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We develop a neural network model based on prominent basic features of biological neural networks.
The description keeps a simple but coherent link between the subneuronal, neuronal and network levels.
In addition, the variables of the model are endowed with realistic numerical values together with their
physical units. This permits to reach quantitative significance for the results. To describe the operation
of the neuron, a transfer function is used that is believed to convey more biological significance compared
to the usual sigmoid transfer function. It is shown that the dynamic properties of the network, which
can vary from stability to chaos, are significantly influenced by the choice of the neuron transfer function.
Constraints on the synaptic eflicacies, as imposed by Dale’s rule, are also shown to modify the dynamic
properties by increasing the stability of the network. A simple neural architecture is presented that leads
to a controllable time evolution of the network activities.

1. Imntroduction

A central question that arises in the modelling of
complex systems like neural networks is the level
of description that is suitable to adopt. On the
one hand, oversimplified models may be thoroughly
computable but will probably yield only trivial or
unsignificant results. On the other hand, overly de-
tailed models may be very uneasy to develop farther
and more importantly, they may obscure fundamen-
tal general properties. The level of description to
adopt, in between these two bounds, is in fact very
difficult to assess a priors; it is in no way unique and
largely depends upon one’s aims and scope.

In this paper, we consider a neural network model
which is based on prominent features of biological
neural networks. In the description, we seek to keep a
coherent link between the subneuronal, neuronal and
network levels. In addition, we pay special attention
to attributing to the variables of the models, realistic
numerical values together with their physical units.
This contrasts with what is frequently done in neural
network models where variables are often considered
as mere mathematical variables rather than as true
physical quantities. The model we develop is simple
enough to be studied in various conditions and com-
plex enough to be capable of nontrivial behaviors.
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What can be interpreted as quantitative prediction
can be extracted from the model.

2. The Neural Network Model

In the model we are developing, a neuron i is de-
scribed with an input signal I;(¢) representing its
membrane current and an output signal f;(¢) repre-
senting a short-term average of its firing frequency. A
given number of these neurons are connected through
a set of synapses to form a network. w;; shall de-
note the synaptic efficacy from neuron j to neuron .
The time evolution of the membrane current I;(¢) is
governed by the dynamics of the ion channels of
the postsynaptic membrane which themselves are
activated by the neurotransmitters existing in the
synaptic regions. These neurotransmitters in turn
are released by presynaptic neurons in function
of their activities, modelled here by the fi(t)’s.
A detailed account of these processes is beyond
the scope of this paper. But more importantly,
we want to focus the analysis not at the neu-
ron or subneuron level but at the network level.
So we try to include in the model only promi-
nent features of the single neuron and then inves-
tigate the resulting properties at the network level.
Accordingly, we chose to model the dynamic of
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the current I;(t) with Eq. (1) which summarizes and
simplifies the complex processes governing I;(t).

dI,' [
“gg‘tl = —%It) + E wi; f(t). (1)
J

Equation (1) expresses that the variation of I;(t)
at time ¢ is formed by a relaxation term —L(t)/m
which in its simplest form here is chosen as linear
(this term summarizes, for a part, the desactivation
of the channels and reuptake processes of neurotrans-
mitters) and by a driving term proportional to the
Jj(t)’s. In Eq. (1), 77 is a time constant which deter-
mines the typical time scale over which the current
I;(t) can begin to vary significantly.

The input current I;(t) charges the membrane of
neuron ¢ which behaves as a leaky integrator of ca-
pacitance C and resistance R. When the electric
potential of the membrane reaches the threshold V,
above its resting potential, a spike (an action po-
tential) is emitted by the neuron and the membrane
potential is reset to its resting value.

