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Abstract For photon emission tomography, the maximum
likelihood (ML) estimator for image reconstruction is gen-
erally solution to a nonlinear equation involving the vector
of measured data. No explicit closed-form solution is known
in general for such a nonlinear ML equation, and numerical
resolution is usually implemented, with a very popular iter-
ative method formed by the expectation-maximization algo-
rithm. The numerical character of such resolutions usually
makes it difficult to obtain a general characterization of the
performance of the ML solution. We show that the nonlin-
ear ML equation can be replaced by an equivalent system
of two dual linear equations nonlinearly coupled. This for-
mulation allows us to exhibit explicit (to some extent) forms
for the solutions to the ML equation, in general conditions
corresponding to the various possible configurations of the
imaging system, and to characterize their performance with
expressions for the mean-squared error, bias and Cramér-
Rao bound. The approach especially applies to characterize
the ML solutions obtained numerically, and offers a theoret-
ical framework to contribute to better appreciation of the ca-
pabilities of ML reconstruction in photon emission tomog-
raphy.
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1 Introduction

Photon emission tomography is an important imaging mo-
dality for noninvasive observation of the internal struc-
ture of three-dimensional objects, especially of biological
interest [1, 5]. It relies on a radioisotope tracer selec-
tively tagging the internal constituents and emitting high-
energy (gamma) photons, either directly as in single photon
emission tomography, or indirectly through local annihila-
tion of positrons as in positron emission tomography. The
high-energy photons reach the outside of the object, and are
collected by an external array of detectors. These measured
photon data are then processed to reconstruct an image of the
spatial distribution of the tracer inside the object. For such a
photon-limited imaging modality, a finite-dimensional sta-
tistical modeling is often found appropriate, to describe
both the physics of the process and the fluctuations inher-
ent to photon detection. In such a statistical framework,
a reference approach to image reconstruction is through
the general method of maximum likelihood (ML) [41, 42].
Statistical ML image reconstruction has been shown su-
perior to deterministic linear-filtering based reconstruction
methods like the filtered backprojection method for instance
(although improvements are still proposed [6]) in that it usu-
ally exhibits improved signal-to-noise ratio, improved image
resolution, even at low counts of photons [8].

In this context of photon emission tomography, the ML
estimator for image reconstruction is generally solution to a
nonlinear equation involving the set of measured data. No
explicit closed-form solution is known in general for such a
nonlinear ML equation. In practice, numerical resolution is
usually implemented, with a very popular iterative method
formed by the expectation-maximization (EM or EM-ML)
algorithm [22, 42, 44]. ML image reconstruction is impor-
tant both as a theoretical reference and as a practical method-
ology, and accordingly it has been the subject of numerous
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studies and refinements, especially its practical implemen-
tation through EM-ML [4, 23]. An efficient method pro-
posed to accelerate the reconstruction is the ordered sub-
set method, which implements the successive EM-ML iter-
ations sequentially on subsets of the data which are evenly
distributed around the scene to be imaged [11, 21]. To re-
duce the noise inherent to ML estimation from a single re-
alization of a statistical process [24], it has been found use-
ful to stop the EM-ML algorithm before convergence, ac-
cording to various rules, with the effect of biasing the re-
constructed image toward its initial estimate [11, 45, 46].
Also, to regularize the reconstructed image, a penalty crite-
rion based on a priori knowledge can be added to the likeli-
hood and interpreted in a Bayesian or maximum a posteriori
framework [7, 14, 15, 17, 19, 26, 29, 40].

Depending on the configuration of the imaging system,
the nonlinear ML equation can have nonunique solutions,
and in this case the outcome of the EM-ML algorithm gen-
erally varies with the initial condition [42, 44]. Also, the nu-
merical character of the estimation realized by the EM-ML
algorithm or any other numerical resolution, usually makes
it difficult to obtain a general characterization of the perfor-
mance of the ML estimator, for instance in terms of mean-
squared error, bias, variance or Cramér-Rao bound. In this
report, we show that the nonlinear ML equation for image
reconstruction in photon emission tomography, can be re-
placed by an equivalent system of two linear equations non-
linearly coupled. This formulation allows us to exhibit ex-
plicit (to some extent) forms for the solutions to the ML
equation, in general conditions corresponding to the vari-
ous possible configurations of the imaging system. With this
approach, we also provide a characterization of the perfor-
mance of the ML estimator, by means of explicit expressions
for its mean-squared error, bias and Cramér-Rao bound. The
approach especially applies to characterize the ML solutions
numerically obtained by the EM-ML algorithm or by any
other numerical resolution. The results offer a theoretical
framework to contribute to better appreciation of the capa-
bilities of ML reconstruction in photon emission tomogra-
phy. In the paper, we develop the theoretical characteriza-
tion of the solutions to the direct unconstrained ML estima-
tion, which forms an important reference with a well-defined
status. We then discuss its connections to the positively-
constrained ML problem often considered in practice, and
to the practically important EM-ML algorithm and its ini-
tialization and convergence conditions.

2 Model for Photon Emission Tomography

We consider a standard model of photon emission tomogra-
phy as for instance described in [42, 44]. We have N inde-
pendent sources of photons realized by the N voxels defin-
ing the object to be imaged. Each such source is modeled as

a Poisson process with intensity θi , for i = 1 to N . The N

parameters θi are the unknowns to be estimated for image
reconstruction, that we organize in the N × 1 column vector
θ = [θ1, θ2, . . . , θN ]�.

Measurements are collected by an array of M photon de-
tectors, delivering M mutually independent data counts yj

having Poisson distribution of intensity λj , associated with
the probability

Pr(yj ) = exp(−λj )
λ

yj

j

yj ! , for j = 1,2, . . . ,M. (1)

The intensities λj of the M observable Poisson pro-
cesses, are related to the intensities θi of the N unobservable
Poisson processes, through the M affine functions

λj (θ) = rj +
N∑

i=1

pjiθi, for j = 1,2, . . . ,M, (2)

or under matrix form

λ(θ) = r + Pθ , (3)

with the M × 1 column vector λ = [λ1, λ2, . . . , λM ]�. The
M × 1 vector r = [r1, r2, . . . , rM ]� denotes the (assumed
known) intensities of M independent Poisson processes rep-
resenting the background events on each of the M detectors
(background radiation, random coincidences, scatter, etc.)
[16, 38, 43]. The M × N matrix P in Eq. (3) is formed
with nonnegative coefficients pji ∈ [0,1] interpretable as
the probability that a photon emitted by source i is measured
by detector j . These coefficients pji are usually fixed by the
tomographic imaging system (chiefly its geometry) and at-
tached to it [42, 44]. There is a normalization condition for
each source i reading

M∑

j=1

pji = si , (4)

with often si = 1 for all i = 1 to N , as a result of the proba-
bilistic interpretation of the coefficients pji , but this is not a
necessary restriction [33, 42].

3 ML Estimation

For estimation of the unknown source parameters θ from
the vector of data y = [y1, y2, . . . , yM ]�, a useful approach
is provided by the maximum likelihood (ML) method. The
likelihood of the vector parameter θ is

L(θ ,y) =
M∏

j=1

exp(−λj )
λ

yj

j

yj ! , (5)
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and the loglikelihood is

lnL(θ ,y) =
M∑

j=1

{−λj (θ) + yj ln
[
λj (θ)

] − ln(yj !)
}
. (6)

ML estimation seeks that value of the parameter θ maximiz-
ing the likelihood or equivalently the loglikelihood.

In order to maximize the loglikelihood, we consider the
kth component of its gradient

∂

∂θk

lnL(θ ,y) =
M∑

j=1

[
−pjk + yjpjk

λj (θ)

]

= −sk +
M∑

j=1

yjpjk

λj (θ)
, (7)

where the second equality follows from the condition of
Eq. (4). Equating to zero the N derivatives similar to Eq. (7)
provides a system of N equations

M∑

j=1

yjpjk

λj (θ)
= sk, for k = 1,2, . . . ,N, (8)

or equivalently, thanks to Eq. (2),

M∑

j=1

yjpjk

rj + ∑N
i=1 pjiθi

= sk, for k = 1,2, . . . ,N. (9)

The system of Eqs. (8) or (9) is a system of N nonlin-
ear equations in the N unknowns [θ1, θ2, . . . , θN ]� = θ .
It is commonly solved numerically by the expectation-
maximization (EM-ML) algorithm [22, 42, 44], through the
iteration

θnew
k = θold

k

sk

M∑

j=1

yjpjk

λj (θ
old)

, for k = 1,2, . . . ,N. (10)

The second derivative of the loglikelihood from Eq. (7)
yields

∂2

∂θk∂θ�

lnL(θ ,y) =
M∑

j=1

−yjpjkpj�

[λj (θ)]2
(11)

=
M∑

j=1

−yjpjkpj�

(rj + ∑N
i=1 pjiθi)2

. (12)

Since the pji ’s are nonnegative, the derivatives of Eqs. (11)–
(12) constitute the coefficients of a negative semidefinite
quadratic form of RN×1 [42, 44] ensuring that the loglikeli-
hood lnL(θ ,y) is a concave (∩) function in the variable θ .
Therefore, any extremum of lnL(θ ,y) is a global maxi-
mum. Iteration of the EM-ML algorithm of Eq. (10) con-
verges to such a global maximum of lnL(θ ,y) providing an
ML estimate of θ [22, 42, 44].

