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A general equation is derived that describes the behavior of a piezoelectric transducer with a 
nonuniform distribution of piezoelectric coefficient within its bulk, when submitted to an 
arbitrary distribution of acoustic pressure. Based on this equation, an expression for the 
receiving transfer function of the transducer is calculated. The results demonstrate the 
dependence of the transfer function on the distribution of piezoelectric coefficient, and that it is 
possible to benefit from a nonuniform distribution to optimize the transfer function. The 
general equation also describes the influence of the external electric circuit loading the 
transducer, which leads to another independent means of optimizing the transfer function. The 
proposed model combines effects of piezoelectric material characteristics, acoustic backing, 
and electric loading, without resorting to Mason or other equivalent circuits for the transducer. 

PACS numbers: 43.35.Qv, 43.88.Fx 

INTRODUCTION 

Acoustoelectric transducers, which are devices to con- 
vert acoustic energy into electric energy and vice versa, pres- 
ent a very large variety of applications, as for example ultra- 
sonic biomedical imaging. Different physical principles can 
be employed to implement these transducers. The piezoelec- 
tric effect is one of the most widely used in the low ultrasonic 
range. A piezoelectric transducer consists of a piece of pie- 
zoelectric material mounted with appropriate electrode pat- 
terns. Very often it has the shape of a flat piezoelectric plate 
electroded on both faces. Usually, as mechanical resonators, 
piezoelectric transducers exhibit high-quality factors, mean- 
ing that they can vibrate easily only in the vicinity of speci- 
fied frequencies. This leads to an acoustoelectric transfer 
function of the transducer that is mainly defined in a limited 
range of frequency around a center frequency. For many 
applications, it appears desirable to be able to optimize this 
transfer function, in order for instance to broaden the band- 
width of the transducer, or increase its sensitivity. Among 
the few techniques available for this purpose are the use of 
acoustic backing materials or front matching layers. •'2 We 
propose in this article a new technique for optimizing the 
transfer function of a piezoelectric transducer, which is 
based on the use of a nonuniform distribution of piezoelec- 
tric coefficient within the bulk of the transducer. 

We start first by deriving a general equation describing 
the behavior of such a nonuniform transducer when submit- 

ted to an arbitrary distribution of acoustic pressure. Then, 
based on this equation, a receiving transfer function is de- 
fined for the transducer, and we examine how the nonuni- 
form distribution of piezoelectric coefficient enables its opti- 
mization. The general equation also suggests that it is 
possible to benefit from the external electric circuit loading 
the transducer to further optimize its transfer function. The 
proposed model includes effects of acoustic backing, electric 

loading, as well as material characteristics. To describe the 
behavior of the transducer, we do not resort, as it is done very 
often, to Mason 3 or other equivalent circuits. 4'5 These equiv- 
alent circuit approaches are based on analogies between me- 
chanical quantities and transmission line theory quantities, 
instead we propose a different approach based essentially on 
Maxwell's equations and their consequences when applied 
to a piezoelectric material. 

I. GENERAL EQUATION OF THE TRANSDUCER 

Let us consider a transducer, represented in Fig. 1, made 
of a plate of piezoelectric material electroded on both faces. 
The lateral dimensions of the plate are taken very large com- 
pared to its thickness e, and it is assumed that all the quanti- 
ties in the bulk of the transducer are uniform in each plane 
parallel to the plane of the plate and can vary spatially only 
in the direction of the Oz axis perpendicular to the plane of 
the transducer. 

The material parameters that play a role in the acoustoe- 
lectric transduction process, namely, the piezoelectric coef- 
ficients d33 and g33 and the dielectric permittivity e33, will be 
allowed to be nonuniform in the Oz direction, and will be 
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FIG. 1. Configuration of the piezoelectric transducer. 
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represented respectively by the functions d33 (2), g33 (2), and 
•'33 (Z). These three functions need not be continuous and can 
exhibit discontinuities. 

