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A principle of information-entropy maximization is introduced in order to characterize the
optimal representation of an arbitrarily varying quantity by a neural output confined to a
finite interval. We then study the conditions under which a neuron can effectively fulfil the
requirements imposed by this information-theoretic optimal principle. We show that this
can be achieved with the natural properties available to the neuron. Specifically, we first
deduce that neural (monotonically increasing and saturating) nonlinearities are potentially
efficient for achieving the entropy maximization, for any given input signal. Secondly,
we derive simple laws which adaptively adjust modifiable parameters of a neuron toward
maximum entropy. Remarkably, the adaptation laws that realize entropy maximization are
found to belong to the class of anti-Hebbian laws (a class having experimental groundings),
with a special, yet simple, nonlinear form. The present results highlight the usefulness
of general information-theoretic principles in contributing to the understanding of neural
systems and their remarkable performances for information processing.
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maximization; anti-Hebbian adaptation.

1. Introduction

The information-processing abilities of neurons in the nervous system are currently under
intense investigation. Theoretical and mathematical modelling is one approach that can
contribute to this endeavour. The most common methodology for the modelling of neural
systems is to start with a collection of experimental observations and then try to elaborate
a model which will account for these observations. The basic assumptions of such models
usually have their origin in the biophysical and biochemical properties of the neurons. An
example of this approach is the celebrated Hodgkin-Huxley neuron model (Hodgkin &
Huxley, 1952).

We choose here to adopt another, much less common, methodology for the modelling
of neural systems and ultimately of their information-processing abilities. We start with an
abstract principle, which we express in information-theoretic terms, and which guarantees
an optimal representation of information by neurons. We then draw the consequences of
this principle, and show that properties known to belong to neurons come out as deductions
from the principle.

We consider the case of sensory neurons, in charge of the transduction or transcoding of
signals from the external world, at the entrance of a neural system. Sensory neurons can
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convey information about external stimuli in the form of an output firing frequency at which
output spikes (action potentials) are emitted in response to a stimulus. Such an output firing
frequency is bound to vary in a finite interval, between no firing and a finite maximum
firing rate accessible to the neuron. For an arbitrarily varying stimulus, the neuron has to
adapt its response in order to realize an efficient transcoding that makes optimal use of the
finite interval of representation on the output. We introduce here a principle of information-
entropy maximization to characterize the condition for optimality of this transcoding. We
then examine under which conditions a neuron can fulfil the requirements imposed by
this information-theoretic principle, and show that this can be achieved with the natural
properties of the neuron.

In particular, we shall derive adaptation laws by which a neuron can modify some of its
parameters to realize optimal signal transcoding in the sense of our information-theoretic
principle, and we shall point out the connections of these adaptation laws with known
properties of neural adaptation. An account of the many aspects of adaptation in biological
neurons has been given by Kandel (1991). Briefly, neural adaptation consists of changes
that take place in the neuron, under the influence of the signals exchanged during activity.
Adaptation mainly concerns the efficacy of the synapses, but it can also affect other pa-
rameters like the threshold of activity or the responsiveness of the neuron (Zucker, 1989).
At the level of a neuron, adaptation occurs in a local manner, under the control of the sig-
nals received or emitted by the neuron under consideration. A common form is Hebbian
adaptation (Brown et al., 1990), in which the changes are driven by the joint action of a
presynaptic and a postsynaptic activity, or of an input and an output activity, related to a
given neuron, and with a notion of accumulation or building-up of the effect over time. The
time scales of the changes involved in this type of adaptation can vary from a few tens of
milliseconds up to several seconds or minutes, and sometimes longer (Brown et al., 1990;
Zucker, 1989; von der Malsburg, 1994). This general category of Hebbian adaptation en-
compasses numerous specific forms, that may differ in details, especially when one tries to
cast them into mathematical formulations (Brown et al., 1990). Such mathematical forms
are usually constructed in an a priori manner, based on empirical arguments or experimen-
tal observations. In contrast, we shall see that our information-theoretic optimal principle
applied to neural-signal transcoding, allows us to deduce, as consequences, adaptation laws
of a Hebbian character.