4 Characterization of the ML Solution Set

The EM-ML algorithm of Eq. (10) provides a way to one
solution to the ML estimation, which especially may de-
pend on the initialization of the iteration process [42, 44].
We shall now try to obtain a more general characterization
of the solution set to the ML estimation.

4.1 A Linear System and Its Dual for ML

The ML equation of Eqs. (8) or (9) forms a nonlinear system
in the N unknowns [θ1, θ2, . . . , θN ]� = θ . To characterize
the general solution to this nonlinear system, we introduce
the set of M auxiliary variables zj = yj/λj , for j = 1 to
M . In the variable z = [z1, z2, . . . , zM ]�, the nonlinear ML
equation of Eq. (8) is equivalent to

P�z = s, (13)

with the N × 1 vector s = [s1, s2, . . . , sN ]�. Because of
Eq. (4), the linear system of Eq. (13) always has for solution
the M × 1 vector z = [1,1, . . . ,1]� = 1M . Thus, the linear
system of Eq. (13) has at least one solution z = 1M , and it
may have others more. The general solution to Eq. (13) is
expressible as z = 1M + Ker(P�), with Ker(P�) the null
space of P�.

When solving Eq. (13), each component zj = yj /λj of
the unknown z has to be considered as a free independent
variable. The reason is that, when we are at the stage of solv-
ing the ML equation of Eq. (8) and the subsequent Eq. (13),
then yj is known from measurement, but on the contrary
λj is an unknown scalar, transferring this status to the aux-
iliary variable zj . Then every zj composing a solution z to

Eq. (13), determines a value λ̂j = yj /zj for the unknown λj .
In vector form, λ̂ = y./z, with y./z indicating component-
wise division, i.e. the M × 1 vector with component yj /zj

for j = 1 to M . And this λ̂ satisfies the ML equation of (8),
because z satisfies Eq. (13). Next, because of the model of
Eq. (3), this λ̂ satisfying Eq. (8), may have been produced
by any source θ = θ̂ satisfying

P̂θ = y./z − r, (14)

yet with possibly no θ̂ solving Eq. (14) and allowing to reach

λ̂ solving Eq. (8). In this way, not all z solving Eq. (13) can
be associated with a θ solving Eq. (8). But on the contrary,
every solution θ = θ̂ to Eq. (8) is necessarily associated with
a z = y./λ(̂θ) solving Eq. (13). Therefore, the solutions to
the linear Eq. (14) with z solving Eq. (13) define the only
possible solutions to the nonlinear ML equation of (8). It
is now tractable to explicitly characterize the solutions to
Eq. (14), as a linear system parameterized by z solution to
Eq. (13), by means of standard linear algebra considerations
[1, 37].
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The linear system of Eq. (14) has a solution (at least
one) if and only if y./z − r is an M × 1 vector belonging
to range(P), the range of P, which is a subspace of RM×1

also known as the consistency space of P which is identical
to Ker(P�)⊥, the orthogonal complement of the null space
Ker(P�). Equivalently, the linear system of Eq. (14) has a
solution (at least one) if and only if

PP+(y./z − r) = y./z − r, (15)

where P+ is the Moore-Penrose pseudoinverse matrix of P.
And when the condition of Eq. (15) is satisfied, any solution
to Eq. (14) is given by

θ̂ = P+(y./z − r) + (
IN − P+P

)
u (16)

= θ̂ z + θ̂0, (17)

with

θ̂ z = θ̂ z(y) = P+(y./z − r), (18)

and

θ̂0 = (
IN − P+P

)
u, (19)

where IN is the N × N identity matrix and u is an arbitrary
vector from R

N×1.
The pseudoinverse P+ always satisfies PP+P = P and

as a consequence, the N × 1 vector θ̂0 of Eq. (19) verifies
P̂θ0 = 0M and stands as an arbitrary vector from the null
space of P. This occurs for any N ×1 vector u and therefore
establishes the matrix (IN − P+P) as the projector of RN×1

on this null space Ker(P).
Also, the pseudoinverse P+ always satisfies P+PP+ =

P+. As a consequence, the N × 1 vector θ̂ z of Eq. (18),
when projected on Ker(P) yields (IN − P+P)̂θz = (P+ −
P+PP+)(y./z−r) = 0N . Therefore θ̂ z of Eq. (18) is always
a N ×1 vector from the subspace Ker(P)⊥ orthogonal to the
null space Ker(P).

The null space Ker(P) and its orthogonal complement
Ker(P)⊥ in R

N×1 form the direct sum Ker(P) ⊕ Ker(P)⊥ =
R

N×1, ensuring that any vector of RN×1 uniquely decom-
poses as a vector from Ker(P) plus a vector from Ker(P)⊥.
This is especially the case for the true (unknown) value
θ = θ true of the parameter, which uniquely decomposes as

θ true = [
θ1 ∈ Ker(P)⊥

] + [
θ0 ∈ Ker(P)

]
. (20)

The subspace Ker(P)⊥ is called the measurement space,
and the part θ1 of θ true or the part θ̂ z of θ̂ , is called the mea-
surement part. Meanwhile, the part of θ true or of θ̂ formed
by the null vector θ0 or θ̂0 of the null space Ker(P), is called
the null part. For consistency with the model of Eq. (3), one
has

θ1 = P+(λ − r), (21)

or also λ = r + Pθ1 showing that the measured data are in-
fluenced only by the measurement part θ1 of θ true and not
by the null part θ0.

We therefore obtain the following characterization of the
general solution to the ML equation of Eq. (8). We con-
sider any z from the subset {1M + Ker(P�)} and realiz-
ing a vector y./z − r belonging to the consistency space
range(P) = Ker(P�)⊥ defined by Eq. (15). Each such z de-
termines by Eqs. (16)–(17) the solutions to the ML equation
of Eq. (8), and there are no other solutions to Eq. (8).

Equations (14) based on P and (13) based on P�, can
be seen as two dual linear systems; one is underdetermined
when the other is overdetermined, and conversely. By com-
bining the solutions to Eqs. (13) and (14), the general so-
lution to the ML equation of (8) can be further specified in
the following way, in the various conditions which can arise
when N unknown sources θ have to be estimated from M

measured data y.

4.2 Underdetermined System

When P as rank rank(P) ≤ M < N , then the dual system
from Eq. (13) with N equations in M < N unknowns, is an
overdetermined system with the unique solution z = 1M and
Ker(P�) is the trivial subspace {0M}. In this condition, the
nonlinear ML equation (8) is equivalent to the linear equa-
tion (14) at z = 1M , reading

P̂θ = y − r. (22)

The consistency space is Ker(P�)⊥ = R
M×1. The primal

system from Eq. (22) with M equations in N > M un-
knowns, is an underdetermined system, with an infinite
number of solutions under the form θ̂ = θ̂1 + θ̂0 according
to Eqs. (16)–(17) at z = 1M , i.e. with

θ̂1 = P+(y − r). (23)

There is thus an infinite number of distinct ML estimators θ̂ ,
each for every arbitrary vector θ̂0 from the null space Ker(P)

in Eq. (19). However, the solution in the measurement space
Ker(P)⊥, i.e. θ̂ = θ̂1 from Eq. (23), always forms the solu-
tion of minimum Euclidean norm to Eq. (22). Also, there is
no other ML estimator than these θ̂ = θ̂1 + θ̂0 solutions to
Eq. (22).

For the underdetermined system, the solutions of the non-
linear ML equation (8) are thus equivalent to the solutions
of the linear equation (22) which has the same form as the
model equation (3). The linear equation (22), when it admits
solutions, defines the moment estimates, as called in [44],
which are equivalent to the ML estimates. This is no longer
true, as we shall see, in the case of the overdetermined sys-
tem, when Eq. (22) typically admits no solution and an ML
estimator solution to Eq. (8) still exists in general.
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4.3 Uniquely Determined System

When rank(P) = M = N , then the dual system from
Eq. (13) is a uniquely determined system with the unique
solution z = 1M and the trivial null space Ker(P�) = {0M}.
Also, the primal system formed by Eq. (14) at z = 1M ,
is a uniquely determined system with the unique solution
θ̂ = P−1(y − r) realizing the unique ML estimator, since
the pseudoinverse P+ coincides with the true inverse P−1

and Eq. (19) gives the null vector θ̂0 ∈ {0N } = Ker(P).