We now suppose that the transducer is submitted to a 
distribution of acoustic pressure, uniform in each plane per- 
pendicular to Oz, and represented by the function p(z,t), 
which stands for the value of the acoustic pressure at abscis- 
sa z at time t in the piezoelectric material. 

We take the front electrode of the transducer, located at 
z = 0, as the reference for electric potential. As a response to 
the pressure distribution p(z,t), depending on the electric 
boundary conditions between the two electrodes, a variation 
of the potential V of the rear electrode located at z = e can 
occur, or an electric current I can flow through this rear 
electrode. 

The question we shall address now is how Vand I relate 
to the distribution of pressure and piezoelectric material pa- 
rameters. To answer this question, we start with the basic 
laws defining the expressions of the current I and the poten- 
tial V. If the current I is counted positively when it flows out 
of the rear electrode, we have 

I= --S d tr(e), (1) 
dt 

where tr(e) is the superficial density of charge induced on 
the rear electrode of surface $. 

We can express tr(e) in terms of the electric field E(z) 
and the electric polarization P(z) in the piezoelectric materi- 
al. It then follows that 

d 

I=Sd-•[eoE(e) q- P(e) ], (2) 

consistent with the assumption of rotational symmetry of 
the transducer around the Oz axis, as stated in the beginning 
of this section. Such a situation is met most of the time with 

piezoelectric transducers, and permits, as we shall see, to 
eventually reach a simple equation describing the behavior 
of the system. A more general description would require a 
tensor form of Eq. (6). We note that Eqs. (4) and (6) still 
hold in the case where discontinuities in the functions •'33 (Z) 
and d33 (2) produce discontinuities in the electric field E(z) 
and polarization P(z). 

By combining (5) and (6), we get 

E(z) • [d33(z)/633(z) ]p(z,t) + C1/633(Z). (7) 

Substituting this last expression in (3), and using the rela- 
tionship between the piezoelectric coefficients 
d33(z)/e33(z) = g33(z), one obtains 

C1 =(fO e dz - Vq-fog33(z)p(z,t)dz ) . (8) •'3• •-Z) ) 1(__ e 
According to Eq. (5), the current I defined by (2) can be 
written as 

I= sd c•. (9) 
dt 

Using in (9) the expression of C1 given by (8), and making 
the suitable arrangements, we end up with a relation govern- 
ing the time evolution of the current I(t) and the potential 
V(t)' 

I(t) + C• V(t) = C g33 (z)•p(z,t)dz, (10) 
where C, the capacitance of the transducer, is defined as 

where •o is the dielectric permittivity of vacuum. C • •33 (S/e), 
Also, for the potential V of the rear electrode, we have with 

e V= -- E(z)dz. (3) 1 1 dz •'33 e e3•z) 
(11) 

Now that I and V have been expressed in terms of E(z) 
and P(z), let us see how E(z) and P(z) relate to the pressure 
distribution p(z,t) and the piezoelectric material param- 
eters. 

First, in this one-dimensional model, the Maxwell-Pois- 
son equation can be written as 

d(eoE+P) =0, (4) 
dt 

which yields 

Equation (10) is a general equation relating the electric 
signals I(t) and V(t), which can be obtained from a piezo- 
electric transducer, to the acoustic pressure distribution 
within the transducer, and to the parameters of the piezo- 
electric material, which are allowed to be nonuniform 
throughout the bulk of the material. In practice, the trans- 
ducer is terminated in an external electrical circuit, which 

gives another relationship connecting I(t) and V(t), and 
thus a fully determined system. 

•'oE(z) q- P(z) = C1, (5) 
...• r- is a constant in ..... 

The total electric polarization P(z) at abscissa z in the 
material can be expressed as 

P(2) = [633(2) -- eo]E(z) + d33(g)p(g,t). (6) 

In the right-hand side of expression (6), the first term repre- 
sents, as a definition of the dielectric permittivity •33 (Z), the 
dielectric polarization at abscissa z; the second term is the 
piezoelectric polarization generated by the acoustic pressure 
at abscissa z. 

