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Nonlinear transmission of trains of pulses enhanced by noise addition through stochastic reso-
nance is studied. First, an exact model is presented which describes stochastic resonance in the
transmission of a periodic train of pulses by a threshold system in the presence of arbitrarily
distributed white noise. Second, a simulation demonstrates a novel possibility of stochastic res-
onance in the neuron, in the nonlinear transmission of spike trains assisted by noise. Third, it
is shown that the exact model can provide a satisfactory approximation of stochastic resonance
in the neuron, as the reported effect is mainly sensitive to correlations at a dominant time scale
formed by the coherent period, and to the overall input signal amplitude relative to the thresh-
old of the nonlinearity. The present results enlarge the scope of the effect of noise-enhanced
transmission of signals through stochastic resonance, and also of the possible mechanisms for

neural information processing.

1. Introduction

Stochastic resonance is a nonlinear phenomenon
consisting of an enhancement of the transmission
of a periodic coherent signal by certain nonlinear
systems, that is obtained through an increase of
the noise applied to the system [Moss et al., 1993,
1994; Wiesenfeld & Moss, 1995]. This paradoxical
nonlinear effect has been reported in various phys-
ical systems including lasers [Vemuri & Roy, 1989],
electronic circuits [Fauve & Heslot, 1983; Gong
et al,, 1991; Anishchenko et al., 1992, 1994|, neu-
rons [Bulsara et al., 1991, 1993, 1994; Douglass
et al, 1993; Longtin, 1993; Longtin et al, 1994;
Jung, 1994; Wiesenfeld et al., 1994; Pei et al., 1995;
Chapeau-Blondeau et al., 1996a).

Theoretical analyses of stochastic resonance
have to cope with a nonlinear and nonstationary
context which usually hinders exact treatments. To
date, very few stochastically resonant systems are
known that are amenable to an exact description.

The available theoretical treatments developed for
stochastically resonant systems usually resort to
various approximations [McNamara & Wiesenfeld,
1989; Jung & Hanggi, 1991; Stocks et al., 1993;
Wiesenfeld et al, 1994; Gingl et al, 1995;
Gammaitoni, 1995a, 1995b]. A frequent one is that
of a slow and small periodic coherent signal. Also,
the hypothesis of a Gaussian noise is often crucial,
and the focus placed on a sinusoidal coherent in-
put. In contrast, we present here a simple non-
linear system which transmits a periodic train of
pulses as the coherent input, instead of a sinusoid.
Furthermore this system operates with white, but
arbitrarily distributed, noise, not restricted to the
Gaussian. We then show that this system exhibits
a stochastic resonance that lends itself to an exact
theoretical description. Especially, the treatment
offers an exact model in which the influence of the
noise distribution on the resonance can be directly
examined.
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An important embodiment of stochastically
resonant systems is the neuron. For the neuron,
stochastic resonance has been demonstrated in
both theoretical models [Bulsara et al., 1991, 1993,
1994; Longtin, 1993; Longtin et al, 1994; Jung,
1994; Wiesenfeld et al., 1994; Pei et al, 1995;
Collins et al.,, 1995] and experimental preparations
[Douglass et al., 1993; Levin & Miller, 1996]. These
studies consider the case of a neuron directly ex-
posed to the external world, what justifies the ap-
plication of a coherent input under the form of an
analog signal — most of the time a sinusoid. Be-
yond the case of analog stimuli from the external
world, it is known that most neurons process sig-
nals under the form of trains of pulses or spikes
(action potentials). The possibility of stochastic
resonance in the transmission of spike trains by
the neuron has been shown with a simulation in
[Chapeau-Blondeau et al., 1996a|, in the presence
of an external shot noise formed by an incoherent
spike train which superposes to the coherent spike
train. Further, we show here for the first time that
stochastic resonance in a spike train (not sinusoid)
transmission by the neuron, is also authorized in
the presence of an internal continuous noise which
originates in random channel gating in the neuron
membrane. These results enlarge the useful role
that can be assigned to neural noise in nonlinear
information transfer by neurons.

Finally we examine the ability of the exact the-
oretical model we propose here, to provide a de-
scription of the stochastic resonance we observe in
spike train transmission by the neuron.