4.4 Overdetermined System

When rank(P) ≤ N < M or rank(P) < N = M , then the
dual system from Eq. (13) is in general an underdetermined
system with an infinite number of solutions under the form
z = 1M + Ker(P�) and Ker(P�) ⊃ {0M}. Equivalently, us-
ing the projector IM − PP+ onto Ker(P�), any z solution to
Eq. (13) is expressible as z = 1M + (IM − PP+)v for any
vector v from R

M×1. For each z solution to Eq. (13), the as-
sociated primal system from Eq. (14) is in general an overde-
termined system. The consistency space is Ker(P�)⊥ ⊂
R

M×1, and in such case, Eq. (14) has the unique solution

θ̂ = P+(y./z − r) (24)

or no solution. The solution to Eq. (14) exists as Eq. (24) if
and only if Eq. (15) is satisfied. For each z solving Eq. (13),
the solution in Eq. (24), when it exists, defines an ML esti-
mator. One such a solution to the ML equation of Eq. (8) can
be expected to always exist, in nondegenerate tomographic
systems where the intensities θ and λ are not all simultane-
ously zero. In such nondegenerate conditions, for any valid
data y ∈ [0,∞[M , the likelihood L(θ ,y) of Eqs. (5)–(6) is
> 0 for any finite θ , with a vanishing asymptotic behavior
L(θ ,y) → 0 for large θ of norm ‖θ‖2 → ∞. Since L(θ ,y)

is a concave (∩) function in the variable θ , there necessarily
exists at least one finite θ maximizing L(θ ,y) and therefore
solving Eq. (8); and such θ is bound to follow as a solution
to Eq. (14) under the form of Eq. (24) for some z in the
subset {1M + Ker(P�)}.

It can also be argued that such an ML solution can gen-
erally be expected to be unique. A z in {1M + Ker(P�)}
verifies Eq. (13) which represents a system of R inde-
pendent scalar equations, to be satisfied by the M > R

scalar components of z, with R = rank(P�) = rank(P) ≤
N < M . Equivalently, since the dimension of Ker(P�) is
M − R, the M × 1 vector z solving Eq. (13) is forced to
live in the subset {1M + Ker(P�)} by R scalar constraints.
Next, for a fixed data vector y, for an ML solution to ex-
ist, z solving Eq. (13) has also to satisfy Eq. (15). Since
also rank(PP+) = rank(P) = R, the system of M scalar
equations formed by Eq. (15) contains only M − R inde-
pendent scalar constraints while the R others are redundant

and automatically satisfied. Equivalent to Eq. (15) is that
the M × 1 vector (y./z − r) in Eq. (14) has to live in the
consistency space range(P) = Ker(P�)⊥ having dimension
R = rank(P). This is obtained by M −R independent scalar
constraints expressed by Eq. (15), reducing the degrees of
freedom of (y./z − r) from M to R. Since y and r are fixed
given M × 1 vectors, this is in fact onto z that the M −R in-
dependent scalar constraints are imposed by Eq. (15). Sum-
marizing, on the M × 1 vector z, R scalar constraints are
imposed by Eq. (13) and M − R by Eq. (15). This is a to-
tal of M constraints imposed together by Eqs. (13) and (15)
which generally determine one unique z, which in Eq. (24)
fixes one unique ML estimator. This is true except maybe in
some peculiar conditions where more than one solution for
z might exist.

It should be noted that, because of the division by z in
Eq. (15), the combination of Eqs. (13) and (15) which in
general uniquely determines z, forms a system of nonlinear
equations in z. This is a resurgence of the nonlinearity ini-
tially present in the ML equation (8). Once a solution z to
the system of Eqs. (13) and (15) is known, an explicit form
follows for the ML estimator θ̂ with Eq. (24). Beyond the
theoretical characterization of the ML estimator it enables,
the nonlinear system formed by Eqs. (13) and (15), from a
practical standpoint may not be straightforward to solve. It
offers nevertheless another route to the ML estimator, com-
plementing for instance the EM-ML algorithm of Eq. (10),
since both approaches are bound to yield the same ML esti-
mator when it is unique.

We note that in general the simple choice z = 1M does
not solve Eq. (15). This would impose (y − r) to perma-
nently remain an eigenvector of PP+ for any data y. More
degrees of freedom with z = 1M are usually needed to sat-
isfy Eq. (15) with an arbitrary y. The eigendirections of PP+
are fixed, and z = 1M is needed to place (y./z − r) in an
eigendirection of PP+ for any y. A simple interpretation
of Eq. (24) is that the ML estimator θ̂ performs a nonuni-
form attenuation or amplification of the data y, selectively
for each detector j , controlled by z from {1M + Ker(P�)}.

An Approximation to the ML Solution It can be envisaged,
as an approximation to the ML solution, to select a z which
does not solve Eq. (15), then Eq. (14) has no solution for
this z. Nevertheless, θ̂ from Eq. (24) still achieves the mini-
mum of the Euclidean norm ‖P̂θ − (y./z − r)‖2 associated
with Eq. (14), and as such this θ̂ may constitute a useful esti-
mator, especially via the following path. If the z which does
not solve Eq. (15) is nevertheless selected from the subset
{1M + Ker(P�)}, then this z solves Eq. (13) and therefore
determines λ̂ = y./z satisfying the ML equation (8). If the
norm is some small scalar ε > 0, i.e. ‖P̂θ −(y./z−r)‖2 = ε,
then we have the vector P̂θ +r which differs from the vector
y./z by a small vector ε with the small norm ‖ε‖2 = ε, i.e.
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P̂θ + r = y./z + ε ≈ y./z = λ̂. In this respect, the estimator
θ̂ from Eq. (24) performs close, by the small amount ε, to a
genuine ML estimator exactly solving Eq. (8).

The characterization of the ML estimator under the form
of Eq. (24) is thus also interesting as a form to suggest use-
ful alternative estimators. The procedure will be, employ-
ing Eq. (24), to select a z from the subset {1M + Ker(P�)}
achieving a small norm ‖P̂θ − (y./z − r)‖2 relative to
some appropriate level of precision. Then, such a z will
settle in Eq. (24) an estimator behaving close to a genuine
ML estimator. Various heuristics can be devised to select
such an interesting z, possibly iteratively, among the form
z = 1M + (IM − PP+)v for any vector v from R

M×1 which
uses the projector IM − PP+ onto Ker(P�).

4.5 Expressing the Pseudoinverse

With N unknown sources θ to be estimated from M mea-
sured data y several configurations can arise, which con-
trol the explicit expression ascribable to the Moore-Penrose
pseudoinverse matrix P+ introduced in Eq. (15) and which
served to us to express the solutions to the nonlinear ML
equation of (8) for tomographic reconstruction. From stan-
dard linear algebra, these possible expressions for P+ come
as follows [1, 37].

A possible configuration in tomography [42, 44] is when
the M × N system matrix P as rank rank(P) = M < N , i.e.
P has M independent rows. In this case, the expression of
the pseudoinverse P+ is

P+ = P�(
PP�)−1

, (25)

and as a consequence P+ is the right inverse of P verify-
ing PP+ = IM. This ensures that Eq. (15) is automatically
satisfied, and the subsequent solution exists.

A special configuration is when rank(P) = M = N ,
yielding P+ = P−1 the true inverse. Here P is perfectly in-
vertible, and P+P = IN cancels the vector θ̂0 in Eq. (19).
There is then a unique ML estimator θ̂ = θ̂1 = P−1(y − r)

from Eq. (16).
Another configuration is when rank(P) = N < M , i.e. P

has N independent columns. In this case, the expression of
the pseudoinverse is

P+ = (
P�P

)−1P�, (26)

and as a consequence P+ is the left inverse of P verify-
ing P+P = IN. This is enough to cancel the null part θ̂0 of
Eq. (19), in the solution to Eq. (14). Its solutions exist in the
measurement space Ker(P)⊥ according to Eq. (24) or do not
exist.

Other more peculiar configurations, when P has a rank
strictly smaller than the minimum of M and N , can still be
handled, from standard linear algebra, to obtain an explicit
expression for the pseudoinverse P+.

5 Performance of the ML Estimator

Equation (16) parameterized by z solution to Eq. (13) offers
an analytical form for the solution to the ML reconstruc-
tion in emission tomography. This can serve to a character-
ization of the performance of the estimators deduced from
Eq. (16), by determining their bias and mean-squared error
as we shall now do. Yet before, we briefly recall a general
limit of performance in estimation established via the Fisher
information.

5.1 Fisher Information

In general, for estimation of an N × 1 vector parameter θ

from the M × 1 data y, the Fisher information matrix F =
[Fk�] is the symmetric N × N matrix with the Fk� element
defined from the likelihood L(θ ,y) as the statistical average

Fk� = −
〈

∂2

∂θk∂θ�

lnL(θ ,y)

〉
. (27)

The Fisher information allows for a general characterization
of the performance in estimation. Any estimator θ̃(y) for the
parameter θ , achieves an estimation error θ̃ − θ , associated
with a bias b(̃θ) = 〈̃θ − θ〉, and a correlation matrix of the
error C satisfying the Cramér-Rao inequality [1]

C = 〈
(̃θ − θ)(̃θ − θ)�

〉 ≥ BCR, (28)

where the Cramér-Rao lower bound is

BCR = bb� + (
IN + ∇b�)

F+(
IN + ∇b�)�

, (29)

with the N ×1 nabla derivation operator ∇·= [∂ · /∂θ1, . . . ,

∂ · /∂θN ]�. The pseudoinverse F+ in Eq. (28) reduces to the
true inverse F−1 when the square matrix F is nonsingular.

