Chapeau-Blondeau et al.

Vol. 25, No. 6/June 2008/J. Opt. Soc. Am. A 1287

Optimizing the speckle noise for maximum
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The impact of multiplicative speckle noise on data acquisition in coherent imaging is studied. This demon-
strates the possibility to optimally adjust the level of the speckle noise in order to deliberately exploit, with
maximum efficacy, the saturation naturally limiting linear image sensors such as CCD cameras, for instance.
This constructive action of speckle noise cooperating with saturation can be interpreted as a novel instance of
stochastic resonance or a useful-noise effect. © 2008 Optical Society of America

OCIS codes: 000.2690, 030.6140, 030.4280, 100.2000, 110.2970, 120.6150.

1. INTRODUCTION

In the domain of instrumentation and measurement, ac-
quisition devices are generally linear for small inputs and
saturate at large inputs. The linear part of their input—
output characteristic usually sets the limit of the signal
dynamic to be acquired with fidelity. In this paper, by con-
trast, we are going to show the possibility of a useful role
of saturation: We report situations where the data acqui-
sition is performed more efficiently when the information-
carrying signal reaches the saturation level of the acqui-
sition device than when it strictly remains located in its
linear part. The beneficial role of saturation will be illus-
trated in the domain of optical coherent imaging. In this
domain, because of very irregular spatial interference
from the coherent phases, images have a grainy, noisy ap-
pearance called speckle. We will show how the level of the
speckle noise can be optimally adjusted in order to maxi-
mize the benefit to be obtained from saturation of an im-
age acquisition device. This constructive action of speckle
noise cooperating with saturation will be interpreted as a
new instance of the phenomenon of stochastic resonance.
Stochastic resonance is a generic denomination that des-
ignates the possibility of improving the transmission or
processing of an information-carrying signal by means of
an increase in the level of the noise coupled to this signal.
Since its introduction some twenty-five years ago in the
context of climate dynamics, the phenomenon of stochas-
tic resonance has experienced a large variety of exten-
sions, developments, and observations in many areas of
natural sciences (for overviews, see, for instance, [1,2]). In
particular, occurrences of stochastic resonance have been
reported in optics (for example, in [3—8]). Recently, sto-
chastic resonance has been observed in coherent imaging
with speckle noise in [8], where the possibility of a con-
structive action of speckle noise in the transmission of an
image in a coherent imaging system is reported. For this
first report in [8], the imaging sensor was purposely taken
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in the elementary form of a 1-bit quantizer. The present
paper proposes to extend the result of [8] by considering a
characteristic more realistic at the signal acquisition level
and more similar to practical imaging sensors such as
CCD cameras, involving both linear and saturation parts.
Other nonlinear systems with saturation have been in-
vestigated for stochastic resonance, but this was with a
temporal (monodimensional) information signal and addi-
tive noise [9,10]. By contrast, the possibility of stochastic
resonance with speckle noise, which is multiplicative
noise, in a (bidimensional) imaging system with satura-
tion is demonstrated here, to the best of our knowledge,
for the first time.

2. COHERENT IMAGING SYSTEM

The input image S(u,v), with (u,v) spatial coordinates, is
formed by a distribution of gray levels characterized by
the probability density pg(s). The speckle noise N(u,v),
characterized by the probability density py(n), acts
through the multiplicative coupling

S(u,v) X N(u,v) =X(u,v), (1)

so as to form the intermediate image X(u,v) corrupted by
the speckle. The noisy image X(u,v) is observed by means
of an acquisition device, described by the input—output
memoryless characteristic g(-), delivering the output im-
age

Y(u,v) =g[X(u,v)]. 2

We introduce similarity measures between the
information-carrying input image S(u,v) and the output
image Y(u,v). One possibility is provided by the normal-
ized cross covariance between images S(u,v) and Y(u,v),
defined as
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where (-) denotes an average over the images. The cross
covariance Cgy is close to one when images S(u,v) and
Y(u,v) carry strongly similar structures and is close to
zero when the images are unrelated.

In addition, in the case where both input image S(x,y)
and output image Y(x,y) take their values in the same
range of gray levels, another input—output similarity
measure is provided by the input—output rms error

Qsy=\{((S-Y)?). (4)

We want to investigate the impact of speckle noise on
the input—output similarity measures Cgy and Qgy char-
acterizing the transmission of the images. For the sequel,
we consider for the acquisition device the characteristic

forx<0
for 0 <x <4, (5)

0
glx)=1x

0 forx=06
The characteristic g(-) of Eq. (5) is a standard model for
many sensors or image acquisition devices, such as CCD
cameras, for instance; g(-) of Eq. (5) is purely linear for
small input levels above zero, and it saturates for large
input levels above 6> 0. For instance, g(-) of Eq. (5) offers
a model for a CCD camera that will represent the input
on, say, 256 levels between 0 and 255, and will saturate
above 255.