2. Entropy of the neural signals

A model is considered for a peripheral sensory neuron excited by a pool of sources or
sensors with sufficient homogeneity to justify the definition of a single scalar input signal
X. Typically, X gives an image of a physical quantity of the environment, uniform on
the sensors feeding the neuron. We consider X as a continuous random variable with a
probability density function (p.d.f.) px(x). The neuron produces a nonlinear continuous
output response Y of p.d.f. pr(y)- This response Y is interpreted here as a firing rate, since
we assume that a firing rate is an appropriate and natural variable to convey and conceive
the information dealt with by sensory neurons. The information entropy H(X) for X is
defined as (Shannon, 1948)

H(X) = - f px(x) log px(x)dx , (1)
J-o- 0 0
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and a similar definition applies for the entropy H(Y) of Y.
The neuron output Y, representing a firing rate, is naturally limited to a finite range

[ymin, ymax\- As a consequence, the output entropy H(Y) reaches its overall maximum for
the uniform p.d.f.:

P?(y) =
for y e [y^,

otherwise.

And this absolute maximum of H(Y) is:

(3)

Maximizing the entropy of the output Y is, in some sense, an optimal use of the finite
interval of representation [y^a, you*]- We now propose that the sensory neuron, when
operating in an environment which imposes an input X with given px(x), seeks to imple-
ment a transcoding from X to Y that aims at maximizing H(Y), thus optimizing the neural
representation of the signal on the output

The neuron input—output transformation from X to Y is expected to be a nonlinear func-
tion, monotonically increasing from y^n to ymm. that we write as Y = <p(X). The neuron
receives an input with a given p.d.f. px(x), and we ask whether it is possible to find a
monotonically increasing neural function <p that allows the output Y to reach the absolute
maximum of its entropy in (3).

The conservation of probabilities in the transformation Y = <p(X) reads: py(y)dy =
px(x)dx, which yields

Pr(y)<p'(x) = px(x) . (4)

For H(Y) to reach the absolute maximum in (3) requires that pr(y) be p^(,y) of (2).
Equation (4) thus gives

which integrates into

J-oo
<P(x) = Vmin + C W - ymin) / PxWAu . (6)

J-co

The expression in (6) which involves the distribution function f*^ px(u)du of X, rep-
resents a monotonically increasing and bounded function <p that realizes the absolute max-
imum of the output entropy H(Y). This result demonstrates that for any input p.d.f. px(x)
there exists an input-output transformation of a neural-type (a monotonically increasing
and saturating nonlinearity) that is able to reach the absolute maximum of the output en-
tropy. Such a remarkable outcome suggests that sensory neurons possess input-output non-
linearities which can be made especially efficient for the optimal transcoding of signals.

This property and its information-theoretic interpretation have already been reported
by LaughJin (1981, 1987). Laughlin observed that the input-output transfer function of
the large monopolar cells in the blowfly compound eye, is very close to the cumulative
probability distribution of its input, leading to a uniform, and hence an entropy, output
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p.d.f. that is maximum. Laughlin did not give an adaptive or constructive mechanism for
the neurons to reach this property; we shall do this below.

In actuality, a neuron nonlinearity, while expected to remain monotonically increasing
and bounded, is only adaptable to a limited extent, through specific parameters such as
threshold, slope, or gain. As a consequence, the optimal transfer function of (6), although
representing a monotonically increasing bounded function, may not be exactly realizable,
for any px(x), through adaptation of the nonlinearity of a given neuron.

In the following we show that, for realistic input p.d.f.s px(x), common models of neu-
ron nonlinearities can be adapted to come very close to the absolute maximum entropy of
(3), and, furthermore, this is with adaptation laws which display an anti-Hebbian character.