This way of expressing electrical and mechanical quan- 
tities by means of scalar parameters as done in Eq. (6), is 

II. APPLICATION TO SIMPLE ELECTRICAL BOUNDARY 
•l i ii• i,iiii •l i•l• 

To gain some insight into what can be deduced from Eq. 
(10), we shall see now how it applies in some particular 
situations where the transducer is used with different simple 
electrical boundary conditions between its two electrodes. 

First, let us assume that the transducer is kept in short 
circuit. We have then V-- 0, and Eq. (10) gives an expres- 
sion for the short circuit current Isc (t) flowing between the 
two electrodes of the transducer. We find 

fo * 8 Isc (t) = C g33 (z)•p(z,t)dz. (12) 
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If now the transducer is kept in open circuit conditions, 
we have I = O, and (10) gives an expression for the open 
circuit voltage Voo (t) across the transducer. We obtain, as- 
suming that when the pressure is zero throughout the trans- 
ducer its output voltage is also zero: 

fO e Vo• ( t) = g33 (z)p(z,t)dz. (13) 

We note that 

Iso (t) = C d Vo• (t). (14) 
dt 

Thus, in general, the short and open circuit signals that 
are generated by a piezoelectric transducer relate differently 
to the pressure distribution and material parameters. 

In practice, to enable the measurement of an electrical 
signal, the transducer is often terminated in a resistive load 
R, yielding V = RI. Using Eq. (10) with the expressions 
given by (12) and ( 13 ), one finds that the current ! flowing 
through the resistance, or the voltage Vacross the resistance, 
are governed by 

I(t) + RC d I(t) = Iso (t), (15) 
dt 

V(t) + RC d V(t) = RC d Voo (t). (16) 
dt dt 

If we write these two last equations in the frequency domain, 
noting the Fourier transform of each function with an accen- 
tuated letter, we obtain 

A A A 

I(co) + iRCwI(w) = L• (w), (17) 
A A A 

V(w) + iRCwV(w) = IRCwV• (w). (18) 

For the angular frequencies co that satisfy the condition 
R Cco,• 1, it is possible to neglect the second te,,rm in the left- A 

hand side of (17) and thus obtain I(co) = Iso (co), which 
shows that in these conditions the current flowing through 
the external resistance can be equated to the short circuit 
current. 

On the other hand, for the angular frequencies such that 
R Cco >> 1, the first term ofJ, he left-h•and side of Eq. ( 18 ) can 
be neglected leading to V(co) = Voo (co), which indicates 
that in these conditions the voltage across the external resis- 
tance can be equated to the open circuit voltage. 

So, let us suppose we consider a pressure distribution 
with a given frequency spectrum, and a piezoelectric trans- 
ducer of capacitance C terminated in a resistance R. If the 
value of R is large enough so that the condition RCco >> 1 is 
met throughout the spectrum of the pressure, then the vol- 
tage across R is the open circuit voltage and relates to the 
pressure distribution through Eq. (13). If the value of R is 
small enough so that the condition R Cco,• 1 is met through- 
out the spectrum of the pressure, then the current flowing 
across R is the short circuit current and relates to the pres- 
sure distribution through Eq. (12). However, in these condi- 
tions, the voltage Rison,obtained across the resistance verifies A 

according to (14) IRIso I = RCcol Voo I, so, as RCco• 1, this 
voltage Rlso measured in short circuit conditions will always 
be much smaller than the voltage measured. in open circuit 
conditions. 

In many practical cases, the signal Voo (t) constitutes 

the response of the transducer being actually measured. Tak- 
ing the Fourier transform 2f Eq. (13) leads to an explicit 
expression of the spectrum Voo (co) of the electrical response 
of the transducer, as a function of the spectrump(z, co) of the 
pressure distribution within the piezoelectric material, such 
that 

^ fo e Voc (co) • g33 (z)p(z, co)dz. (19) 

So, the frequency response of the transducer depends on the 
spectrum of the pressure, and also on the distribution of pi- 
ezoelectric coefficient g33 (2). We shall now derive a transfer 
function that will be a characteristic of the transducer only, 
and see how g33 (2) enables us to optimize this transfer func- 
tion. 