In the present model for emission tomography, for the
Poisson processes yj we have from Eq. (1) the statistical
average 〈yj 〉 = λj , for j = 1 to M . Then, based on Eq. (2),
we have Eq. (11) leading to

Fk� =
M∑

j=1

pjkpj�

λj (θ)
. (30)

We therefore have in matrix form

F = P� diag
[

1

λj (θ)

]
P, (31)

where diag[·] denotes the diagonal matrix with the specified
elements, and with the proviso that the Fisher information is
evaluated at θ = θ true, the true value of the vector parameter
[28]. The characterization of Eq. (31) of the Fisher infor-
mation matrix in emission tomography is well known and
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can be found in [20, 28] for instance. From Eq. (31), we can
push the characterization a little further by noting

F = A�A, (32)

with the M × N matrix

A = diag
[

1√
λj

]
P. (33)

And based on a property of the pseudoinverse [1],

F+ = (
A�A

)+ = A+A+�, (34)

since A�+ = A+� always.
From matrix theory [1], if a matrix X1 with M columns

has (full column) rank M , and a matrix X2 with M rows
has (full row) rank M , then (X1X2)

+ = X2
+X1

+. In A of
Eq. (33), the M × M diagonal matrix diag[1/

√
λj ] has al-

ways (full column) rank M . Then, only when the system is
not overdetermined, i.e. when M ≤ N and P has rank M ,
can we conclude that

A+ = P+ diag[√λj ], M ≤ N, (35)

since (diag[1/
√

λj ])+ = (diag[1/
√

λj ])−1 = diag[√λj ].
And in this case, the pseudoinverse Fisher information ma-
trix of Eq. (34) can receive a more explicit expression as

F+ = P+ diag[λj ]P+�, M ≤ N. (36)

Otherwise, when M > N for the overdetermined system,
Eq. (35) does not hold, nor Eq. (36).

One can also use the variance-covariance matrix of the
error

V = 〈(
θ̃ − 〈̃θ〉)( θ̃ − 〈̃θ〉)�〉

, (37)

related to the correlation matrix C = V + bb�, and, from
Eqs. (28)–(29), satisfying the inequality

V ≥ ∇〈̃θ〉� F+ (∇〈̃θ〉�)�
. (38)

5.2 Bias

5.2.1 Underdetermined System

We start with the condition of an underdetermined system
as in Sect. 4.2 when the ML estimator is θ̂(y) = θ̂1 + θ̂0.
The measurement part θ̂1 = θ̂1(y) = P+(y − r) is depen-
dent on the data y, according to Eq. (23). However, the null
part θ̂0 = θ̂0(y) of Eq. (19) can, in general, also be consid-
ered dependent on the data y, if the estimation algorithm
constructs it in this way. We then have the statistical average

〈̂θ〉 = 〈̂θ1〉 + 〈̂θ0〉. (39)

With the statistical average 〈yj 〉 = λj , for j = 1 to M , in
vector form, from Eq. (3), we have 〈y〉 = λ = r + Pθ . From
Eqs. (23) and (21) we then obtain

〈̂θ1〉 = P+(〈y〉 − r
) = P+(λ − r) = θ1. (40)

In this way, Eq. (39) gives

〈̂θ〉 = θ1 + 〈̂θ0〉. (41)

Confronting Eq. (41) with θ = θ true from Eq. (20), we
conclude that the ML estimator θ̂ = θ̂1 + θ̂0 has a bias
b(̂θ) = 〈̂θ〉 − θ which reduces to the N × 1 vector

b(̂θ) = 〈̂θ0〉 − θ0. (42)

The ML estimator θ̂ = θ̂1 + θ̂0 for the underdetermined
system of Sect. 4.2 is therefore unbiased if and only if
〈̂θ0〉 = θ0. This means that the estimator θ̂ = θ̂1 + θ̂0 has
to construct its estimate by incorporating a null vector θ̂0
whose average is the null vector θ0 of Ker(P) that makes up
the true parameter θ true = P+(λ − r) + θ0, if ever it exists
and can be known.

5.2.2 Uniquely Determined System

We note that a zero bias is automatically achieved in the
condition of a uniquely determined system as in Sect. 4.3,
when the ML estimator reduces to θ̂ = P−1(y − r).

5.2.3 Overdetermined System

We now turn to the condition of an overdetermined system
as in Sect. 4.4 when the estimator is θ̂ = P+(y./z − r) of
Eq. (24). If we want this θ̂ of Eq. (24) to be an exact ML
estimator solving Eq. (8), then in general the value of z in
Eq. (24) has to be precisely matched to the data y, by solv-
ing the nonlinear system of Eqs. (13) and (15) as explained
in Sect. 4.4. Therefore, in general, the exact ML estimator
θ̂ = P+(y./z − r) of Eq. (24) involves a data-dependent
z = z(y). Then this estimator has the statistical average
〈̂
θ(y)

〉 = P+(〈y./z〉 − r
)
. (43)

The overdetermined system is associated with the trivial null
space Ker(P) = {0N }, and from Eq. (20) the unknown true
parameter reduces to the form θ = θ true = P+(λ − r) of
Eq. (21). The bias b(̂θ) = 〈̂θ〉 − θ therefore follows as

b(̂θ) = P+(〈y./z〉 − λ
)
. (44)

We always have 〈y〉 = λ. But we have seen in Sect. 4.4
that in general z(y) = 1M for the ML estimator. The bias
of Eq. (44) is thus unlikely to vanish in general. It is how-
ever difficult to further specify the statistical evaluation of
the ML estimator θ̂ = P+(y./z− r) in the absence of an ex-
plicit expression for z(y) pending to analytical resolution of
the nonlinear system of Eqs. (13) and (15).
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Bias in an Approximation to the ML Solution As an al-
ternative, a tractable reference is the situation where θ̂ =
P+(y./z − r) of Eq. (24) is constructed with a data-
independent z to implement an approximation to the ML
estimator in the sense described at the end of Sect. 4.4. For
the estimator θ̂ = P+(y./z − r) from Eq. (24) with a fixed
data-independent z, the average of Eq. (43) reduces to

〈̂θ〉 = P+(λ./z − r), (45)

and the bias to

b(̂θ) = P+(λ./z − λ). (46)

For a fixed z = 1M the bias of Eq. (46) is also unlikely to
vanish in general; this would require λ./z − λ to always re-
main in the null space Ker(P+), and this is usually not pos-
sible with P fixed by the tomographic system and λ vary-
ing with the imaged scene. The bias of Eq. (46) vanishes in
the special case z = 1M , but this choice removes the flexi-
bility of a more interesting choice z = 1M from the subset
{1M + Ker(P�)} as explained in Sect. 4.4.

From Eq. (46) one also has the derivative

∇b� = P� diag[1/zj ]P+� − IN. (47)

5.3 Correlation of the Error

The estimator θ̂ achieves an estimation error θ̂ − θ with a
correlation given by the N × N symmetric matrix

C(̂θ) = 〈
(̂θ − θ)(̂θ − θ)�

〉
. (48)

5.3.1 Underdetermined System

In the condition of the underdetermined system of Sect. 4.2
when the ML estimator is θ̂(y) = θ̂1(y) + θ̂0(y), by devel-
oping and rearranging Eq. (48), and using 〈̂θ1〉 = θ1 from
Eq. (40), one obtains

C(̂θ) = C1 + C0 + C01 + C01
�, (49)

with the N × N matrices

C1 = 〈
(̂θ1 − θ1)(̂θ1 − θ1)

�〉 = 〈
θ̂1θ̂

�
1
〉 − θ1θ

�
1 , (50)

C0 = 〈
(̂θ0 − θ0)(̂θ0 − θ0)

�〉
, (51)

and

C01 = 〈
θ̂0(̂θ1 − θ1)

�〉 = 〈
θ̂0θ̂

�
1
〉 − 〈̂θ0〉θ�

1 . (52)

From Eq. (23) it comes

〈
θ̂1θ̂

�
1
〉 = P+〈

(y − r)(y − r)�
〉
P+�. (53)

For the M independent Poisson processes yj of Eq. (1) one
has the statistical average 〈y2

j 〉 = λ2
j + λj , for j = 1 to M ,

yielding
〈
yy�〉 = λλ� + diag[λj ], (54)

whence
〈
(y − r)(y − r)�

〉 = (λ − r)(λ − r)� + diag[λj ]. (55)

Then Eq. (53) becomes

〈
θ̂1θ̂

�
1
〉 = θ1θ

�
1 + P+ diag[λj ]P+�. (56)

As a result, the correlation matrix of the error in Eq. (49)
is expressible as

C(̂θ) = P+ diag[λj ]P+� + 〈
(̂θ0 − θ0)(̂θ0 − θ0)

�〉

+ C01 + C01
�. (57)

Further characterization of the error correlation matrix
C(̂θ) requires to explicitly specify the null vector θ̂0(y) im-
plemented by the estimation algorithm to construct its ML
estimate.