An important property is that the duration of
a single spike is much lower, at least an order of
magnitude lower, than the time scale 77 over which
the current I;(t) can begin to vary significantly. It
is thus possible to perform a short-term average of
the spiking rate of the neuron over a time interval
of order 77 over which the driving current I; can
be considered as constant. We are thus in presence
of a simple capacitive leaky integrator driven by a
constant current for which we easily compute the
time needed for the potential to reach the threshold
V,. We thus deduce that the short-term average
firing rate f;(t) of neuron i can be expressed as

fi(t)=0 if L(t) <I,

— l/Tr
fi(t) = 1 = (Tm/T;) In[1 = I,/ L(2)]

if L(t)> I,
(2)

where T, = 1/ finax is the absolute refractory period
of the neuron, 7, = RC the time constant of the
membrane and I, = V,/R.

In this description, we want to pay special at-
tention to attributing realistic numerical value, at
least in order of magnitude, to every parameter of
the model. We take! for the characteristic evolution
time of the currents 7; = 10 ms; for the refractory
period which is also of the order of the duration of
a spike, T, = 1 ms; for the membrane time con-
stant 7, = 10 ms. With a membrane resistance
R = 100 MQ and a threshold V, of order 10 mV
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Fig. 1. Input-output transfer function of the neuron de-
scribed by Eq. (2) with realistic numerical values for the
parameters of the model and giving the firing frequency
fi as a function of the membrane current I;. Note the
logarithmic scale for input I;.

above the resting potential, it follows I, = 0.1 nA.
Based on these values, the variations of the firing rate
fi(t) as a function of the membrane current I;(t) as
expressed by Eq. (2) is depicted in Fig. 1.

With little surprise, the curve of Fig. 1 exhibits
the global shape of a sigmoid. However, this curve
here is not postulated at the neuron level, as it is
done most of the time in neural network models, but
rather it is derived from the description of mech-
anisms of the subneuronal level. As a result, this
input-output curve of the neuron is defined and de-
scribed with increased accuracy. The curve of Fig. 1
shows a monotone increase and a saturation for large
values of the input I; which together constitute the
features that are almost invariably found in any neu-
ron transfer function used in modeling. In addition,
the curve of Fig. 1 incorporates an actual threshold
below which the output activity is zero and above
which the activity is strictly positive and bounded.
This threshold, operating in this precise fashion,
grounded on physiological mechanisms, is not always
present as such in other neuronal transfer functions
and as we shall see, it can have an important im-
pact on the dynamic properties of the network. An-
other very important element conveyed by the curve
of Fig. 1 is that the quantities which are involved,
namely I; and f;, are not considered as mere mathe-
matical variables expressed in arbitrary units, but in-
stead, as actual physical quantities coming with their
physical units and realistic orders of magnitude: I;
is a current which can be evaluated in nA, and f;
a frequency in Hz. These quantitative scales for the
definition of the neuron transfer function put in light
what can be described as a logarithmic influence of
the input I; rather than a linear one. This implies
that for the determination of the value of the output
fi, the precise value of the input I; does not play a
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critical role but rather its order of magnitude. This
neuron property that appears here can be expected
to allow robust behaviors at the network level.

An important element for further use of the
neuron transfer function of Fig. 1 in a network is to
determine the zone of the curve which is actually cov-
ered by the neuron when operating in a typical envi-
ronment. If this operating zone is typically confined
to the region of the threshold of I; far from satura-
tion, the collective behavior at the network level can
be expected to be quite different compared to that
based on an operating zone located mainly in the
saturation region of the curve. The determination
of this operating zone requires to evaluate a typical
order of magnitude for a synaptic efficacy w;; that
plays a role in the driving term of the currents in
Eq. (1). For this evaluation, we assume that on a
monosynaptic pathway, a typical presynaptic signal
fi = 0.1 fmax is just sufficient to activate the post-
synaptic neuron %, providing that the synapse w;; is
at its maximum of efficacy. In these conditions, one
can estimate a typical order of magnitude for the
maximum value of a synaptic efficacy at 0.1 nA.