We note that (4) leads to the following expression for H(X):

/•+0O r+oo

- px(x)logpx(x)dx = - pr(y)log[pr(y)<p'(x)]dy, (7)
J—oo J—oo

from which we deduce that the transformation of the entropy in the input-output transcod-
ing can be expressed as

H{Y) = H(X) + H^ . (8)

where //mm,, which represents the entropy change in the transcoding, is

/•+O0

Haaa= px(x)\og[<p'{x)]dx . (9)
J-oo

Expressions (8) and (9) for the transformation of the entropy by the neuron are a special
instance of the change of entropy which occurs in a change of coordinates, as presented
in general form by Shannon (1948). In the present neuronal context, with a given input
p.d.f. px(x), H(X) is fixed, and maximization of H(Y) by the neuron is equivalent to
maximization of the //mm, of (9).

3. Adaptive maximization of the output entropy

A simple form of neuron transfer function Y = <p(X) was considered by Chapeau-
Blondeau (1994). We consider here the general form

<P(x) = flfiiwx - 9)] , (10)

where / is any monotonically increasing and bounded function, for instance a logistic
sigmoid f(u) = }"max/[H-exp(—u)] or an error function f(u) = >„,„ erf(w). We note that
the natural conditions for a neuron output interpreted as a firing rate are y^B = 0 (no firing)
and ymax > 0 (maximum firing). Equation (10) incorporates 'natural' parameters to further
shape the neuron transfer function. We assume first in this section that fi > 0 is a fixed
gain for the nonlinearity. The threshold 9 and the efficacy w of the synapse which applies
the input onto the neuron (or equivalent synaptic efficacy for a homogeneous bundle of
pathways carrying the same input) are both adaptable parameters.

Now, with the transfer-function model of (10), we wish to adjust the naturally adaptable
parameters 9 and ID in order to maximize the output entropy H(Y) in the presence of
any given input p.d.f. px(x). Equivalently, we seek to adapt 9 and w to maximize the
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Htnm(Q, w) which results from the combination of (9) and (10). We choose to perform
a gradient ascent along //tnuu(0. «>), where the parameters are adapted according to the
dynamic scheme (with TJ > 0)

6B dH^ dw dH^
— = n , — = n . (11)
dt ao dt dw

The computation of the components of the gradient yields

dw w

An illuminating simplification arises in these adaptation laws when one adopts for the
transfer function / a form which is very frequently used in neural modeling (Ant6n et al.,
1992), that is, when one chooses the logistic sigmoid / (« ) = ym^/H + exp(—u)], whose
derivatives verify f'(u) = f(u)[l - f(u)/yiraa} and /"(«) = / ' (« ) [ ! - 2/(u)/ym M] . In
such conditions, (12) and (13) reduce to

d " " - ' " - • • (14)
361

3Wtrani

dw
(15)

where, for an arbitrary function g(X) of X, we introduce the mean g = /_oo g(x)px(x)dx.
According to (14), the maximum of //tram is associated with Y = ymax/2. Thus, at

the maximum of the output entropy H(Y), the mean value of the output Y is located in the
middle of the interval of representation [y,njn = 0, y^u]. This outcome is a natural property,
which comes here as a direct consequence of our principle of entropy maximization. If we
introduce the fluctuations about the means X = X — X and Y = Y — ymn/2, the adaptation
laws (11) of the neural parameters take the form

d6 2 •*>

dt Vmu

dw ( \ 2
(-p—XY

w
It is then remarkable to observe that the adaptation equations (16) and (17) have very