2. An Exact Model of Stochastic
Resonance in a Threshold
System

Let s(t) be a periodic signal with period T. Let
n(t) be a stationary white noise, with complemen-
tary distribution function F.(u) = Pr{n(t) > u}.
In order to avoid difficulties attached to the ideal-
ized notion of a white noise, and also to have the
possibility of a direct numerical evaluation of every
relevant quantity, especially for the purpose of com-
parison with computer simulations, we choose to
define the present model in the context of discrete-
time signals. The time scale is thus discretized with
a step At < T, and such that T = NAt. Now in
practice, the white noise 7(t) need only be a noise
with a correlation length shorter than At.

The periodic signal s(t) is now given in the form
of a train of brief unit pulses described as

+o00
st=jAt)= > h{t—mT), (1)

m=—00

with m integer, and the discrete-time unit pulse
h(jAt) =1 if j = 0 and h(jAt) = 0 otherwise.

We consider a nonlinear system with threshold
6, which receives s(t) and 7n(t) as inputs, and pro-
duces unit pulses on its output y(¢) according to:

If s(jAt) +n(jAt) > 8 then y(jAL) =1;

y(jAt) =0. (2)

The present system can be categorized in the
class considered in [Chapeau-Blondeau, 1996b].
Specifically here, the signals s(¢) and y(t) are given
in the form of trains of pulses, so as to give way, in
the next section, to a neuronal interpretation.

We want to compute a statistical autocorrela-
tion function for the output signal y(¢). Since y only
assumes values 0 or 1, the expectation E[y(t)y(t —
7)), for fixed 7 # 0 and fixed ¢, can be expressed as
the probability:

Efy(t)y(t - 7)] = Pr{y(t) =1 and y(t — 7) = 1},
3)

else

which is also:

Ely(t)y(t—)]
=Pr{s(t)+n(t) >0 and s(t—7)+n(t—7)>06}.
(4)

Since s is a deterministic signal and 7 a white noise,
one can write

Ely@)y(t—m)|=Fc[0—s(t)|Fc[0-s(t—7)].  (5)
And for 7 =0, one has

Efy(t)y(t—7)|=Pr{y(t)=1}=F[0-s()].  (6)

Equations (5) and (6) can be combined into a single
expression for all 7 = kAt:

Ely(t)y(t — )] = {Felf — s(8)] = F2[0 — s(8)]}6(r)
+ F[0 — s(t)|Fel8 — s(t — 7],
(7)

with the discrete-time Dirac pulse d(kAt) = 1 if
k =0 and 6(kAt) = 0 otherwise.
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Both F.[6 — s(t)] and F.[0 — s(t — )] are peri-
odic in ¢ and 7 with period T. Because of the pe-
riodic coherent modulation introduced by s(t), the
random signal y(t) is nonstationary, yet it is cy-
clostationary with period T [Papoulis, 1991]. It is
possible to construct a “stationary” autocorrelation
function Ryy(7) for y(t) through a proper time av-
eraging of E[y(t)y(t — 7)] over an interval T, when
t, or t mod T, uniformly covers [0, T[. We then
define the “stationary” autocorrelation function of
the output as

(N-1)At

Ra(r=ks)=5 3 By@ue-r]. ®
t=l

Expressions (7) and (1) are used for an explicit
evaluation of the average in Eq. (8) which gives

Ryy(kAt) = Rod(kAY) + Ryy (KAL), (9)

with

1 N-1
RO = NFC(G—]-)[l_Fc(o—'l)]"'TFC(o)[I_FC(G)] 9

) (10)
and ~R‘,,,y(cht) is a periodic component which veri-
fies Ryy (7 = kAt) = Ryy(r + T), and

(= F2O-1+ 22 F20), ()

N

By (k38) = = F(9-1)E(0)

N-2
+TF3(6) for 0O<k<N. (12)

We now define the discrete Fourier transform of
Ry, over a time interval of an integer number 2M
of periods T', as

DFT[Ry, (kAt))
M%—l ke
= Ryy(kAt)exp(—iZw ), (13)
k= MN 2MN
what affords a frequency resolution Av = 1/
(2MNA).