III. DERIVATION OF A TRANSFER FUNCTION 

Thus far, we have not considered any particular form 
for the pressure distribution p(z,t) within the transducer. In 
many situations where a piezoelectric transducer is utilized, 
the pressurep(z,t) in the bulk of the piezoelectric material is 
produced by an acoustic wave impinging on the front face of 
the transducer. 

So, let us now consider an incident acoustic wave consti- 
tuted by a linear superposition of plane waves traveling in 
the Oz direction toward the positive z's. This incident wave 
can be represented by the function P l(Z,t) defined in the 
region z<0. At abscissa z = 0, where the front face of the 
transducer is located, one can write for the incident wave 
before it penetrates the transducer 

1 J- oo Pl (O,co)exp(icot)dco, (20) pl(O, t) =-• 
P l (O, co) being the frequency spectrum of the incident wave 
on the front face of the transducer defined as 

Pl (0,co) = y • Pl (0, t)exp( -- icot)dt. (21) 

At abscissa z = 0, part of the incident wave Pl(Z,t) is 
reflected by the interface, and part penetrates the trans- 
ducer. At the other interface at z = e, part of the wave is 
reflected into the transducer, and part is transmitted to the 
backing medium. 

In order to deduce in these conditions the electrical re- 

sponse of the transducer given by (19), we first have to com- 
pute an expression for the resultant distribution of pressure 
p (z,t), or its Fourier transform p (z, co), within the trans- 
ducer. Thus, we have to make assumptions on the acoustic 
properties of the different media in contact to know how the 
incident pressure will get distributed. 

So, let us assume that the propagating medium of the 
incident wave has an acoustic impedance Z1, and the back- 
ing medium of the transducer an acoustic impedance Z3. The 
piezoelectric material of the transducer will have an acoustic 
impedance Z2 and a propagation constant y that will be a 
complex function of the angular frequency co defined as 

y(co) =/Y(co) --ia(co), (22) 

where a (co) is a real function representing the attenuation of 
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acoustic waves in the transducer, and/3(co) = co/c, c being 
the phase velocity of acoustic plane wavesin the transducer. 
The velocity c, as well as the acoustic impedances Z1, Z2, and 
Z3, can also be functions of the angular frequency co. How- 
ever, the acoustic parameters of the transducer are assumed 
to be spatially uniform, while its piezoelectric parameters are 
not. Strictly speaking, this situation might not be rigorously 
possible, since the acoustic and piezoelectric parameters of a 
material are closely related. Nevertheless, as the so-called 
stiffening of the acoustic parameters due to the piezoelectric 
effect remains small in most materials (6), it appears as a 
reasonable approximation to consider the influence of such 
nonuniform stiffening as negligible. The configuration of the 
system is represented in Fig. 2. 

The thickness of the electrodes of the transducer is sup- 
posed to be sufficiently small compared to the acoustic wave- 
lengths involved, so that the perturbation of the pressure 
distribution caused by these electrodes can be neglected. 

All the waves traveling to the right and to the left are 
plane waves. In particular, in the transducer, the component 
of frequency co of the spectrum • (z, co) of the total acoustic 
pressure, is composed of the sum of a plane wave traveling to 
the right and a plane wave traveling to the left; so, we can 
write 

•(z, co)exp(icot) = P3(co)exp i(cot- yz) 

+ P4(co)exp i(cot + yz). (23) 

By expressing the acoustic boundary conditions at inter- 
faces in z = 0 and z = e, i.e., the continuity of pressure and 
displacement, it is possible to relate the amplitudes P3 (co) 
and P4 (co) to •l (0,co) and to the acoustic properties of the 
media in contact. We finally get 