For instance, a special case is the situation of the ML es-
timator θ̂(y) = P+(y − r) + θ̂0 with a constant θ̂0 indepen-
dent of the data y. In this case, the error correlation matrix
of Eq. (57) becomes

C(̂θ) = bb� + P+ diag[λj ]P+�, (58)

with the constant bias b = θ̂0 − θ0 from Eq. (42). More-
over, in this special case of a constant bias, the right-hand
side of Eq. (58) precisely matches the Cramér-Rao bound
BCR of Eq. (29), thanks to Eq. (36) for the underdeter-
mined system. Therefore, an ML estimator under the form
θ̂(y) = P+(y − r) + θ̂0 with a constant θ̂0, is always effi-
cient, since its error has a correlation matrix C(̂θ) reaching
the Cramér-Rao lower bound BCR. However, we are deal-
ing here with biased ML estimators, and so the Cramér-Rao
bound is not intrinsic but is dependent on the estimator itself,
via its constant bias b = θ̂0 − θ0. It is therefore reason-
able to ask for the ML estimator θ̂(y) = P+(y − r) + θ̂0
associated with the lowest (in some sense) Cramér-Rao
bound BCR. A sensible approach is to concentrate on the
trace tr[C(̂θ)] of the correlation matrix of the error, which
matches the sum of the mean-squared error of each com-
ponent of the estimator, i.e. tr[C(̂θ)] = ∑N

i=1〈(θ̂i − θi)
2〉,

and as such offers a convenient scalar assessment of the per-
formance in estimation. Then, converting Eq. (58) into an
equality on traces, the estimator-dependent part of tr[C(̂θ)]
is tr[bb�] = b�b. Since the inner product b�b, being the
squared norm of the bias b, is nonnegative, it results that the
efficient ML estimator that minimizes tr[C(̂θ)] is the unbi-
ased one with the constant null part θ̂0 = θ0. However, since



J Math Imaging Vis (2014) 49:467–480 475

the null part θ0 of θ true is usually unknown, such estimator
is usually inaccessible.

One can turn to an ML estimator θ̂(y) = P+(y − r) +
θ̂0(y) with a nonconstant data-dependent null part θ̂0(y),
to possibly expect a better performance from C(̂θ) in
Eq. (57), possibly associated with a lower Cramér-Rao
bound BCR in Eq. (29) especially afforded by the extra de-
gree of freedom from ∇b. The feasibility of this option rests
on the ability of devising an appropriate data-dependent null
part θ̂0(y) for the estimator.

5.3.2 Uniquely Determined System

In the special case of a uniquely determined system as in
Sect. 4.3, there is a unique ML estimator θ̂ = P−1(y − r)

which is unbiased, P+ = P−1 exists as a true inverse, and
Eq. (58) is still valid but reduces to

C(̂θ) = P−1 diag[λj ]P−1�. (59)

The right-hand side of Eq. (59) matches here the Cramér-
Rao bound BCR of Eq. (29), manifesting that the ML esti-
mator is efficient.

5.3.3 Overdetermined System

In the condition of the overdetermined system of Sect. 4.4,
the estimator is θ̂ = P+(y./z − r) given by Eq. (24) with

in general a data-dependent z = z(y). The estimation error
is θ̂ − θ = P+(y./z − λ) having a correlation matrix, which
after some straightforward algebra, follows as

C(̂θ) = bb� + P+[〈
(y./z)(y./z)�

〉

− 〈y./z〉〈y./z〉�]
P+�, (60)

which is lower-bounded by the Cramér-Rao bound BCR of
Eq. (29). Further specification of C(̂θ) from Eq. (60) would
require an explicit expression for z(y) solving the nonlinear
system of Eqs. (13) and (15).

Error in an Approximation to the ML Solution In the
simpler approach of a constant data-independent z when
θ̂ = P+(y./z − r) approximates the ML estimator, Eq. (60)
reduces to

C(̂θ) = bb� + P+ diag[λj/zj ]P+�, (61)

with the bias b from Eq. (46). Moreover, through Eq. (47),
the Cramér-Rao bound of Eq. (29) here gives

BCR = bb� + P� diag[1/zj ]P+�F+P+ diag[1/zj ]P, (62)

or equivalently

BCR = bb�

+ P� diag[1/zj ]P+�(
P� diag[1/λj ]P

)+

× P+ diag[1/zj ]P. (63)

The right-hand side of Eq. (61) generally differs from the
Cramér-Rao bound BCR in Eqs. (62)–(63), and the estimator
θ̂ = P+(y./z − r) is not efficient since its does not saturate
the Cramér-Rao bound.

In the special case z = 1M , the bias b vanishes, the cor-
relation of Eq. (61) reduces to

C(̂θ) = P+ diag[λj ]P+�, (64)

while the Cramér-Rao bound of Eq. (63) becomes

BCR = (
P� diag[1/λj ]P

)+ = F+. (65)

Since Eq. (36) no longer holds in general for the overdeter-
mined system with M > N , it results that the right-hand side
of Eq. (64) generally differs from the Cramér-Rao bound
BCR in Eq. (65), and the unbiased estimator θ̂ = P+(y − r)

is not efficient either, since its does not saturate the Cramér-
Rao bound.

For any fixed z, replacing b from Eq. (46) in Eq. (61)
leads for the estimator θ̂ = P+(y./z − r) to

C(̂θ) = P+A1P+�, (66)

with the M × M symmetric matrix

A1 = (λ./z − λ)(λ./z − λ)� + diag[λj/zj ]. (67)

At z = 1M , Eq. (66) reduces to Eq. (64) when the esti-
mator is θ̂ = P+(y − r). An interesting issue is to exam-
ine the feasibility of exploiting z = 1M solving Eq. (13) in
order to obtain a biased estimator θ̂ = P+(y./z − r) that
would improve over the unbiased estimator θ̂ = P+(y − r)

at z = 1M . This will be characterized by a correlation ma-
trix in Eq. (66) at z = 1M smaller than that of Eq. (64) at
z = 1M , i.e.

P+A1P+� < P+ diag[λj ]P+�, (68)

or equivalently,

P+A2P+� < 0N , (69)

with the M × M symmetric matrix

A2 = A1 − diag[λj ]
= (λ./z − λ)(λ./z − λ)� + diag[λj/zj − λj ]. (70)

A requirement less stringent than Eq. (69) is a condition on
the trace

tr
(
P+A2P+�)

< 0, (71)
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which ensures a global improvement of the mean square er-
rors by the estimator θ̂ = P+(y./z − r) at z = 1M . The con-
dition of Eq. (71) can be satisfied with a matrix A2 with
tr(A2) < 0 and furthermore with all its diagonal elements
negative, i.e.

(
1

zj

− 1

)2

λ2
j +

(
1

zj

− 1

)
λj < 0

for j = 1,2, . . . ,M. (72)

There are usually enough degrees of freedom in the M × 1
vector z to satisfy Eq. (72) for all j = 1 to M , and thus
ensuring Eq. (71). For λj > 1, Eq. (72) is satisfied when
zj ∈ ]1, λj /(λj − 1)[, while for 0 < λj ≤ 1, Eq. (72) is sat-
isfied when zj ∈ ] − ∞, λj /(λj − 1)[ ∪ ]1,∞[. Moreover,
for zj in the allowed range, the left-hand size of Eq. (72) is
maximally negative when zj = 2λj/(2λj − 1).

In this way, in the condition of not too small aver-
age counts λj > 1 for all j = 1 to M , any fixed zj ∈
]1, λj /(λj − 1)[ leads to an improved estimator with a re-
duced mean-squared error 〈(θ̂i − θi)

2〉 for each compo-
nent i of the vector parameter θ . This is a sufficient con-
dition for a negative trace in Eq. (71). Such an estimator
θ̂ = P+(y./z−r) at fixed z = 1M will usually be biased, but
the division of the data yj by zj > 1 reduces the fluctuations
in the estimate, and the overall effect is to reduce the mean-
squared error of each component i. Yet, since λj is usually
unknown, the upper bound λj/(λj −1) for zj as to be set ap-
proximately, as yj/(yj − 1) for instance. A fixed zj picked
in such an approximate interval may fail to satisfy Eq. (72);
nevertheless, if such failing zj are not too many, a global im-
provement may still persist with a negative trace in Eq. (71).
This property of an improved estimator θ̂ = P+(y./z − r)

is obtained even if the fixed z = 1M is not in the subset
{1M + Ker(P�)}. However, this may not provide a substan-
tial practical benefit in general; for large intensity λj the
interval ]1, λj /(λj − 1)[ of beneficial zj shrinks to 1; the
improved biased estimator θ̂ = P+(y./z − r) goes to the
simpler unbiased θ̂ = P+(y − r) with a benefit gradually
vanishing. One can expect a more uniform benefit with the
exact ML estimator θ̂ = P+(y./z(y) − r) with z(y) solving
Eqs. (13) and (15), but whose performance resists analyti-
cal characterization because of the nonlinearity introduced
by z(y), which again may be seen as a manifestation of the
intrinsic nonlinear character of the ML equation (8).

6 Summary and Discussion

6.1 Summary

For image reconstruction in photon emission tomography,
we have shown that the nonlinear ML equation of (8) can

be replaced by the two dual linear equations (13) and (14)
nonlinearly coupled through the auxiliary variable z. Lin-
ear algebra then applied to these two dual linear equations
allowed us to obtain an analytical characterization of the
forms and conditions of existence of the ML solutions, pa-
rameterized by the auxiliary variable z, and of their perfor-
mance in terms of bias, correlation matrix of the error and
Cramér-Rao bound. For estimating N unknown sources θ

from M measured data y, the properties of the resulting ML
estimators can be summarized as follows.