The autocorrelation function Ry, of Eq. (9) is
formed by a pulse at the origin with magnitude Ry,
superposed to the periodic component R, with pe-
riod T. The Fourier transform of Ry, defines the
output power spectral density Py,, which will then

be formed by a constant background with magni-
tude Ry, superposed to a series of spectral lines at
integer multiples of 1/T". Application of Eq. (13) to
Eq. (9) then yields
n 2M
P, (;) = Ro+ —-[F(6 - 1)~ FOF. (14)
This type of form for the power spectral den-
sity, with sharp coherent spectral lines sitting on a
broad-band noise background, is typical for the out-
put of a stochastically resonant system. We choose
to define the signal-to-noise ratio, at frequency n/T
on the output, as the ratio of the power contained
in the spectral line alone to the power contained
in the background in a frequency band of 1/(NT)
around n/T. The corresponding expression of the
SNR then follows as

2
SNR <2> — [Fc(g - 1) - FC(o)] i
T Ry

This theoretical description makes it possible
to verify that many conditions lead to stochastic
resonance in the model. For illustration we consider
the case where 7(%) is a Gaussian noise of zero mean
and variance 02, and with = 1.2 and N = 100.
Figure 1 (solid line) then represents the variation
of the SNR of Eq. (15) as a function of the input
noise variance 0,27. The non-monotonic variation of

(15)

20 —
a0}
Z
C 15
Z
n
10r
5t
%% 0.1 02 0.3
noise variance
Fig. 1. Output SNR as a function of the variance of the noise

on the input of the threshold nonlinearity. The solid line is
the theoretical SNR from Eq. (15) of model 1. The four sets
of experimental points are obtained from a simulation of the
neuron model, with 7o = 1 ms, 7. = 3 ms and T = 300 ms,
and for: (X) Tm = 3 ms, (0) Tm = 10 ms, (+) 7 = 20 ms
and (*) 7, = 30 ms.
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the SNR which passes through a maximum with o2,
is a clear signature of stochastic resonance. With
the present model, we also observed that other noise
distributions lead to higher values of the exact SNR
of Eq. (15), for the same noise variance, but we shall
not go further, here, into the study of the influence
of the noise distribution on the resonance.

The exact treatment we have developed relies
_on the hypothesis of a white noise. If the noise has a
non-vanishing correlation time 7., this will translate
into a peak of width ~ 7. in the output autocorre-
lation function around the origin. Nevertheless, the
magnitude of this peak in 7 = 0 will be correctly
represented by Eq. (9), while its exact shape will
not be described by Eq. (9). The exact shape of
this peak of duration ~ 7, will start to manifest its
influence on the output power spectral density in
the frequency range of order 1/7.. The stochastic
resonance effect is sensitive to correlations that oc-
cur over a time scale of order T and that show up in
the frequency range 1/T. Consequently, if 7. is suf-
ficiently small compared to T, one can expect that
the stochastic resonance effect in the range 1/T will
‘be little affected by perturbations in the range 1/7..
Indeed, in the following we show that the present
theoretical model can provide a description for a
novel type of stochastic resonance in spike trans-
mission by a neuron with colored noise impinging
on its threshold nonlinearity.

3. Stochastic Resonance in
Neural Transmission of
Spike Signals

In neural signal transmission [Chapeau-Blondeau
& Chambet, 1995], a presynaptic action potential
or spike elicits the release of neurotransmitter mol-
ecules in the synaptic cleft. These molecules trig-
ger the gating of ion channels which translates into
electric conductance changes in the membrane of
the postsynaptic neuron. The ion channels, which
exist with high density in synaptic regions, are also
capable of spontaneous random gating independent
of neurotransmitter release. When both sources
of membrane conductance changes are present, the
electric potential above rest V(t) of the postsynap-
tic neuron is varied according to

Cn Y. = _ GV (£) + Ceoper(t) [Vier — V(1)

™ dt.
+ Gnoise(t)[vrev - V(t)] ’ (16)

where Cy, and G,, are respectively the capacitance
and conductance of the neuron membrane at rest,
Geoher(t) and Gpoise(t) are the membrane conduc-
tance variations induced respectively by presynap-
tic spikes and by spontaneous random channel gat-
ing. Viev is the reversal potential of the ions that
circulate through the gated channels; it is positive
(i.e. above the resting potential) for excitatory
channels, and negative (i.e. below the resting po-
tential) for inhibitory channels.

When the potential V' (t) governed by Eq. (16)
reaches the firing threshold Wiy, an output spike is
fired by the postsynaptic neuron and V(t) is reset
to zero.