•(Z, co) = T12A(x,co)•l(0,co), (24) 

where A (z, co) is a complex function defined as 

exp[iy(e - z) ] + r23 exp[ - iy(e - z) ] 
A (z, co ) = , 

exp(iye) + rl2r23 exp( -- lye) 
(25) 

with 

2z• (z• - z, ) 

and 

7'12 • • r12 • , 
(z• + z, ) (z• + z, ) 

r23 • 
(Z3 +Z2) 

Propagating Medium Piezoelectric Transducer 

zt ze 

Pt •-- P3 •-- 

P2 '•' -• P4 

o e 

Backing Medium 
z• 

•z 

Now, by replacing expression (•24) in Eq. (19), the fre- 
quency response of the transducer Voc (co) is expressed as a 
function of the incident pressure spectrum •l (0,co), which 
can be considered as the excitation. It follows that 

^ ;o e Voc (co) ----: 7'12tl (0,co) g33 (z)A(z, co)dz. (26) 

It is thus possible to define a transfer function T(co) for the 
transducer by 

A 

Vo• (co) fo • T(co) •bl (O,co) -- •'• g33 (z)A(z, co)dz. (27) 
Equation (27), together with Eq. ( 25 ), provides a theo- 

retical model describing the transfer function of a piezoelec- 
tric transducer in the general case where the piezoelectric 
coefficient g33 of the material is nonuniform throughout the 
thickness. It also includes the influence of the backing medi- 
um. 

Before trying different nonuniform distributions g33 (z) 
to optimize T(co), we can first see what transfer function is 
given by Eq. (27) when g33 is uniform. Figure 3 represents 
the modulus IT(co) I of the transfer function plotted against 
frequency f= co/(2•r), evaluated numerically from (27) for 
a case representing typically a transducer made of a PVDF 
film of thickness e = 200 •m, with g33 = g•3 = 340 X 10 -3 
Vm-1 pa-1. In the calculation, we have used for PVDF 
Z2 = 2.7 X 106 kg m-2 s-l, the propagating medium is wa- 
ter with Z1 = 1.48 X 106 kg m- 2 s- l, and the transducer has 
a low acoustic impedance backing medium that gives 
r23 = - 1. We have taken for the velocity of acoustic waves 
in PVDF c = 1500 ms-1. For the curve of Fig. 3, the value 
retained for the attenuation coefficient is a = 0, the compu- 
tation results having shown that for such a thin PVDF film 
the attenuation does not play an important role. 

The calculated transfer function of Fig. 3, exhibiting a 
main peak around the frequency corresponding to the funda- 
mental thickness mode resonance, is quite consistent with 
the transfer function that can be expected from a platelike 
PVDF transducer. 

.16 

.12 

.04 

0 4 8 1• 16 •o 

FREQUENCY (MHz] 

FIG. 2. Distribution of the incident acoustic pressure p• in the three media 
in contact. 

FIG. 3. Modulus of the calculated transfer function for a 200-/•m-thick 
PVDF transducer with a uniform distribution of piezoelectric coefficient. 
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IV. OPTIMIZATION THROUGH THE DISTRIBUTION OF 
PIEZOELECTRIC COEFFICIENT 

Equation (27) shows an intricate dependence of the 
transfer function T((o) on the distribution of piezoelectric 
coefficient g33 (z). To understand better in what manner and 
to what extent T((o) can be shaped through g33 (z), let us 
rewrite (27), using expression (25), in the following way: 

( ;o e T(w) = M(y) exp(iye) g33 (z)exp( -- iyz)dz 

fo e ) + r23 exp ( -- iye) g33 (z) exp (iyz) dz , ( 28 ) 

where 

M(y) = T12 exp( -- iye)/[ 1 -3- 1'121'23 exp( -- i2ye) ]. (29) 

The value ofg33 (z) being zero outside the interval [0,e], one 
can thus write 

T(w) = M(y) [exp(iye)g33(Y) 

+ r23 exp( -- i•/½)•33( -- Y) ], (30) 

where g33 (•/) is the Fourier transform, with a complex argu- 
ment y in the general case, of the function g33 (Z)' 

Thus the transfer function T((o) has been expressed in 
Eq. (30) as the product of a function M(y), which depends 
on the geometry and acoustical properties of the transducer, 
and a term inside the brackets, which introduces the contri- 
bution of the distribution of piezoelectric coefficient through 
is Fourier transform. 