For an underdetermined system with M < N , there is
usually an infinite number of ML estimators, under the
form θ̂ = [̂θ1 = P+(y − r)] + [̂θ0 ∈ Ker(P)]. Such an es-
timator θ̂ = θ̂1 + θ̂0 usually has a non-vanishing bias b(̃θ)

in Eq. (42) and a correlation matrix of the error C(̃θ) in
Eq. (57). The measurement part θ̂1 = P+(y − r) ∈ Ker(P)⊥
from Eq. (23) is the minimum Euclidean-norm ML estima-
tor, but it misses the null part θ0 if one exists in the true pa-
rameter θ true from Eq. (20) to be estimated. It is however not
straightforward to characterize the null part θ̂0 ∈ Ker(P) to
usefully contribute to the ML estimator θ̂ = θ̂1 + θ̂0 since
the data y are not affected by θ0 to be estimated. If the
EM-ML algorithm as in Eq. (10) is employed in this con-
figuration, it will usually converge to an ML solution that
will pick a given θ̂0, yet with no explicit control upon it
and possibly varying with the initialization [42, 44]. A more
sensible construction of the null part θ̂0 may be based on
a priori information about the image θ true to be estimated.
This would benefit from a separate characterization of the
null space Ker(P) attached to the tomographic system, to
appreciate under what form the true parameter image θ true

can contain some component in Ker(P), for instance in the
spirit of the statistical analyses of [2, 9, 31, 47]. From an-
other viewpoint, this relates to the ability of appreciating
if a minimum Euclidean-norm property which is conferred
to the ML estimator by the choice θ̂ = θ̂1 = P+(y − r)

is a plausible approximation to approach the true image
θ true. A minimum Euclidean-norm solution out of the sub-
set {P+(y − r) + Ker(P)} may not necessarily match the
true image θ true which is a priori not bound to be of mini-
mum �2 norm in this subset. A possibly more suitable con-
dition could be to characterize the true image θ true as ver-
ifying a condition of minimum �0 pseudonorm relative to
some basis of RN×1. This represents a condition of sparsity
on the true image θ true which often suits natural images in
some common basis like Fourier or cosine or wavelet bases.
The approach for estimation would then be to construct the
null part θ̂0 so as to obtain an ML estimator θ̂ = θ̂1 + θ̂0

as the minimum �0-pseudonorm solution out of the sub-
set {P+(y − r) + Ker(P)} or sparsest solution relative to
some appropriate basis of RN×1. This is likely to produce a
data-dependent θ̂0 = θ̂0(y) to match the data-dependent part
θ̂1(y) = P+(y − r) and yield an ML estimator θ̂ = θ̂1 + θ̂0
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sparse in the specified basis. Such approach can benefit from
the techniques of minimum-norm reconstruction of sparse
signals recently developed for Poisson data especially for
compressive sensing [13, 18, 30, 32, 39]. Strategies to re-
construct images with a number N of voxels exceeding the
number M of detectors are especially important for high-
resolution imaging [25, 36]. This requires to combine the
M measurements, with prior knowledge on the N -voxel re-
constructed image to control its null part. With a given to-
mographic scanner, the reconstruction size N can even in
principle be progressively increased above M , provided the
corresponding M × N system matrix P is accessible at each
step, while controlling with some relevant metric the quality
of the reconstructed image. In this respect, the Fisher infor-
mation as described in Sect. 5.1, can provide a basis for such
metrics of image quality [3, 10]. In this way, maximum ben-
efit can be sought from a given scanner with M detectors for
high-resolution imaging at N > M .

For an overdetermined system with M > N , there is
usually one ML estimator of the form θ̂ = P+(y./z − r)

from Eq. (24), for every z solving the nonlinear system of
Eqs. (13) and (15), or equivalently for any z from the sub-
set {1M + Ker(P�)} and solving Eq. (15). Such an estimator
has a bias b(̃θ) given in Eq. (44) and a correlation matrix
of the error C(̃θ) in Eq. (60). We argued in Sect. 4.4 that it
can be commonly expected one unique solution z = 1M to
the system of Eqs. (13) and (15), and therefore one unique
ML estimator from Eq. (24). The resolution of the system
of Eqs. (13) and (15) is the difficult part of the estimation
as it involves a nonlinearity. If the EM-ML algorithm as in
Eq. (10) is employed in this configuration, it will in princi-
ple converge to an ML estimator θ̂ implicitly incorporating a
solution to Eqs. (13) and (15) for z, yet without knowing or
relying on the general analytical form of Eq. (24) which is
generic for the ML estimator. Our approach makes this ana-
lytical form explicit, which is useful to a characterization of
the ML estimator. Specific methods can be devised for the
effective resolution of the nonlinear system of Eqs. (13) and
(15), possibly iterative like the EM-ML algorithm which is
an indirect resolution thereof.

Finally, for a uniquely determined system with M = N ,
there is a unique ML estimator θ̂ = P−1(y − r) which is
unbiased and efficient, with a correlation matrix of the error
C(̃θ) in Eq. (59) matching the Cramér-Rao bound BCR of
Eq. (29).

6.2 Positivity Constraint

The present study analyzes the solutions to the plain ML ap-
proach which is an essential reference for estimation, with
a well-defined status. Accordingly, we did not impose here
any positivity constraint in the mathematical derivation of
the ML solutions. However, physical reasons dictate posi-
tivity to the image estimator θ̂ , i.e. θ̂k ≥ 0,∀k = 1, . . . ,N .

With the positivity constraint, the ML problem is more dif-
ficult to solve analytically, and the general theoretical anal-
ysis developed here for the unconstrained ML problem no
longer applies as such. The direct path to maximize the like-
lihood of Eq. (5) under the constraint of a positive θ , is to
use the derivatives as in Eq. (7) and involve them into the
Kuhn-Tucker conditions [42, 44, 48]. This constrained max-
imization is difficult to realize analytically and precludes
general theoretical analyzability of the solution. However,
as an alternative, some indirect paths are possible to obtain
a positive solution to the unconstrained maximization of the
ML equation (8). In practice, the EM-ML algorithm which is
very often used for unconstrained maximization, when ini-
tialized on a positive estimate in Eq. (10), is guaranteed to
converge to a positive ML solution, provided one exists [42,
44]. The existence of positive solutions to the ML equation
(8) is conditioned both by the system matrix P and by the
data y, and is difficult to a priori prove in general conditions.
When running EM-ML, the existence of a positive solution
is usually empirically assumed and well verified in practice.
Theoretically, the solutions to the unconstrained ML equa-
tion we have described here, can further be involved in a
post-processing argument to a posteriori reconsider the pos-
itivity constraint on the ML solution, in the following way.

For an underdetermined system, the unconstrained ML
solution is of the form θ̂ = [̂θ1 = P+(y − r)] + [̂θ0 ∈
Ker(P)]. If θ̂1 = P+(y − r), the unconstrained ML solu-
tion in the measurement space, is positive, then any θ̂0 in
Ker(P) that preserves the positivity of θ̂ = θ̂1 + θ̂0 leads to
a valid ML solution satisfying the positivity constraint and
reaching the same (absolute) maximum of the likelihood.
These solutions are completely equivalent to the solutions
to the positively-constrained ML problem that would have
resulted from the direct resolution through the Kuhn-Tucker
conditions. In this way, from the set of solutions to the un-
constrained ML problem of Eq. (8), we obtain as a subset
all the solutions to the positively-constrained ML problem.
From a positive unconstrained ML solution θ̂1 = P+(y −r),
any vector θ̂0 in Ker(P) leading to a positive θ̂ = θ̂1 + θ̂0 is,
in finite N dimension, the analogue of a null function of
the infinite-dimensional object space as considered in [9].
Such null functions of [9] form a subset of the null space
of the imaging system. Bounds have been determined in [9]
for such null functions, which can possibly be transposed
to vectors in finite dimension, and serve to assess the extent
of the solution set of the positively constrained ML prob-
lem, when the measurement part θ̂1 = P+(y − r) is pos-
itive. However, there is a priori no necessity for the mea-
surement part θ̂1 = P+(y − r) to be positive; in the same
way there is no necessity for the measurement part θ1 of the
true parameter θ true in Eq. (20) to be positive; the positivity
constraint applies to the complete vectors θ̂ and θ true. There-
fore, in the case where θ̂1 = P+(y − r) is not positive, then
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some θ̂0 in Ker(P) may be able to realize a positive solution
θ̂ = θ̂1 + θ̂0. A priori, such a θ̂0 in Ker(P) is not the analogue
of a null function of [9], and the bounds of [9] do not apply
to it. The resulting θ̂ = θ̂1 + θ̂0 realizes a valid ML solution
satisfying the positivity constraint and reaching the same
(absolute) maximum of the likelihood as the unconstrained
ML solution. In the same way, the set of positive solutions
so obtained is completely equivalent to the set of solutions
to the positively-constrained ML problem that would have
resulted from the direct resolution through the Kuhn-Tucker
conditions. Here also, from the set of solutions to the uncon-
strained ML problem of Eq. (8), we obtain as a subset all the
solutions to the positively-constrained ML problem. On the
contrary, with a non positive θ̂1, if there is no θ̂0 in Ker(P)

able to realize a positive θ̂ = θ̂1 + θ̂0, then the set of solu-
tions to the unconstrained ML problem contains no solution
to the positively-constrained ML problem. The solutions to
the positively-constrained ML problem will follow from the
direct approach via the Kuhn-Tucker conditions. These con-
strained solutions are not solutions to the unconstrained ML
problems, and they achieve a smaller value for the maximum
likelihood compared to the unconstrained ML solutions that
still achieve the absolute maximum of the likelihood.