simple forms. In particular, the synaptic adaptation law (17) falls in the class of Hebbian
adaptation laws, since it involves the concomitant activities of both the input and output
Such Hebbian adaptation laws have been studied for a long time to account for adapta-
tion mechanisms in the nervous systems and they have received experimental groundings
(Brown et al., 1990). It is noticeable that such a law, with familiar form, arises here as a
consequence of an abstract information-theoretic principle instead of being introduced in
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an ad hoc manner. More specifically, the present adaptation law (17) is of the covariance
type, since it involves input and output signals through the average product of the devia-
tions from their means, and it can be referred to as anti-Hebbian because of the minus sign
in — XY. Comparable anti-Hebbian laws have already been obtained as a consequence of
other general information-processing principles, for instance, to decorrelate output signals
in a network of noisy linear neurons with lateral inhibition (Plumbley, 1993). Anti-Hebbian
adaptation arises here in another context, as a consequence of an entropy-maximization
principle, especially with a nonlinear neuron model. The adaptation law itself comes also
under a different and nonlinear form for the adapted parameter w. Such outcomes highlight
the usefulness of general information-theoretic principles in contributing to an understand-
ing of neural systems, by assigning roles to known basic mechanisms in relation to the
global information-processing performances of these neural systems.

In the case where / is a logistic sigmoid, it can be easily proved by explicit examination
of its first and second derivatives that //tmnj(^, w) of (9)-(10) is a convex function with
a single maximum. The adaptation laws of (16) and (17), derived from a gradient ascent,
converge to this maximum, which also achieves the maximization of the output entropy
H(Y). The maximum entropy so reached is the maximum achievable entropy in the pres-
ence of the constraint of a neuron transfer function under the form (10) with / being a
logistic sigmoid. This constrained maximum will generally differ from the absolute max-
imum entropy of (3), which would require, in the presence of a given px(x), the transfer
function <p of (6). The difference can, however, be expected to be small in general, for not
too special pxM, because both the absolute <p of (6) and the optimal logistic sigmoid are
monotonically increasing functions onto the same interval [jmui, Vms*]- It will generally
be possible to shape the optimal logistic sigmoid to come close to the absolute <p of (6),
and to realize an entropy maximization under the constraint of a specific type of transfer
function, coming close to the absolute maximum entropy.

For illustration, we consider the case of a Gaussian input p.d.f. px(x) of mean m* and
variance a\. With this input, to reach the absolute maximum of H(Y) of (3) requires,
according to (6), a neuron transfer function <p(x) = jma, erf[(x — mx)/ox] (in this paper,

/ " exp(-«'2/2)dw'
erf(n) = J~°° V

defines the error function), and this achieves the absolute maximum H(Y) = A/max =
log(?max)- The neuron transfer function cp of (10) with a logistic sigmoid for / cannot be
exactly shaped, through adaptation of 6 and w, to perfectly reproduce the error function
which saturates H(Y). Yet, adaptation of 9 and w according to (16) and (17) brings (p very
close to the optimal error function realizing the absolute maximum / / m = log^nm), as
is attested by the results of Fig. 1. In Fig. 1, with yma = 1, one has Wnu, = Obit, and
the adaptive procedure of (16)—(17) reaches H(Y) = —0.0135 bit In the present context,
the numerical values of H(Y) are interpretable as an index of the departure of py (y) from
uniformity. For [y^ = 0, y^u = 1], uniform py{y) yields H(Y) = H^a = ObiL Sup-
pose that, over [y^ = 0, ymax = 1], pr(y) was constant only over [0,0.9] and zero over
]0.9,1], one would then have H(Y) = -0.152 bit. Such quantitative results provide a ba-
sis to assess the value H(Y) = —0.0135 bit obtained by the adaptive procedure, which can
be considered very close to the absolute maximum //mm- Figure 1 shows the correspond-
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FIG. 1. Neural transcoding of a Gaussian input, (a) The Gaussian p.d.f. px(x). with mean mx = 0 and standard
deviation ax = 1/3, on the neuron input; and (b) the output p.d.f. priy) after transmission onto [ymu, = 0,
)Wi = 1] by the neuron of gain 0 = 1 , with three different transfer functions Y = <p(X). The solid straight line is
the uniform p.d.f. obtained when <p(x) is the error function resulting from (6) with the Gaussian input; this p.d.f.
achieves the absolute maximum H(Y) = W^, = Obit for the output entropy. The solid curve is obtained with
<p(x) = /(u>op,j[ - Sop,) when / is the logistic sigmoid / (« ) = 1/[1 + exp(-u)] and (Sop, = 0, u^p, = 5.247) is
the fixed point of the anti-Hebbian gradient ascent of (16H17); this p.d.f. achieves H(Y) = -0.0135 bit which
represents the maximum which can be reached for H{Y) when a Gaussian input is transformed by a logistic
sigmoid. The dashed curve is obtained with <p(x) = f{w*x - &*) when / (u) = 0.5(1 + u/Vl +u 2 ) and
(6* = 0, w* = 2.751) is the zero point of (16M17). which, in this case, only approximates the gradi-
ent ascent along //mm; this p.d.f. achieves H(Y) = -0.1082bit, which comes very close to the maximum
H(Y) = -0.1065 bit that can be reached when a Gaussian input is transformed by the present / .