We can proceed further if we abandon the general case 
for a simpler case, which is often met in practice, in which 
neglecting the attenuation in the transducer leads to • = • 
real, and a low acoustic impedance backing gives 1'23 • -- l. 
Under these conditions, Eq. (30) becomes 

T(w) = 2iM( fl)Im [exp(i/3e)•33(r) ], (31) 
or 

T((o) = 2iM(13) Ig33 (•1) I sin(/3e + arg [g33 (•) ] ), 
(32) 

where Im[ ] and arg[ ] stand for the imaginary part and the 
phase angle of a complex number, respectively. 

Under the simplified conditions stated above, the modu- 
lus IM(B) I is a periodic function of period •r/e, oscillating 
between the extremum Z2/Z 1 attained when fl = mr/e (n 
integer) and the extremum + 1 attained when 
fl = •r/(2e)+ mr/e. The peaks of IM(/3) I centered at 
/5' = n•r/e, of height Z2/Zi, have a width that is a decreasing 
function of Z2/Zi. The function IM(r) I, which exhibits 
peaks at frequencies corresponding to the resonant frequen- 
cies of the thickness vibration modes of the transducer, with 
a natural peak width function of the acoustic impedance of 
the material, represents the spectrum of the acoustic modes 
of vibration of the transducer. For the transducer of Fig. 3, 
this acoustic vibration mode function IM( •/)1 is plotted in 
Fig. 4, versus frequency f= cfl/(2•r). 

By taking the modulus of Eq. (32), one obtains 

IT(w)l = 21M( •)l lg33( •)l Isin(/3e + arg[•33(r) ])l. 
(33) 

1.8 

1.6 

• 1.4 

1.0 
0 4 8 t2 16 20 

FREQUENCY (MHz) 

FIG. 4. Modulus of the acoustic vibration mode function for the transducer 

of Fig. 3. 

So, Eq. (32) or (33) shows that the distribution of pi- 
ezoelectric coefficient g33 (Z) plays a role in the final transfer 
function T((o) by shaping the acoustic vibration mode func- 
tion M(•) through a multiplication by its Fourier trans- 
form 1•33 ( •)l. 

In the case of a uniform distribution of piezoelectric co- 
efficient, g33(z) is equal to a constant in the interval [0,e] 
and to zero elsewhere. The modulus l•33 (,0) I of its Fourier 
transform is a sinc function having a zero at each • = 2rn•r/e 
(rn integer). This is why, as illustrated by Fig. 3, in the resul- 
tant transfer function of the transducer, the peaks of even- 
order n present in the acoustic vibration mode function 
IM(/5)1 (see Fig. 4) have disappeared. The peak of order 
n -0 of IM(/•)l also vanishes because g33(Z), being real, 
arg [g33(0) ] is zero. The peak of order n = 1 of I 
experiences the most important gain in the multiplicative 
process described by Eq. (33), l•33 ( ,O) l having strong val- 
ues in the region of this peak. Thus we end up, in the case of a 
transducer having a uniform distribution of piezoelectric co- 
efficient, with a transfer function exhibiting a main peak 
around a frequency corresponding to the fundamental reso- 
nant thickness mode. 