The regime of the underdetermined system where the
positively-constrained ML solutions form a subset of the un-
constrained ML solutions especially holds for the data real-
ization y = λ with the positive ML solution θ̂ = θ true sat-
isfying Eq. (8), and this regime can be expected to persist
for weakly noisy data when y does not depart much from λ.
Also in such a regime, for a positive solution θ̂ satisfying
the ML equation (8), a vector θ̂0 can be taken from the null
space Ker(P), and since Ker(P) is a vector space, for any
scalar ε the vector θ̂ + ε̂θ0 satisfies the ML equation (8).
For small enough nonzero ε one would expect θ̂ + ε̂θ0 to
remain positive, i.e. to form another positive ML solution.
It can then be reasonably expected rather commonly, non-
unique positive ML solutions in the underdetermined case
when Ker(P) ⊃ {0N }. The EM-ML algorithm, when initial-
ized on a positive estimate, will converge to one of the pos-
itive ML solutions, possibly dependent on the initialization
[42, 44]. It is an interesting issue to investigate which solu-
tion will be picked by EM-ML, yet this demands an analysis
specific to this algorithm and its initialization.

For an overdetermined system, the unconstrained ML
problem is expected to have at least one solution, display-
ing the form θ̂ = P+(y./z − r), defined by one z existing
from the subset {1M + Ker(P�)} and solving Eq. (15). The
positivity constraint on θ̂ does not translate into a simpler
constraint decidable on z. If the unconstrained ML solution
θ̂ = P+(y./z− r) turns out to be positive, then it also stands
as a solution to the positively-constrained ML problem. On
the contrary, if this solution θ̂ = P+(y./z−r) is not positive,
then the solutions to the positively-constrained ML problem

are distinct, they follow through the direct approach via the
Kuhn-Tucker conditions, and achieve a smaller value of the
maximum likelihood compared to the unconstrained ML so-
lution. These constrained ML solutions in particular are not
bound to the form θ̂ = P+(y./z− r) since they generally do
not solve Eq. (8).

Finally, for a uniquely determined system, there is a
unique solution θ̂ = P−1(y − r) to the unconstrained ML
problem. If this solution θ̂ = P−1(y − r) is positive, then
it also stands as the unique solution to the positively-
constrained ML problem. On the contrary, if this solution
θ̂ = P−1(y − r) is not positive, then the solutions to the
positively-constrained ML problem are distinct, they fol-
low through the direct approach via the Kuhn-Tucker con-
ditions, and achieve a smaller value of the maximum like-
lihood compared to the unconstrained ML solution. As we
already mentioned, for a given system matrix P, it is not a
priori easy to theoretically characterize the data y leading
to a positive θ̂ = P−1(y − r); and one is relegated to direct
calculation and checking of θ̂ for each given y. However, it
can be affirmed that, on average, θ̂ = P−1(y − r) is indeed
positive, since from unbiasedness, 〈̂θ〉 = 〈P−1(y − r)〉 =
θ true ≥ 0N . This ensures at least a reasonable amount of
realizations of the data y associated with a positive solu-
tion θ̂ = P−1(y − r). Based on the Poisson statistics of the
data y, it may be possible to develop further, at least in
probabilistic terms, the characterization of the set of data y

leading to a positive solution θ̂ = P−1(y − r), for a given in-
vertible matrix P, and even when P gradually departs from
invertibility toward an underdetermined or an overdeter-
mined system. This could provide ground to the empirical
observation that in practice a positive solution to the un-
constrained ML problem often exists and can be found by
EM-ML started from a positive initial estimate.

6.3 Convergence of EM-ML

The essential contribution of the present study is, for the
ML method which is an essential reference for estimation,
to develop an original approach for analyzing the ML so-
lutions and their theoretical properties. Accordingly, we did
not put forward any specific algorithm for practical calcu-
lation of the ML solution. Any practical algorithm, iterative
algorithms like EM-ML, direct matrix inversion or compu-
tation of the pseudoinverse (when practically tractable), are
equally concerned by our results. As we mentioned in the In-
troduction, practical iterative algorithms like EM-ML are of-
ten stopped before convergence to a true ML solution char-
acterized here [11, 45, 46]. This is usually intended as a reg-
ularization (smoothing) procedure, with the effect of bias-
ing the reconstructed image toward its initial estimate, often
controlled by empirical stopping rules. The resulting solu-
tions however, do not own a clear theoretical status or opti-
mality property, which hinders their mathematical analysis.
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In this respect, our results, which provide a characterization
of the exact ML solutions, can serve to appreciate the situa-
tion of an empirical solution stopped before convergence, in
relation to the two extreme references formed by the chosen
initial estimate and the optimal ML solution analyzed here.
Some works however can iterate EM-ML up to convergence
[11, 42, 44]. There also exist specific situations where EM-
ML is iterated up to convergence. This is the case when spe-
cially designed smooth basis functions are used instead of
voxels for the reconstruction [12, 27]. This is also the case
when post-processing is implemented after convergence on
the ML solution for noise smoothing or for incorporating ex-
tra available information [34, 35]. Such post-processing of
the ML solution offers potentialities for improved signal-to-
noise ratio and spatial resolution and flexibility in the filter-
ing operations [34], yet usually at increased computational
cost, but can become more competitive as computer power
continues to grow. Such approaches are directly concerned
by the characterization of the ML solutions accomplished
here.

6.4 Final Remarks

As discussed, the theoretical characterization of the ML so-
lutions can be useful to the practically extensively used EM-
ML algorithm. Knowing the precise structure of the ML so-
lution set as characterized here, can help to better under-
stand the behavior of the EM-ML algorithm which is often
empirically exploited, as a function of its initialization, in
the presence of positivity constraint, the solution it picks,
and where it stands when stopped before convergence. Also
the expressions of the ML estimators derived here, strongly
rely on the pseudoinverse matrix P+. In practice, this is
usually a very large matrix. However, such a matrix P+ is
a fixed matrix characterizing a given tomographic imaging
system, and it can then be computed once and for all and
attached to the imaging system. Meanwhile, the EM-ML al-
gorithm as in Eq. (10) as to be iterated anew for each new
data y. ML approaches, post-processed and regularized ML
approaches, therefore still hold potential of improvement for
photon emission tomography and image reconstruction.

References

1. Barrett, H.H., Myers, K.J.: Foundations of Image Science. Wiley,
New York (2004)

2. Barrett, H.H., Wilson, D.W., Tsui, B.M.W.: Noise properties of the
EM algorithm: I. Theory. Phys. Med. Biol. 39, 833–846 (1994)

3. Barrett, H.H., Denny, J.L., Wagner, R.F., Myers, K.J.: Objec-
tive assessment of image quality. II. Fisher information. Fourier
crosstalk, and figures of merit for task performance. J. Opt. Soc.
Am. A 12, 834–852 (1995)

4. Barrett, H.H., Hunter, W.C.J., Miller, B.W., Moore, S.K., Chen,
Y., Furenlid, L.R.: Maximum-likelihood methods for processing
signals from gamma-ray detectors. IEEE Trans. Nucl. Sci. 56,
725–735 (2009)

5. Bovik, A.C.: Handbook of Image and Video Processing. Aca-
demic Press, San Diego (2000)

6. Carroll, R.B., Mair, B.A.: A new model and reconstruction method
for 2D PET based on transforming detector tube data into detector
arc data. J. Math. Imaging Vis. 14, 165–185 (2001)

7. Chen, Y., Ma, J., Feng, Q., Luo, L., Shi, P., Chen, W.: Nonlocal
prior Bayesian tomographic reconstruction. J. Math. Imaging Vis.
30, 133–146 (2008)

8. Chornoboy, E.S., Chen, C.J., Miller, M.I., Miller, T.R., Snyder,
D.L.: An evaluation of maximum likelihood reconstruction for
SPECT. IEEE Trans. Med. Imaging 9, 99–110 (1990)

9. Clarkson, E., Barrettt, H.: Bounds on null functions of linear digi-
tal imaging systems. J. Opt. Soc. Am. A 15, 1355–1360 (2007)

10. Clarkson, E., Shen, F.: Fisher information and surrogate figures of
merit for the task-based assessment of image quality. J. Opt. Soc.
Am. A 27, 2313–2326 (2010)

11. Cloquet, C., Defrise, M.: MLEM and OSEM deviate from the
Cramer-Rao bound at low counts. IEEE Trans. Nucl. Sci. 60, 134–
143 (2013)

12. Daube-Witherspoon, M.E., Matej, S., Karp, J.S., Lewitt, R.M.:
Application of the row action maximum likelihood algorithm with
spherical basis functions to clinical PET imaging. IEEE Trans.
Nucl. Sci. 48, 24–30 (2001)

13. Dupé, F.X., Fadili, J.M., Starck, J.L.: A proximal iteration for
deconvolving Poisson noisy images using sparse representations.
IEEE Trans. Image Process. 18, 310–321 (2009)

14. Fessler, J.A.: Mean and variance of implicitly defined biased es-
timators (such as penalized maximum likelihood): applications to
tomography. IEEE Trans. Image Process. 5, 493–506 (1996)

15. Fessler, J.A., Hero, A.O.: Penalized maximum-likelihood im-
age reconstruction using space-alternating generalized EM algo-
rithms. IEEE Trans. Image Process. 4, 1417–1429 (1995)