ing (small) departure of py(y) from uniformity. We note that this same good performance
in maximizing H(Y) is obtained by (16H17), irrespective of the parameters mx and ax

of the Gaussian input X; this means that the transcoding is able to obtain the same ef-
ficiency in the output representation of any Gaussian input X. For the present example,
the optimal values that maximize H(Y) can be computed to be lUop, = 1.749/(fax) and
0opt = Woptmx, and they are accurately reached with (16) and (17).

The results of Fig. 1 illustrate that a typical neuron transfer function such as (10) with a
logistic sigmoid / is very efficient at adaptively maximizing the output entropy H(Y) of
a neural transcoding; this occurs through simple adaptation according to (16) and (17) of
naturally adjustable neuron parameters.

Now, for a function / that is not a logistic sigmoid, the adaptation laws of (16) and (17)
do not achieve an exact maximization of H(Y) or //m^. For this one has to come back
instead to the more complicated forms of (12) and (13), whose biological implementation
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seems more difficult to conceive. However, for reasonable monotonically increasing func-
tions / that are not logistic sigmoids, the simple adaptation laws of (16) and (17), used
in place of (12) and (13), allow us to come very close to the maximum of H(Y). This
property is illustrated in Fig. 1, with the Gaussian px(x) and f(u) — 0.5(1 + « / V l + u2),
where (16) and (17) arrive at 0.0017 bit below the exact achievable maximum. Such re-
sults suggest that adaptation laws (16) and (17) are also efficient at increasing the entropy
(improving the efficiency) of the transcoding by any neural (monotonically increasing and
saturating) transfer function.

Adaptation laws (14) and (15) or (16) and (17) are driven by mean values of various
functions of the input X, such as X, Y, or XY. In the theoretical analysis, these mean
values are defined and computed from knowledge of the input p.d.f. px(x). In practice,
with an ergodicity hypothesis, these mean values can be estimated from sample averages,
performed online over one temporal realization of the signals. An online estimator will
estimate the averages over a time scale 7 ] , ^ ^ . Significant changes (say they occur over
a time scale âdaptation, controlled by rj) of the adapted parameters 0 and w have then to
be slow relative to Tavaag^. Finally, the stationarity time scale r^^onanty of the input X(t)
has to be long relative to âdaptation- The performance of an online implementation of the
adaptation laws will thus depend on the quality of the estimator for the averages and on
the ability to satisfy the constraints on the time scales âverage < âdaptation < Taaaonarity
For illustration, we have considered a stationary (7iajjonarity -*• oo) discrete-time process
X(t) = X(nAt) (where n is an integer), with a logistic sigmoid / for the neuron transfer
function. The time averages were estimated with a first-order low-pass linear filter of time
constant r = 25Af, yielding 7average ~ *• We took an adaptation rate t) = 0.5. Figure 2
then shows the resulting evolution of the neuron output Y toward maximum entropy. As can
be seen in Fig. 2, this evolution is relatively fast, since after a time of 7adaptation = 200AJ
the theoretical maximum entropy is almost exactly reached. This verifies the possibility of
a simple online realization of the adaptation laws.