If we change the Fourier transform of g33 (Z), it is possi- 
ble to modify the transfer function T((o). For the transducer 
of Fig. 3, where the uniform distribution of piezoelectric co- 
efficient has been replaced successively by the nonuniform 
distributions presented in Fig. 5, Fig. 6 shows two examples 
of the transfer function evaluated numerically from (27). 
For comparison, the mean on interval [0,e] of the absolute 
value of these nonuniform distributions has been kept the 
same as that of the uniform distribution. When the results of 

Figs. 3 and 6 are compared, the modifications observed in 
the transfer function can be understood in terms of changes 
in the Fourier transform of g33 (Z)' In situation (a), the func- 
tion g33 (Z) of Fig. 5 (a) possesses a Fourier transform that 
does not vanish in the region of • = 2•r/e, as the Fourier 
transform of the uniform distribution does, but instead keeps 
strong values in this region. So, in the resultant transfer func- 
tion of Fig. 6(a), the peak corresponding to the order n = 2 
is present, leading to a broadening of the bandwidth of the 

205 J. Acoust. $oc. Am., Vol. 87, No. 1, January 1990 F. Chapeau-Blondeau and J. F. Greenleaf: Acoustoelectric transducer 205 

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  146.189.194.69 On: Thu, 18 Dec 2014 11:52:14



ß 

, (b) 
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z 

FIG. 5. Distributions of piezoelectric coefficient used in the calculation of 
the transfer functions of Fig. 6. 

transducer. In situation (b), the Fourier transform of the 
distribution g33 (z) ofFig. 5 (b) is mostly concentrated in the 
region of• = 2•r/e, so the resulting transfer function of Fig. 
6 (b) is constituted mainly by the peak corresponding to the 
order n = 2, but the sensitivity obtained for this transducer 
is twice as high as the sensitivity of a uniform transducer of 
half the thickness resonating at the same frequency. 

These examples demonstrate that it is possible to modify 
the transfer function of the transducer by varying the distri- 
bution of piezoelectric coefficient. Modifications can be per- 
formed to transform in many different ways the transfer 
function of the transducer, depending on the desired "opti- 
mal" transfer function. However, to realize any arbitrarily 
shaped transfer function would require, as shown by Eq. 
(32), to specify both the modulus and phase angle of 
•33 ( ]•)' which may not lead after inverse Fourier transform 
to physically realizable distribution g33 (2). 

V. OPTIMIZATION THROUGH THE EXTERNAL 
ELECTRIC LOAD 

We shall now present another independent way of opti- 
mizing the transfer function of the transducer, which is also 
suggested by the general equation (10). 

.16 

.12 

.os 

.04 

FREQUENCY (MHz) 

FIG. 6. Modulus of the calculated transfer functions for the transducer of 

Fig. 3 with the distributions of piezoelectric coefficient of Fig. 5. 

As discussed in Sec. II, a very common way of measur- 
ing an electric signal out of a piezoelectric transducer is to 
terminate it in an external resistive load. This method, al- 
though simple, may not be optimal in all situations. Usually, 
the question of optimizing the electric load is addressed with 
the use of an equivalent circuit for the transducer. 6 We shall 
follow here a different approach based on Eq. (10). This 
equation, which relates in a general case the electric signals 
generated by the transducer to the pressure distribution, will 
now permit examination of the behavior of the transducer 
when terminated in an arbitrary external circuit. 

First, taking the Fourier transform of Eq. (10) and us- 
ing the definition of formula (19), leads to the equation in 
the frequency domain: 

I ( to ) + i Cto V ( to ) = i Cto Vo• (to). (34) 
We now assume the transducer is terminated in an arbi- 

trary linear electric circuit, as depicted in Fig. 7, that gives 
the relations 

I(to) = Y•. (to) V(to), (35) 

V= (to) = H(to) V(to). (36) 

Here, V• (to) is the voltage measured on the output of the 
external loading circuit, H(to) is the transfer function of this 
circuit, and Y• (to) is its input admittance. 

Using Eq. (34) conjointly with ( •5 ) and (36), it is pos- 
sible to express the m?sured voltage V• (to) in terms of the 
open circuit voltage Vo• (to), which, in turn, relates to the 
pressure distribution through (19). We obtain 

Vm(to ) --- G(to) Voe (to), (37) 

where we have defined a gain function 

G(to) = iCtoH(to)/[iCto + Y• (to) ]. (38) 
When the external load is a simple resistance, we have 

Y• = 1/R and H = 1, and the gain function (38) takes the 
form 

G( to ) = iR Cto/ ( 1 + iR Cto ) . (39) 

The modulus ofthis gain function (39) is represented in Fig. 
8 (a). For the frequencies such that •RCto >> 1, •we have 
G(to) • 1 and thus, as shown in Sec. II, Vm (to) = Vo• (to). 