An interesting consequence can be deduced from
the quantitative estimations that we have performed
for the parameters of the model. In a typical bio-
logical neural network, the connectivity of a neuron
may vary typically between 1 and 10%. A neuron
t in these conditions can be submitted at most to a
maximum activation which would be delivered by ap-
proximately 10* presynaptic neurons firing at a rate
around fmax. With the values of the parameters and
Eq. (1), this would drive the input current I; of this
neuron in the region where I;/I, is around 10* to
10%. This bound fixes the limit of the operating zone
of the transfer function f; versus I;. Such an upper
bound, directly related to the maximum connectiv-
ity of the neuron, shows that it is with a typical
maximum connectivity of 10* that the neuron in op-
eration in a network performs what can be seen as
an “optimal” use of its nonlinearity. In other words,
in view of the neuron transfer function of Fig. 1, if
one tries to predict what should be the maximum
connectivity of this neuron in a typical network in
order to perform optimal use of the nonlinearity of
its transfer function, a reasonable answer would be a
connectivity of 10*. A maximum connectivity signif-
icantly lower, of order 102 or below, would not allow
the neuron to benefit from the nonlinearity intro-
duced by the saturation of its response. Conversely,

a maximum connectivity significantly higher, of or-
der 10% or above, would lead to a neuron behaving
for most input levels as a two-state neuron and little
use would be made of the continuous curvilinear part
of the response.

This point demonstrates that neural network
models should not necessarily be confined to qual-
itative description. Even in simplified models, if the
parameters are treated as physical quantities en-
dowed with realistic numerical values and their units,
quantitative predictions or at least quantitative con-
sistency can be obtained. In our view, such quantita-
tive aspects have to be progressively introduced with
more and more emphasis in neural network models in
order to fully appreciate, beyond qualitative aspects,
the understanding that they can bring concerning bi-
ological neural systems.

3. Dynamic Properties of the Network

With the time evolution specified by Egs. (1) and (2)
very complex dynamics are potentially accessible for
the activities f;(t) that depend critically upon the
values of the w;;’s.

To illustrate this, we have simulated a network of
100 neurons, fully connected through synaptic effi-
cacies w;; randomly drawn with uniform probability
out of the interval [—0.1 nA, 0.1 nA]. This repre-
sents a rather small network, having an equal amount
of excitatory and inhibitory synapses, which are to-
tally unconstrained except for the order of magnitude
of their efficacies that is set on physical grounds.
Figure 2 represents two typical evolutions of an
output activity f;(t) for two different sets of wj;.
In Fig. 2(a), after a short transient, the output fre-
quency f;(t) rapidly converges to a stable state of
activity which represents a small fraction of the max-
imum firing frequency fmax. Such low levels of firing
activity are frequently observed in biological neural
networks.? They come here as a direct consequence
of the neuron transfer function properly quantified as
depicted in Fig. 1. In contrast, with neural network
models based on a standard sigmoid transfer func-
tion, high firing frequencies close to fiayx are often
artificially favored.

Besides this kind of stable evolution of Fig. 2(a),
the other typical kind of evolution which has been ob-
served is that depicted in Fig. 2(b). Here we have a
time evolution which never stabilizes, although it re-
mains in the range of low firing rates, and which is in
fact chaotic. For evolutions such as that of Fig. 2(b),
classical characteristics of deterministic chaos were
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Fig. 2. Two typical time evolutions generated by Egs. (1)
and (2) for a network of 100 neurons. (a) Stable evolu-
tion. (b) Unstable chaotic evolution.

easily observed, such as sensitive dependence on ini-
tial conditions and strange attractors. In Fig. 3, we
have plotted the attractor reached by the system in
a phase plane spanned by a pair of arbitrary out-
puts {fi(t), fi(t)}. The highly structured and thinly
folded figure can be qualified of fractal attractor and
it reveals a low-dimensional chaotic regime. In the
neural systems we are investigating here, we see that
two output variables f;(t) and f;(t) evaluated at the
same time t can play the role of phase space vari-
ables that are able to indicate the presence of low-
dimensional chaos. This is not classical since usually
a phase plane for the system would rather be con-
structed with quantities as f;(t), fi(t+ At). The low
dimensional attractor of Fig. 3 can be interpreted as
revealing a coherence in the time evolution of the

variables f;(t) and f;(t). If these two variables were
completely independent, one could expect the attrac-
tor to densely fill a region of the phase plane. Con-
versely, if these two variables were connected by a
fixed functional dependence, one would expect a reg-
ular one-dimensional curve as attractor. The fractal
attractor of Fig. 3 describes an intermediate situa-
tion characterizing complex connection that can be
found between the many output variables belonging
to a same neural network.