It should be noted that the time scales for the present online implementation of the
adaptation laws conform with the orders of magnitude that can be expected with actual
sensory neurons. For actual neurons, the time step At can be interpreted as the smallest
time at which significant changes can occur in a neural input; it can be assigned an order
of magnitude of milliseconds, which represents the fastest firing period for a neuron. The
time scale 7average can be expected to be of a few tens of milliseconds, corresponding to
the time constants of the membrane processes that naturally behave as low-pass filters.
Significant changes in the adapted parameters, like the synaptic efficacy, would then take
place over periods /"adaptation of a few hundreds of milliseconds, which correspond to the
times needed for a sensory input to leave a print in a short-term memory process. Then
follows a stationarity time Taationarity °f m e order of several hundreds of milliseconds, up
to seconds, which is quite compatible with the application times required to efficiently
process, in an adaptive manner, a sensory input.

4. Extension to a neuron with multiple inputs

We consider here a similar sensory neuron to that considered previously, but this time with
a number N > 1 of inputs Xj, each one of which is mediated by the synaptic efficacy u>,-.
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Flo. 2. Evolution of py(y) toward maximum entropy during an online implementation of adaptation laws (16)
and (17). The neuron transfer function is with / being a logistic sigmoid onto Lynn, = 0, y ^ = 1]; the input
p.d.f. pxM was chosen to be Gaussian with a mean mx = 1.5 and a standard deviation ax = 0.5. (a) The initial
state at t = 0 with initial values 9 = 1 and w = 1, yielding the output entropy H(Y) = -1.125; (b) at t = 50A/,
H(Y) = -0.728; (c) at t = 100A/, H(Y) = -0.067; and (d)at/ = 200A/, H(Y) = -0.015 almost realizes the
maximum entropy. (• • •) The theoretical realization of the exact maximum entropy H(Y) = -0.013 achievable
with an arbitrary Gaussian input X and a logistic sigmoidal transfer function.

The neuron output is now

(18)

where, as in Section 3, / is a monotonically increasing and bounded monovariable function
onto [;>>„,!„= 0, ymsx>0].

A direct transposition of the problem of Section 3 would then be to adapt the parameters
Wi and 6 in order to maximize the output entropy H{Y). However, with multiple inputs
Xj, this maximization is not sufficient to specify the wit because, in general, there are
infinitely many TV-tuples (tui, w2,..., wN) that maximize H(Y). This can be illustrated
with the case where / is a logistic sigmoid, and the membrane potential V = £ ( . WjXi is

a Gaussian variable of mean V = £ , WiYi and variance var(V) = V2 - V2, with V2 =
J2i Y.j WiWjX/Xj. From the first example of Section 3, we can infer that the conditions on
V that maximize H(Y) are 9 = V and var(V) = (1.749//J)2. When the statistics of the X,
are known, these two conditions are generally insufficient to uniquely determine the wt. For
instance, with centred mutually independent Xit the second condition is £ , wj var(X,) =
(1.749//J)2, which can be verified by infinitely many N-tuples (w\, wj,.... wN), even
with several, and possibly up to N - 1, of the u>, set to zero. In general, the maximization
of H(Y) only constrains the statistics of V and not those of the individual iu,X,.

Therefore, in general, with multiple inputs, the maximization of the output entropy
H(Y) through individual adaptation of the synapses u>/ does not appear to be an efficient
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procedure for sensory processing, since it can succeed even when the transmission over
many input pathways is set to zero. We note, however, that the maximization of H(Y) re-
mains a desirable feature in this context, because it still corresponds to an optimal use of
the finite interval of representation on the output. An alternative possibility, for which the
present treatment is useful, is to operate with the u>, fixed, and adapt the neural gain p and
the threshold 6 in order to maximize H(Y). For this maximization, we perform a gradient
ascent along //tnu»(0. P)- For the case of the logistic sigmoid / , we obtain

(19)
dp P

where V = V - V.
As before, (19), with its simple form, can be used for an adaptation law, in the style

of (11) and (16)—(17), to adjust p for maximum output entropy (together with (16)). This
adaptation law keeps the character of anti-Hebbian adaptation, since it is dependent upon
average input and output neuron activities through the product — VY.