For the purpose of studying stochastic reso-
nance in the neural transmission of spikes, Eq. (16)
is simplified into

av
Tm d_

- = =V +e(t) + (1),

(17)

with 7, = Cm/Gma e(t) = Vrechoher(t)/Gm and
€(t) = Vreanoise(t)/Gm-

To obtain Eq. (17), we have performed a lin-
earizing step which is frequently taken in neural
modeling [Koch & Segev, 1989; Chapeau-Blondeau
& Chambet, 1995], and in which Viey — V'(¢) is ap-
proximated simply by the constant Viey. One as-
sumes here that the excursion of V(t), which can
never exceed Vi;, = 20 mV above rest, remains suf-
ficiently far from the value of V;.y. For instance, for
typical excitatory channels one has Viey = 70 mV
above rest. This linearizing approximation intro-
duces a small distorsion in the dynamics of V(t),
but which we think is non-critical for the observa-
tion of stochastic resonance in the neuron response.

The signal e(t) = VieyGeoner(t)/Gm of Eq. (17)
reproduces the conductance changes, taken to be
of an excitatory type (Viev > 0), in response to
presynaptic spikes. A presynaptic spike is a brief
pulse of duration Tp ~ 1 ms. Neurotransmitter re-
lease and channel gating are fast processes, and as
a consequence, the conductance change Gcoher(t) in
response to a single presynaptic spike is also a brief
pulse of conductance which also lasts for a duration
~ Tp. For the observation of stochastic resonance,
the exact form of such a conductance pulse is not
critical. Accordingly, such a pulse is represented
here as Egsq(t), where Ej is a constant which fixes
the amplitude of the pulse, and sq(?) is a unit square
pulse of duration Tp, i.e. sq(t) =1 for 0 <t < Tp
and sq(t) = 0 otherwise. The coherent input e(t) is
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now assigned the following form:

= > Ewat-mI),  (19)

m=—00

with m integer, which represents the effect of a pe-
riodic train of presynaptic spikes with period T.

The Signal §(t) = Vreanoise(t)/Gm of Eq. (17)
reproduces the conductance changes induced by the
random gating of the channels. Because channel ki-
netics can be assumed to be fast compared to the
membrane potential dynamics governed by Eq. (17)
with time constant 7,,, then in this equation £(¢)
can be considered a white noise. Because the con-
ductance changes described by £(¢) involve the gat-
ing of a large number of independent channels, then
£(t) can be considered a Gaussian noise. £(t) is thus
taken to be a stationary Gaussian white noise whose
autocorrelation function is written as: (£(¢)¢(t —
7)) = 2D§(7). The mean of £(t) is taken to be zero,
and this can be obtained by assuming two pop-
ulations of random channels, one excitatory with
Viev > 0, one inhibitory with Vv < 0. Again,
these simple and plausible hypotheses concerning
the neural noise, are not critical for the observation
of stochastic resonance in the neuron response.

Equation (17) represents a first-order low-pass
linear filtering of the input e(t) +£(¢). The solution
of Eq. (17) can then be expressed analytically under
the form V() = ef(t) +&¢(t). The term e(¢) is the
filtered version of the input e(t):

es(t) = Eosqs(t —mT), (19)

with the exponential pulse sq;(t) which is the fil-
tered version of the square pulse sq(t):

sqg(t) = 1 — exp(—t/7m) for 0 <t < Ty,
sq(t) = [1 — exp(—To/7m)]
-exp[—(t — To)/m] fort>Tp. (20)

And the term {¢(t) is the filtered version of £(t):
It is a colored Gaussian noise with autocorrelation
function (¢f(t)és(t—7)) = D7,;} exp(—|7|/Tm), and
variance Dr;1.

To complete the description of signal transmis-
sion by the neuron, we complement Eq. (17) by
the specification that when the membrane poten-
tial V(t) = ef(t) + £#(t) exceeds the threshold V;p
then an output spike is emitted on the neuron out-
put S(t), and V(¢) is reset to zero:

If V(t) = es(t) +&5(t) > Vin

then S(t) = 6(t' - t),
(21)
V(t) « 0 frozen during T ;

else S(t) =0.

After the emission of a spike, V remains frozen at
zero during a refractory period T, after which the
evolution of V resumes according to Eq. (17).