In view of the possibility for the networks of
stable and unstable chaotic regimes, we have inves-
tigated the probability of occurrence of one or the
other of these regimes. We have considered fully
connected networks of N neurons, with synaptic effi-
cacies belonging to certain classes defined by a spec-
ified rule to assign them a value. With networks of
given size N and given rule to assign values to the
synapses, we form an ensemble of networks. In the
ensemble, a given network is characterized by a set
of synapses having values selected randomly out of
the class defined by the assignment rule. A probabil-
ity of stability can then be evaluated as a statistical
frequency of stability over the ensemble of networks.
For each network of the ensemble, initial conditions
are selected randomly and the dynamics described by
Egs. (1) and (2) is let to evolve for a sufficient time
after which the outputs f;(t) are tested to check if
they have reached a stable state (as in Fig. 2(a)) or
not (as in Fig. 2(b)). The probability of stability fol-
lows as the ratio of the number of evolutions having
led to a stable state to the total number of gener-
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Fig. 3. Phase space attractor for a chaotic evolution in a 100-neuron network. The fractal structure is characteristic of

low-dimensional chaos.
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ated evolutions. The probability of stability is then
studied as a function of the size N of the network.

Figure 4 represents the variation of the proba-
bility of stability of a network of N neurons (i.e. the
probability that all the neurons of the network have a
stable evolution) in which the synaptic efficacies w;;
are randomly drawn with uniform probability out of
the interval [-0.1 nA, 0.1 nA].

The curve of Fig. 4 shows that the probability
of stability for the network is close to 1 for small
networks and then regularly decreases as the size
of the network is increased. This enhancement of
unstability is a general behavior which can be found
in many systems when more and more units with
random interactions are acting collectively. If the
curve of Fig. 4 is extrapolated for large networks of
biological size, unstability is then a very probable
feature. For most of the unstable evolutions that
we observed, unstability is due to the onset of a
chaotic regime displaying sensitive dependence on
initial conditions. In such a regime, the macroscopic
states of activity of the neurons are very unlikely to
be the substrate for any “cognitive” or “informative”
process because these states will depend critically
on uncontrollable microscopic fluctuations. Thus, in
general, very specific mechanisms have to come in
play for the precise tuning of the synaptic efficacies
if for instance stability is required to implement
cognitive processes such as memory.
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Fig. 4. Probability of stability for a network with a
neuron transfer function according to Eq. (2) and with
completely random synaptic efficacies.

It is interesting to compare the stability curve
of Fig. 4 to the same type of curve obtained with
a network in which the neurons are endowed with
a classic sigmoid input-output transfer function® as
described by Eq. (3).

fmax
fills) = 1+ exp[-B(L = 1,)] )

With this approach, the transfer function of
Eq. (3) is usually postulated for the neuron. A diffi-
culty is then to attribute meaningful numerical val-
ues to the parameters 8 and I,. One undersfands
that a value of 8 of 103 or of 10~3 may indeed change
the resulting properties of the neuron network. With
no clear justification, the slope 8 and the threshold
I, are usually chosen close to 1 with no mention of
physical units. With 8 = 1, and I, = 1 when I;
1s expressed in nA, we have used Eq. (3) in place
of Eq. (2) in the simulation of the neural network
dynamics. The resulting stability curve that corre-
sponds to that of Fig. 4 is given in Fig. 5.