There exists another possibility, with multiple inputs, which adapts the synapses ID, for
maximum output entropy, while avoiding the possibility of several input pathways being
set to zero. This consists of assuming that all the synapses are kept the same that is, iy, = w
for all i, or in other words that the synapses undergo the same evolution from comparable
initial states. This specification ensures the same relative importance for each operational
input pathway, which is a functionally reasonable property for sensory processing. Under
such a condition, the membrane potential factorizes into V — w £ f . X,. With the same ap-
proach as that used in Section 3 for the maximization of H(Y), we are led to an adaptation
law for the synapses IU, = 10, which replaces (17) by the form

diu 1 / 2 -*"<A
[l-p VY) . (20)

Such an adaptation again resembles what can be described as a global anti-Hebbian
synaptic plasticity law.

Finally, for multiple-input neurons, we have considered the application of adaptation
laws (16) and (17) in fully interconnected neural networks which receive no additional
inputs from the exterior of the network. Discrete-time dynamics are used for the evolution
of neuron i, in the form

N

(/ = l t o / V ) , (21)

where / is a logistic sigmoid.
Now N2 initial values for the u\7 are randomly drawn with uniform probability in

[—1, 1]. In such networks, the time evolutions of the outputs Yt(t) can have several forms:
they can converge to fixed points or limit cycles, or they can display unsteady activities
of chaotic appearance, where the Yj (/) keep wandering over a subregion of their possi-
ble range of variation (and where sensitive dependence on the initial conditions can be
observed) (Chapeau-Blondeau, 1993; Chapeau-Blondeau & Chauvet, 1992).
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Then, for each neuron i, (16) was used to adapt the threshold 0,. Also, (17) was used to
adapt the synaptic efficacy w/j on neuron /' from neuron j , with Yj playing the role of the
input signal. The averages of the type X were estimated online, with a first-order low-pass
linear filter with a time constant r » At.

In such a mode of operation, there is no guarantee that the output entropies H(Yt) will
be strictly maximized. However, we observed that the result of (16) and (17) is generally
to increase the output entropies H(Yj), and to have the neuron outputs Yj cover more
evenly their possible range of variation. An application of rules (16) and (17) for a short
time was usually found to be sufficient to destabilize any fixed point in which the Yj may
be sitting (thus with minimal output entropies H(Yj)), and to drive the network into an
unsteady chaotic evolution where the Yj wander in time, while covering large portions of
their possible range of variation (thus achieving high output entropies H(Yj)).

Such a result suggests that adaptation laws (16) and (17) may be efficient to 'stimulate'
the collective activities in a neural network (preventing them from sitting in fixed points),
and to produce chaotic evolutions. Such chaotic evolutions have been observed in neu-
ral networks, both in theoretical models and in experimental preparations, and they may
play an important role in cognitive processes by generating a large variability in the neu-
ral responses, although these implications have not yet been fully elucidated (Skarda &
Freeman, 1987; Freeman, 1992; Chapeau-Blondeau, 1995).

5. Discussion

The results reported here describe connections between neural processing and information
theory. We have introduced a principle of information-entropy maximization, to optimize
the representation of an arbitrarily varying quantity on a neuron output whose variation is
confined to a fixed finite interval. We have found that a neuron nonlinearity, monotonically
increasing with saturation, is especially suited to optimal transduction of signals. We have
deduced adaptation laws, (16) and (17), that we propose as efficient laws for the optimiza-
tion of the transcoding of an input by a sensory neuron. For a neuron widi multiple inputs,
similar laws, given by (19) and (20), were also deduced. These adaptation laws modify
naturally adjustable neural parameters toward maximum output entropy. These laws are
found to be linear in the driving term which involves an input-output covariance; this con-
fers an anti-Hebbian character to them. At the same time, the adaptation laws are nonlinear
in the adapted parameter (w or (}). This nonlinearity makes them a special class of non-
linear anti-Hebbian adaptation laws, in contrast to the linear adaptation laws which are
much more commonly used. Yet, these nonlinear adaptation laws keep a simple form which
could be compatible with a physical implementation in biological systems.