A 

If the spectrum Vo• (to) consists, as it is often the case 
with standard plate like piezoelectric transducers, of a main 
resonant peak around a center frequency toc, a gain function 
of type (39) flat in the region of toc might not be optimal for 
its measurement. A gain function G(to ) having, for instance, 
the form of Fig. 8 (b), easily implemented with two passive 
resonant circuits, would lead to a broadening of the band- 
width of the response of the transducer. Following this prin- 
ciple, all the techniques of synthesis oflinear electric circuits 
can be applied to define a suitable gain function for the trans- 

! I 

FIG. 7. Transducer loaded in an arbitrary linear electric circuit. 
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FIG. 8. Modulus of two different gain functions G(co). 

ducer, depending on what realizable frequency response one 
wants to achieve. 

Vl. TRANSDUCTION SYSTEM 

If the two methods of optimization that have been de- 
scribed are associated, we end up with the notion of a trans- 
duction system, which is composed of a transducer with a 
nonuniform distribution of piezoelectric coefficient, termin- 
ated in an optimal electric load. 

Using Eqs. (27) and (37), a transfer function Ts (co) 
can be defined for this transduction system, which takes the 
form 

A 

Ts (co) V,• (co) fo e =• = 7'12G(CO) g33 (Z)•(Z, CO)dz. (40) 
,•, (0,o•) 

The functions g33 (Z) and G(co) provide two indepen- 
dent means to optimize the transfer function of the transduc- 
tion system, allowing one to specify its properties to a large 
extent. 

We emphasize, suggested by the example of Fig. 6(b), 
that reduction of amplitude of the transfer function occur- 
ring in the optimization process can be compensated for by 
adjoining to the transducer additional piezoelectric layers 
with appropriate profiles of a piezoelectric coefficient. 

VII. CONCLUSION 

We have derived a general equation [ Eq. (10) ] describ- 
ing the behavior of a piezoelectric transducer having a non- 
uniform distribution of piezoelectric coefficient throughout 
its bulk. Based on this equation, an expression for the trans- 
fer function of the transducer has been calculated. The theo- 

retical model predicts that it is possible to use the distribu- 
tion of piezoelectric coefficient to specify to a large extent the 

shape of the transfer function of the transducer. Another 
independent way of optimizing the transfer function has 
been proposed which makes use of the external electric cir- 
cuit loading the transducer. These techniques can lead to 
transfer functions which depart greatly from that of a stan- 
dard platelike piezoelectric transducer, and allow one to de- 
fine an optimal transfer function dependihg on what applica- 
tion is viewed. 

In the model developed here, only the case of the receiv- 
ing mode of the acoustoelectric transducer has been consid- 
ered. The reverse case, which would be the transmitting 
mode, requires a somewhat different treatment. However, 
based on the reciprocity theorem, 7 it appears likely that the 
features predicted by the model in the receiving mode will 
have their analogs in the transmitting mode. 

Transducers with a nonuniform distribution of piezo- 
electric coefficient can be physically implemented by various 
techniques. For instance, layers of a piezoelectric material 
can be assembled together, each layer having received a sep- 
arate poling will possess a specified value for its piezoelectric 
coefficient, and will permit the definition of the distribution 
of piezoelectric coefficient by a piecewise constant function 
throughout the assembly. Another technique could be the 
use of a nonuniform electric field to carry out the poling 
process of a piezoelectric material. Physical implementa- 
tions of transducers with a nonuniform distribution of piezo- 
electric coefficient have been reported 8 providing an experi- 
mental basis to the theoretical results presented here. 
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