The curves of Figs. 4 and 5 clearly show that the
two neural networks based on two different transfer
functions do not have the same dynamical proper-
ties. The neural network associated with the curve
of Fig. 4 is intrinsically more stable. This may be
attributed to the fact that its neuron transfer func-
tion incorporates an actual threshold below which
the output activity is strictly zero and that the
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Fig. 5. Probability of stability for a network with a
sigmoid neuron transfer function according to Eq. (3)
and with completely random synaptic efficacies.
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sigmoid does not have. In addition, the increase
of the output f; with input I; is much slower for
Eq. (2) than for the sigmoid of Eq. (3) even with
low values of 8. As a consequence of these differ-
ences, the modelling of the dynamic properties of
the neural network may differ significantly depend-
ing on the choice of the transfer function for the neu-
ron. A transfer function as that of Eq. (2), deduced
from subneuronal properties and expressed with
“physical” numerical values, will a priori bear more
significance.

For the network based on the transfer function
of Eq. (2), we have also evaluated the probability of
stability when the synaptic efficacies are constrained
with the biological specification expressed by Dale’s
rule. Dale’s rule, although probably not of thorough
validity in biological neural networks, is a principle
based on experimental observations which specifies
that generally the synapses emitted by a given neu-
ron are all of the same type (either excitatory or
inhibitory).4

Figure 6 represents the variation of the probabil-
ity of stability of a network of N neurons in which
the synaptic efficacies are randomly drawn with uni-
form probability out of the interval [-0.1 nA, 0.1 nA]
and with a random but fixed sign for all the synapses
w;; emitted by a same neuron j.

The curve of Fig. 6 when compared to that of
Fig. 4 shows that the stability of the network is
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Fig. 6. Probability of stability for a network with a
neuron transfer function according to Eq. (2) and with
random synaptic efficacies constrained by Dale’s rule.

largely increased on average when Dale’s rule oper-
ates to organize the synapses. If neural networks
are to perform memory tasks based on the learning
and retrieval of stable states of the dynamics of their
activities, Dale’s rule may thus be a useful condi-
tion to preorganize the synapses in the direction of
that goal.

4. Realization of a Specific Dynamic
Evolution

We saw that in a fully connected network, the output
activities f;(¢) can have complex time evolutions that
critically depend on the set of synaptic efficacies
w;j. An important question is to examine how it is
possible to determine a set of w;; in order to obtain
a specific dynamic evolution for the network. This
problem is usually answered with the development of
learning algorithms. For instance Hopfield® gives a
procedure to define the synaptic weights of a neural
network,

(i) which leads to dynamics which are always
stable and
(ii) whose stable states can be imposed.

This scheme however relies on symmetric synaptic
weights which are difficult to biologically justify. Be-
yond the imposition of static behaviors to a neural
network, the emphasis is turning now to the impo-
sition of dynamic behaviors. Williams and Zipser®
have proposed an algorithm to learn, not simply
the stable states of a stable dynamics but a com-
plete time evolution of a network. For instance, the
synaptic weights can be adjusted to obtain a network
which produces a periodic oscillation at a given fre-
quency. However, this type of approach has an im-
portant limitation: no control is provided to adapt
the characteristics of the evolution that has been
learnt. For instance, if the period of an oscillation is
to be modified, a complete learning phase has to be
started anew.

These approaches that we just mentioned are
based on networks with nonspecific architectures.
We want to draw the attention here with an exam-
ple on the interest of using networks with specific
architectures in order to obtain a specific dynamic
evolution together with its control.

We consider the neural circuit depicted in Fig. 7
with a dynamics governed by Egs. (1) and (2). Neu-
ron 1 receives a constant external input fo = 0.2 fimax
through a synaptic efficacy wip = 0.1 nA. In addition
we take wy; = 0.1 nA and w;; = 0.1 nA. Because
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Fig. 7. Neural circuit that behaves as a controllable
oscillator. The control of the period of oscillation is
obtained through the number of neurons recruited in the
inhibitory feedback loop appearing in the dashed box.
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Fig. 8. Typical time evolution of the output activity of
the oscillatory circuit of Fig. 7.
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Fig. 9. Period of the oscillation generated by the circuit
of Fig. 7 as a function of the number of neurons partici-
pating in the recurrent inhibition.