The neuron model of Egs. (17)-(21) has been
numerically simulated, with a Euler discretization
of the equations, with a time step much smaller than
the relevant time constants 7,,, 7o and T,. When
the coherent signal ef(t) remains below the firing
threshold Vin, addition of the noise £5(t) can bring
the neuron to fire. In such a regime, the SNR at
the neuron output can be evaluated with the same
definition as in Sec. 2, and the results showed that
stochastic resonance takes place in the neuron re-
sponse, for a broad range of parameter values.

Further, we want to examine to what extent the
theoretical model of Sec. 2 (let us call it model 1),

.can provide a description for stochastic resonance

in the neuron response. Because of the refractory
period, the neuron can update its output only every
T.. It is thus natural to identify At of model 1 to
T,. In this way, both model 1 and the neuron model
experience a periodic train of pulses surperposed to
a continuous noise which impinge on their thresh-
old nonlinearity, and their output is updated every
At = T, with the emission of an output spike each
time the threshold is exceeded. A visible difference
between model 1 and the neuron model is the pres-
ence of the low-pass filter with time constant 7, of
Eq. (17) on the neuron input. The effect of this filter
is to distort and lengthen the coherent input pulses,
and to broaden the correlation time of the noise to
a range of order 7,. The amplitude of the filtered
pulses which form ef(t) is Eg[l — exp(—To/mm)] ac-
cording to Eqgs. (19) and (20); this amplitude has
to be taken as the unit of amplitude in the neuron
model, since model 1 operates with coherent pulses
of amplitude unity. To summarize, the correspon-
dence between the neuron model and model 1 is, for
the time scale T, = At, and for the signal ampli-
tudes Ep[l — exp(—To/™m)] = 1.

Once this correspondence is performed, it re-
mains that the neuron nonlinearity has to operate
with (a) a colored noise £;(t) of correlation length
~ T, which stays finite (of order 10 ms) in a
plausible neuron, and (b) coherent pulses whose
amplitude is correctly modeled but whose shape
is distorted on the time scale ~ 7,,,. In addition,
to conform with the situation of model 1, the
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correlation length ~ 7,,, of the noise should remain
large relative to Tp (the amplitude of the noise
should not change much over the duration of a co-
herent pulse). This, altogether, imposes severe tem-
poral constraints which hinder the neuron model to
exactly superpose to model 1. Nevertheless, for the
reasons anticipated at the end of Sec. 2, it can be
expected that if 7,,, remains sufficiently below the
coherent period T, and also sufficiently above Tj,
then the stochastic resonance effect occuring in the
neuron will be correctly approximated by model 1.
This expectation is verified by the results presented
in Fig. 1.

For the comparison of Fig. 1 between model 1
and the neuron, we have taken the following plau-
sible typical values for the neuronal parameters:
To = 1ms, T, = 3 ms, 7, = 3 to 30 ms, to-
gether with 7' = 300 ms, and V;, = 1.2 relative to
the unit of signal amplitude Eg[l — exp(—To/7m)]-
The curves of Fig. 1 reveal an overall satisfactory
agreement between model 1 and the neuron. As
anticipated, the overall agreement between model 1
and the neuron, both in the resonance region and
on both sides of it, is best for intermediate values
of Ty (Tm = 10 ms), and it degrades when 7, in-
creases toward T or decreases toward T;. We ob-
serve in Fig. 1, that the value of the noise variance
for the maximum of the SNR in the neuron, is sat-
isfactorily predicted by model 1, especially for the
best condition 7,,, = 10 ms. This outcome may be
attributed to the fact that this resonant value of
the variance is essentially determined by the ampli-
tude of the coherent pulse plus noise relative to the
threshold, and is little sensible to the exact shape
of the coherent pulse and to the correlation struc-
ture of the noise. The magnitude of the SNR in the
neuron, which usually exceeds the SNR in model 1,
especially in the region of the resonance, might be
attributed to a higher degree of coherence or corre-
lation in the neuron output, that would originate in
the correlation present in the colored neural noise
compared to the white noise of model 1, and also in
the longer duration of the coherent pulses impinging
on the neuron nonlinearity.

4. Discussion and Conclusion

First, we have introduced a nonlinear threshold
system which was shown capable of stochastic res-
onance in the transmission of a periodic train of
pulses with white noise. This model offers an ex-
ample of a conceptually very simple stochastically

resonant system, and it lends itself to an exact treat-
ment in the presence of an arbitrarily distributed
white noise. Especially, the present treatment pro-
vides an exact expression for the SNR, and it au-
thorizes direct examination of the influence of the
noise distribution on the resonance (although this
study has not been carried out here).