Various applications of information-theoretic concepts to neural transmission have
previously appeared (see Taylor & Plumbley, 1993, and the references therein). These
addressed different problems such as optimal information preservation in the presence
of noise (Linsker, 1988), or redundancy reduction through realization of statistical
independence between different correlated neural pathways (Atick, 1992; Barlow, 1989).
Also, when the neuron output is modelled by a continuous variable interpreted as a fir-
ing frequency, these previous works essentially developed results for linear neurons. An
important contribution is the work by Linsker (1988), which uses a principle of mutual-
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information maximization (the Infomax principle), between linear noisy neurons, and
which deduces linear Hebbian (opposite to anti-Hebbian) adaptation laws.

In contrast, here we have considered a regime where the noise is negligible, and thus
it plays no role. In such a case, the neuron input-output mutual information is infinite,
and cannot serve as a characterizing tool. We have focused on output entropy instead of
mutual information, and this information-theoretic tool is applied here to the problem of
the optimal neural representation of analog signals. As a result, we deduced anti-Hebbian
adaptation laws of a specific nonlinear form.

Another specific feature of the present work is that it deals with the more realistic sit-
uation of continuous neurons with a nonlinear response, instead of the simpler linear re-
sponse. To date, there has been little application of information-theoretic concepts to non-
linear neurons. A detailed study has been presented by Nadal & Parga (1994) who dis-
cussed the relationships between different information-theoretic principles in applications
to nonlinear neurons, but this study did not derive adaptive or constructive mechanisms
like (12) and (13), or (16) and (17), to adjust the modifiable neural parameters in order to
fulfil the information-theoretic constraints. Chapeau-Blondeau (1994) introduced only the
special version of (12) and (13), where / was a logistic sigmoid, for a single-input neuron,
and the case of a multiple-input neuron was not addressed. Bell & Sejnowski (1995) used
the special case where / is a logistic sigmoid, and in this condition the case of multiple
inputs was treated in a way which differs from that presented in Section 4; then a sub-
sequent interesting application in signal processing was offered, for blind separation and
blind deconvolution.

The present results apply a principle of entropy maximization for the optimal represen-
tation of an analog stimulus by a single neuron output. An interesting extension would be
to apply this principle to the representation of an analog stimulus by a whole population of
neurons, to address another coding scheme, known as population coding, which has been
observed in neural systems (Zohary, 1992). In this coding scheme, the analog stimulus is
coded by the global activities of all the neurons of a population, offering a wider dynamic
range of representation than for single-neuron coding. One could then seek to deduce the
types of interaction and adaptation between neurons which are required to obtain an effi-
cent representation which maximizes the entropy of the population.

6. Conclusions

We have introduced an abstract information-theoretic principle of entropy maximization to
characterize the optimal representation of a signal by a neuron. We have then deduced that
the fulfilment of this principle can be achieved by conditions which are naturally found
in neural systems, namely, nonlinear neuron transfer functions that are monotonically in-
creasing with saturation, and adaptation laws for the modifiable neural parameters with an
anti-Hebbian form. Such a modelling procedure deduces from general principles. As we
have seen, it is useful to contribute to assigning roles to known neural mechanisms, and it
complements adequately other types of modelling procedures which construct from basic
elements.

At a global level, neural systems have to be recognized as natural information-processing
systems. A full understanding of these systems has to go beyond the strictly biophysical and
biochemical levels, to complement them by descriptions involving information-processing
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schemes. Tlie present results demonstrate the usefulness of general information-theoretic
principles to contribute, in this direction, to the understanding of neural systems and their
remarkable performances for information processing.
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