16. Fessler, J.A., Rogers, W.L.: Spatial resolution properties of
penalized-likelihood image reconstruction: space-invariant tomo-
graphs. IEEE Trans. Image Process. 5, 1346–1358 (1996)

17. Green, P.J.: Bayesian reconstructions from emission tomography
data using a modified EM algorithm. IEEE Trans. Med. Imaging
9, 84–93 (1990)

18. Harmany, Z.T., Marcia, R.F., Willett, R.M.: Sparsity-regularized
photon-limited imaging. In: Proceedings 7th IEEE International
Symposium on Biomedical Imaging: From Nano to Macro, Rot-
terdam, The Netherlands, 14–17 April 2010, pp. 772–775 (2010)

19. Hebert, T.I., Leahy, R.: A generalized EM algorithm for 3-D
Bayesian reconstruction from Poisson data using Gibbs priors.
IEEE Trans. Med. Imaging 8, 194–202 (1989)

20. Hero, A.O., Fessler, J.A.: A recursive algorithm for computing
Cramer-Rao-type bounds on estimator covariance. IEEE Trans.
Inf. Theory 40, 1205–1210 (1994)

21. Hudson, H.M., Larkin, R.S.: Accelerated image reconstruction us-
ing ordered subsets of projection data. IEEE Trans. Med. Imaging
13, 601–609 (1994)

22. Lange, K., Carson, R.: EM reconstruction algorithms for emission
and transmission tomography. J. Comput. Assist. Tomogr. 8, 306–
316 (1984)

23. Lange, K., Bahn, M., Little, R.: A theoretical study of some maxi-
mum likelihood algorithms for emission and transmission tomog-
raphy. IEEE Trans. Med. Imaging 6, 106–114 (1987)

24. Le, T., Chartrand, R., Asaki, T.J.: A variational approach to re-
constructing images corrupted by Poisson noise. J. Math. Imaging
Vis. 27, 257–263 (2007)

25. Le Meunier, L., Slomka, P.J., Dey, D., Ramesh, A., Thomson,
L.E., Hayes, S.W., Friedman, J.D., Cheng, V., Germano, G.,
Berman, D.S.: Enhanced definition PET for cardiac imaging.
J. Nucl. Cardiol. 17, 414–426 (2010)

26. Levitan, E., Herman, C.: A maximum a posteriori expectation
maximization algorithm for image reconstruction in emission to-
mography. IEEE Trans. Med. Imaging 6, 185–192 (1987)



480 J Math Imaging Vis (2014) 49:467–480

27. Lewitt, R.M.: Alternatives to voxels for image representation in
iterative reconstruction algorithms. Phys. Med. Biol. 37, 705–716
(1992)

28. Li, Q., Asma, E., Qi, J., Bading, J.R., Leahy, R.M.: Accurate es-
timation of the Fisher information matrix for the PET image re-
construction problem. IEEE Trans. Med. Imaging 23, 1057–1064
(2004)

29. Liang, Z., Hart, H.: Bayesian reconstruction in emission comput-
erized tomography. IEEE Trans. Nucl. Sci. 35, 788–792 (1988)

30. Lingenfelter, D.J., Fessler, J.A., He, Z.: Sparsity regularization
for image reconstruction with Poisson data. In: Proceedings SPIE,
Computational Imaging VII, San Jose, CA, vol. 7246, p. 72460F
(2009)

31. Llacer, J., Veklerov, E., Coakley, K.J., Hoffman, E.J., Nunez, J.:
Statistical analysis of maximum likelihood estimator images of
human brain FDG PET studies. IEEE Trans. Med. Imaging 12,
215–231 (1993)

32. Luo, J., Liu, J., Li, W., Zhu, Y., Jiang, R.: Image reconstruction
from sparse projections using S-transform. J. Math. Imaging Vis.
43, 227–239 (2012)

33. Novak, R.D., Kolaczyk, E.D.: A statistical multiscale framework
for Poisson inverse problems. IEEE Trans. Inf. Theory 46, 1811–
1825 (2000)

34. Nuyts, J., Fessler, J.A.: A penalized-likelihood image reconstruc-
tion method for emission tomography, compared to post-smoothed
maximum-likelihood with matched spatial resolution. IEEE Trans.
Med. Imaging 22, 1042–1052 (2003)

35. Nuyts, J., Baete, K., Bequé, D., Dupont, P.: Comparison between
MAP and post-processed ML for image reconstruction in emission
tomography when anatomical knowledge is available. IEEE Trans.
Med. Imaging 24, 667–675 (2005)

36. Panin, V.Y., Kehren, F., Michel, C., Casey, M.: Fully 3-D PET
reconstruction with system matrix derived from point source mea-
surements. IEEE Trans. Med. Imaging 25, 907–921 (2006)

37. Pearson, C.E.: Handbook of Applied Mathematics. Van Nostrand,
New York (1974)

38. Qi, J., Leahy, R.M.: A theoretical study of the contrast recovery
and variance of MAP reconstructions from PET data. IEEE Trans.
Med. Imaging 18, 293–305 (1999)

39. Raginsky, M., Willett, R.M., Harmany, Z.T., Marcia, R.F.: Com-
pressed sensing performance bounds under Poisson noise. IEEE
Trans. Signal Process. 58, 3990–4002 (2010)

40. Randarajan, A., Hsiao, I.T., Gindi, G.: A Bayesian joint mixture
framework for the integration of anatomical information in func-
tional image reconstruction. J. Math. Imaging Vis. 12, 199–217
(2000)

41. Rockmore, A.J., Macovski, A.: A maximum likelihood approach
to emission image reconstruction from projections. IEEE Trans.
Nucl. Sci. 23, 1428–1432 (1976)

42. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for
emission tomography. IEEE Trans. Med. Imaging 1, 113–122
(1982)

43. Stayman, J.W., Fessler, J.A.: Regularization for uniform spatial
resolution properties in penalized-likelihood image reconstruc-
tion. IEEE Trans. Med. Imaging 19, 601–615 (2000)

44. Vardi, Y., Shepp, L.A., Kaufman, L.: A statistical model for
positron emission tomography. J. Am. Stat. Assoc. 80, 8–20
(1985)

45. Veklerov, E., Llacer, J.: Stopping rule for the EM algorithm based
on statistical hypothesis testing. IEEE Trans. Med. Imaging 6,
313–319 (1988)

46. Veklerov, E., Llacer, J., Hoffman, E.J.: MLE reconstruction of a
brain phantom using a Monte Carlo transition matrix and a statis-
tical stopping rule. IEEE Trans. Nucl. Sci. 35, 603–607 (1988)

47. Wilson, D.W., Tsui, B.M.W., Barrett, H.H.: Noise properties of
the EM algorithm: II. Monte Carlo. Phys. Med. Biol. 39, 847–871
(1994)

48. Zangwill, W.I.: Nonlinear Programming: A Unified Approach.
Prentice-Hall, Englewood Cliffs (1969)

François Chapeau-Blondeau was
born in France in 1959. He re-
ceived the Engineer Diploma from
ESEO, Angers, France, in 1982, the
Ph.D. degree in electrical engineer-
ing from University Pierre et Marie
Curie, Paris 6, France, in 1987,
and the Habilitation degree from
the University of Angers, France,
in 1994. In 1988, he was a re-
search associate in the Department
of Biophysics at the Mayo Clinic,
Rochester, Minnesota, USA, work-
ing on biomedical ultrasonics. Since
1990, he has been with the Univer-

sity of Angers, France, where he is currently a professor of electronic
and information sciences. His research interests include signal process-
ing and imaging, and the interactions between physics and information
sciences.

Christian Jeanguillaume was born
in France in 1951. He graduated
in Medicine in 1979 (M.D.) spe-
cialized in nuclear medicine in
1982 and he received the doctorat
d’État es Sciences Physiques in
1989 (Ph.D.). He first worked in
the nuclear medicine department
in CHU of Creteil France, and
was a researcher in the Laboratoire
de physique des solides (CNRS,
UMR8502, Orsay, France). He is
currently Maître de Conférences
at the University of Angers, and
Praticien Hospitalier at the CHU of

Angers. His research interests are: emission tomography, new methods
of gamma ray imaging with large hole collimator, inverse problems,
parathyroid and brain radionuclide imaging, electron energy loss spec-
troscopy in the electron microscope (EELS, STEM).


	Characterization of Maximum Likelihood Solutions to Image Reconstruction in Photon Emission Tomography
	Abstract
	Introduction
	Model for Photon Emission Tomography
	ML Estimation
	Characterization of the ML Solution Set
	A Linear System and Its Dual for ML
	Underdetermined System
	Uniquely Determined System
	Overdetermined System
	An Approximation to the ML Solution

	Expressing the Pseudoinverse

	Performance of the ML Estimator
	Fisher Information
	Bias
	Underdetermined System
	Uniquely Determined System
	Overdetermined System
	Bias in an Approximation to the ML Solution


	Correlation of the Error
	Underdetermined System
	Uniquely Determined System
	Overdetermined System
	Error in an Approximation to the ML Solution



	Summary and Discussion
	Summary
	Positivity Constraint
	Convergence of EM-ML
	Final Remarks

	References


