mth row and the
k-column element [U]mk of the weigh matrix U can be
calculated as

∂E(�)
∂[U]mk

= −em(�)
∂ym(�)

∂[U]mk
(19)

where [U]mk denotes the weight connecting the neuron m in
the output layer with the hidden unit h∞k . The partial derivative
of E(�) with the element [W]kn of the weigh matrix W is

∂E(�)
∂[W]kn

= −∂h∞k (�)
∂[W]kn

M∑
m=1

em(�)
∂ym(�)

∂h∞k (�)
(20)

where [W]kn denotes the weight connecting the hidden unit
h∞k with the nth element of the input vector x. Similarly, the
partial derivative of E(�) with respect to the noise-level σ can
be calculated as

∂E(�)
∂σ
= −

K∑
k=1

M∑
m=1

em(�)
∂ym(�)

∂h∞k (�)
∂h∞k (�)
∂σ

. (21)

When the activation function of the output layer is taken as
ψ(x) = x , we have the gradients

∂ym(�)

∂[U]mk
= h∞k (�),

∂ym(�)

∂h∞k (�)
= [U]mk . (22)

For the threshold activation function in (7), we can further
compute the gradients

∂h∞k
∂[W]kn

= xn√
2πσ

exp
[
− (θk − vk)

2

2σ 2

]
(23)

∂h∞k
∂θk
= − 1√

2πσ
exp

[
− (θk − vk)

2

2σ 2

]
(24)

∂h∞k
∂σ
= θk − vk√

2πσ 2
exp

[
− (θk − vk)

2

2σ 2

]
. (25)

Then, substituting (22)–(25) into (6), the learning rule can
be implemented.

For the hard-sigmoid activation function in (15), we can
express the hidden unit h∞k in (3) as

h∞k =
1

4
(vk − θ k)

[
F

(θ k − vk

σ

)
− F

(θ k − vk

σ

)]
+ σ

4
√

2π

[
exp

(
− (θk − vk)

2

2σ 2

)
− exp

(
− (θ k − vk)

2

2σ 2

)]
−F

(θ k − vk

σ

)
+ 1 (26)

where F(x) = ∫ x
−∞(1/((2π)

1/2))e−(η2/2)dη is the standardized
Gaussian cumulative distribution function. Then, the partial
derivatives of (26) with respect to the weight [W]kn , the
threshold parameter θk and noise-level σ become

∂h∞k
∂[W]kn

= xn

4

[
F

(θ k − vk

σ

)
− F

(θ k − vk

σ

)]
(27)

∂h∞k
∂θk
= −1

4

[
F

(θ k − vk

σ

)
− F

(θ k − vk

σ

)]
(28)

∂h∞k
∂σ
= 1

4
√

2π

[
exp

(
− (θk − vk)

2

2σ 2

)
−exp

(
− (θ k − vk)

2

2σ 2

)]
.

(29)

For the sigmoid function in (16), the hidden unit h∞k in
(3) is given by

h∞k =
1√

2πσ

∫ ∞
−∞

exp
[−η2/(2σ 2)]

1+ exp[−(vk − θk + η)]dη. (30)

The partial derivatives of (30) with respect to the weight
[W]kn , the threshold parameter θk and noise-0level σ can be
calculated as

∂h∞k
∂[W]kn

= xn√
2πσ

∫ ∞
−∞

exp
(
θk − vk − η − η2

2σ 2

)
[
1+ exp

(−(vk + η − θk)
)]2 dη (31)

∂h∞k
∂θk
= −1√

2πσ

∫ ∞
−∞

exp
(
θk − vk − η − η2

2σ 2

)
[
1+ exp

(−(vk + η − θk)
)]2 dη (32)

∂h∞k
∂σ
= 1− σ 2

√
2πσ 4

∫ ∞
−∞

(1+ η2) exp
(
− η2

2σ 2

)
1+ exp

(−(vk + η − θk)
)dη. (33)

If the noise level σ is zero, the hidden unit h∞k in (3)
reduces to the sigmoid function φ(vk) in (16). The partial
derivatives (16) with respect to [W]kn and the threshold
parameter θk become

∂φ(vk)

∂[W]kn
= φ(vk)[1− φ(vk)]xn (34)

∂φ(vk)

∂θk
= −φ(vk)[1− φ(vk)]. (35)

Substituting (27)–(35) into (19)–(21), the learning rule can
be implemented.

APPENDIX C
WEAK CONVERGENCE OF THE LEARNING RULE FOR

TRAINING THRESHOLD NEURAL NETWORKS

From (3) and letting t = θk−vk , it is noticed that the hidden
unit h∞k (t, σ ) is bounded within the range from 0 to 1, because



DUAN et al.: NOISE-BOOSTED BACKPROPAGATION LEARNING OF FEEDFORWARD THRESHOLD NEURAL NETWORKS 1010612

it equals one minus the cumulative distribution function of the
standardized Gaussian random variable. The partial derivatives
of h∞k (t, σ ) with respect to variables t and σ are given by

∂h∞k (t, σ )
∂ t

= 1√
2πσ

exp
(
− t2

2σ 2

)
(36)

∂h∞k (t, σ )
∂σ

= −t√
2πσ 2

exp
(
− t2

2σ 2

)
. (37)

Since exp(−t2/2σ 2) is infinitesimal of higher order than
t as t → ±∞, and the same for σ−2 as σ → 0 and
σ →∞, then ∂h∞k (t, σ )/∂ t and ∂h∞k (t, σ )/∂σ are uniformly
bounded for the domain of definition −∞ < t < ∞ and
0 � σ < ∞. Likewise, we can deduce the exact expressions
of the second-order partial derivatives of h∞k (t, σ ) with respect
to variables t and σ , and the tedious manipulation is not
included here for simplicity. Similarly, the second-order partial
derivatives can be also proven to be uniformly bounded in
the domain of definition. Therefore, the first-order partial
derivatives ∂h∞k (t, σ )/∂ t and ∂h∞k (t, σ )/∂σ are Lipschitz
continuous, which guarantees the convergence of the proposed
noise-boosted algorithm based on gradients [49], [52].

Furthermore, for the approximated optimal noise PDF in
(12), the hidden unit in (13) is a linear combination of the
expectations Eg[φ(vk+η)], therefore the partial derivatives of
h∞k (t, σ ) with respect to variables t and σ are also uniformly
bounded in the domain of definition. Thus, the modified
noise-boosted backpropagation Algorithm 2 of searching the
optimal noise type is still weakly convergent.
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