of the recurrent inhibition performed by the feed-
back loop appearing in a dashed box in Fig. 7,
the neural circuit can operate as an oscillator. In
the configuration of Fig. 7 with the values given to
the parameters, the circuit does not oscillate and its

output activity is a constant f; =~ 0.1fnax. It is
possible to have the circuit oscillate by reinforcing
the recurrent inhibition. This reinforcement can be
achieved by increasing the number N of the neu-
rons participating in the recurrent inhibition. This
is obtained by replicating in a parallel association
the feedback structure appearing in the dashed box
in Fig. 7. In these conditions, the inhibition signal
can vary as the typical connectivity of a neuron {thus
as N) in a range of order 1 to 10%. The oscillation
of the circuit starts with N = 2. Figure 8 shows a
typical time evolution for the output f;(¢) obtained
for N = 100. In the observed oscillations, as we can
note in Fig. 8, the firing frequency f; always stays
well below the maximum firing rate fphax. At most
f1 is of order 0.1f,.x which corresponds to low fir-
ing rate levels as they are often found is biological
neural networks.

Figure 9 gives the evolution of the period T, of the
oscillation as a function of the number N of the neu-
rons participating to the recurrent inhibition. We see
from Fig. 9 that the period of oscillation can be con-
tinuously varied by means of the number N of neu-
rons recruited to form the recurrent feedback loop.
Such a recruitment can be performed for instance by
the lifting of an inhibitory signal on a neuron con-
nected in the loop. Moreover, the control which is
obtained on the period is robust because it depends
very little on the exact value of N, but rather on
its order of magnitude. It is interesting to note that
when N varies inside the typical range of variation
for the neuron connectivity (1 to 10%), the period of -
oscillation varies in a ratio of approximately 1 to 5.
This ratio from 1 to 5 happens to correspond to a
typical range of variation for the period of oscillators
controlling rhythmic activities of the organism which
are easily observable. For instance we can think of
respiration or locomotion and the range of variation
of their rhythm between their minimum and max-
imum levels of activity. Again, we are here in the
presence of a quantitative consistency which can be
extracted from a simple neural network model when
attention is paid to attributing numerical significance
to the variables.

5. Conclusion

In this paper, we have investigated a neural
network model based on a neuron input-output
transfer function which is derived from a simple de-
scription of mechanisms of the subneuronal level,
rather than postulated at the neuron level. As a
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consequence, the neuron transfer function is ex-
pressed with parameters to which it is possible to at-
tribute realistic numerical values and physical units.
Based on this properly quantified neuron transfer
function, it was possible to also quantify the typical
value of a synaptic efficacy. From these quantita-
tive estimates, we predicted an order of magnitude
for the typical maximum connectivity of a neuron
which is in agreement with the values known from
experiment.

We then showed that the dynamic properties of
neural networks based on this more realistic trans-
fer function are in general complex and capable of
chaotic evolutions. Moreover, they are significantly
different from the properties of networks based on a
standard sigmoid transfer function.

In addition, we showed the influence of the synap-
tic efficacies to constraint the dynamic variability
of the network, for instance the use of Dale’s rule
as a means to enhance its stability. Specific circuit
architectures, rather than complex synaptic plastic-
ity algorithms in completely unstructured networks,
are also emphasized in order to obtain specified
dynamic behaviors together with their control. An
example of a simple oscillating circuit is presented
out of which, beyond qualitative reproduction of an
evolution, quantitative consistency can be extracted.

The neural network model we examined here
is, in its form, as simple as other popular mod-
els like Hopfield’s®7 for instance, and it relies on
the same basic elements (nonlinear-response units
densely connected in a network). Nevertheless, we

believe that this model bears more relevance, because
without departing from a simple formulation, it seeks
to incorporate quantitative description and a coher-
ent (although very schematical) link between sub-
neuronal, neuronal and network levels. This type of
model, simple enough to be easily simulated in many
conditions, stands as a kind of “minimal” neural
network model appropriate, as a first coarse ap-
proximation, to investigate dynamic properties of
biological neural systems (as synaptic plasticity for
instance) with both qualitative and quantitative
prospect.
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