Other recent studies have also considered
stochastic resonance in threshold systems of var-
ious kinds {Bulsara et al., 1994; Jung, 1994, 1995;
Wiesenfeld et al, 1994; Gingl et al., 1995; Pei
et al., 1995; Gammaitoni, 1995a, 1995b]. A large
majority of these studies have considered the trans-
mission of a sinusoid with Gaussian noise [Bulsara
et al, 1994; Jung, 1994, 1995; Wiesenfeld et al.,
1994; Gingl et al., 1995; Pei et al, 1995}, while
our present study considers the transmission of a
periodic train of pulses with arbitrarily distributed
noise. The study in [Gammaitoni, 1995a, 1995b]
also considers arbitrary noise distributions, but it
only offers an approximate treatment, especially
with only an approximate expression for the SNR.
Also in [Gammaitoni, 1995a, 1995b] the transmis-
sion of pulse trains is not considered, and no ap-
plication to the neuron is proposed. An interest-
ing study in [Kiss, 1995] considers the transmission
of pulse trains, but with a noise restricted to the
Gaussian case, and no application to the neuron.

Second, here, we have demonstrated, with a nu-
merical simulation, a novel possibility of stochastic
resonance in the neuron, in the transmission of spike
trains. This is the first study of this kind to report
stochastic resonance in the transmission of an input
spike train, in the presence of an internal continuous
neural noise originating in random channel gating
in the membrane. Special care has been devoted
here to render visible the origin of the neural noise,
instead of an ad hoc introduction of a noise signal
in the model. Other models dealing with neurons
[Bulsara et al, 1991, 1993, 1994; Longtin, 1993;
Longtin et al., 1994; Jung, 1994; Wiesenfeld et al.,
1994; Pei et al., 1995; Collins et al., 1995; Douglass
et al., 1993; Levin & Miller, 1996] have reported
stochastic resonance in the transmission of an ana-
log stimulus, usually a sinusoid, and not a spike
train as we report here. Whether this property
of noise-enhanced spike train transmission is actu-
ally used by actual neurons remains an unproven
issue, which would require experimental examina-
tion. Yet, without further evidence, the present
study demonstrates with theoretical arguments
that this possibility is at least authorized by the
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basic neural mechanisms of spike train transmission,
making it available for information processmg by
neurons.

Finally, we have shown that the exact model we
propose, can provide a satisfactory approximation
for stochastic resonance in the neuron.

The system of Eq. (2) only describes the peak
level of an output spike, and does not include a
description of its shape with the rising and falling
parts of the spike. If output spikes were emitted
at the very high rate of one spike every At, then
the output y of Eq. (2) would appear as a constant
level 1.

However, when the system of Eq. (2) responds
to the input spike train s(t) of Eq. (1), output spikes
are emitted at a repetition interval of order T much
larger than the elementary time step At. In this
condition, an output spike can be emitted with ap-
preciable probability only when an input spike is
present, and consequently a level 1 occurring on the
output will almost invariably be preceded and suc-
ceeded by the 0 level, restoring a spike nature for
the output in response to an input spike train with
repetition T > Aft.

The simple nature of the output y of Eq. (2)
which only produces levels 0 or 1 is a key feature
to allow the development of an exact treatment of
the system. It is also appropriate to approximate
the output spike train responding to an input spike
train with a repetition interval T > At. Individ-
ual spikes in the trains, both in model 1 and in
the neuron model, are represented in a schema-
tized way. Yet this conforms with a general as-
sumption in neural modeling which admits that the
exact (almost invariant) shape of every individual
spike in not significant for the coding of information,
but rather the temporal organization of these spikes
assembled in trains.

The ability that we have shown, of our exact
model 1 to provide an approximation for stochas-
tic resonance in the neuron, can essentially be at-
tributed to the fact that the resonance effect is
mainly sensitive to correlations at a dominant time
scale formed by the coherent period T, and to the
overall input signal amplitude relative to the thresh-
old of the nonlinearity. Other parameters, that de-
scribe additional details in the signals over time
scales sufficiently smaller than T, have compara-
tively minor influence.

The present study with a simple and (rare
of its kind) exact model system, added to novel
results on spike train transmission by neurons,

enlarge the scope of stochastic resonance and also
of the possible mechanisms for neural information
processing.
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