Since in coherent imaging, following Eq. (1), the
speckle noise N(u,v) has a multiplicative action on the in-
put image, the level of the speckle noise plays a key role
in fixing the position of the dynamics of the image X(u,v)
applied onto the acquisition device g(-) in relation to its
linear range [0, d]. For a given sensor with a fixed satura-
tion level 6, too large a level of the multiplicative speckle
noise N(u,v) may strongly saturate the acquisition, while
too low a level of N(u,v) may result in a poor exploitation
of the full dynamics [0, 0] of the sensor. We will use the
similarity measures Cgy and Qgy of Egs. (3) and (4) to
quantitatively characterize the existence of an optimal
level of the speckle noise in given conditions of image ac-
quisition. Interestingly, the optimal level of speckle noise
will be found to deliberately exploit the saturation in the
operation of the sensor. By taking advantage of the satu-
ration in this way, the acquisition reaches a maximum
performance that cannot be achieved when the sensor is
operated solely in the linear part of its response.

3. EVALUATION OF THE INPUT-OUTPUT
SIMILARITY MEASURES

With the sensor g(-) of Eq. (5), we now want to derive ex-
plicit expressions for the input-output similarity mea-
sures Cgy and Qgy of Eqgs. (3) and (4). For the computa-
tion of the output expectation (Y), it is to be noted that Y
takes its values in [0, 6] as a consequence of Eqgs. (2) and
(5). We introduce the conditional probability Pr{Y
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e[y,y+dy[|S=s}. For the nonsaturated pixels in the out-
put image Y(u,v), with gray levels such that 0<y <6, one
has

Pr{Y e [y,y +dy[ [S =s}
=Pr{N e [y/s,yls + dy/s[}
=pn(y/s)dyls, (6)

and for the saturated pixels of the output image Y(u,v),
with a gray level such that y=6, one has

Pr{Y= 6S=s}=Pr{sN= 6} =Pr{N = 0/s} =1 - Fn(0/s),
(7

with the cumulative distribution function Fy(n)
=[".pn(n')dn’ of the speckle noise. This is enough to de-
duce the expectation (Y) as

[ dy
)= f f yoNYTs) —pslsds + f 01 - F(015) p(s)ds.
s Jy=0 s

(8)

We  introduce the auxiliary function Gy(n)

=[gn'py(n')dn’, and then Eq. (8) becomes

(Yy=0+ J [sG(0s) — OF y(6ls) Ips(s)ds. (9)

In a similar way, the expectation (SY) is
6 dy
(8Y) = f f sypN(y/S)?ps(S)ds + f s6[1
s v y=0 s

— Fp(0/s)]ps(s)ds, (10)

amounting to

(SY) = 0(S>+f[szGN(0/s)— OsFn(0/s)Ipg(s)ds. (11)

Evaluation of Eqgs. (3) and (4) also requires the expec-
tation (Y2), which is

4 dy
(Y% = f f ysz(y/S)?ps(S)dH f 1
s v y=0 s

- Fn(0/s)]pg(s)ds. (12)

And with the auxiliary function Hy(n)=[{n"?py(n’)dn’,

Eq. (12) becomes
Y%=+ J [s2H\(0/s) — PFp(0/s)pg(s)ds.  (13)

With (S)=[,spg(s)ds and (S?)=[.s2pg(s)ds, Eqgs. (9),
(11), and (13) allow one to evaluate the input—output simi-
larity measures Cgy and Qgy of Eqs. (3) and (4) in given
input conditions specified by pg(s) and py(n).

4. EXPONENTIAL SPECKLE NOISE

A useful probability density py(n) for the speckle noise
N(u,v) is provided [11] by the exponential density
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1 n
pN(n)=_eXp I B 7120, (14)
g g

the density being zero for the negative gray levels n <0.
From Eq. (14), the parameter o is both the standard de-
viation and the expectation (V) of the speckle noise. Also,
it follows from Eq. (14) that

FN(n)zl—exp(—z>, n=0, (15)
o

Gy(n) = f n'py(n')dn’

0

=c|l1-(—+1]exp(-—||, n=0, (16)
o o

Hpy(n) =f n"’py(n’)dn’
0

A ol ) e
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and

Then it results from Eq. (9) that

0
)ps(s)ds, (18)
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s

from Eq. (11) that

0
(SY) = o(S?) - af s? exp(— s—g_)ps(s)ds, (19)

s

and from Eq. (13) that

0
)ps(S)ds.

SO

(Y2 =20%S?) - 20 f (05 + es)exp(

(20)

5. EXPONENTIAL SPECKLE NOISE WITH
BINARY INPUT IMAGE

With the exponential speckle noise N(u,v), we now choose
to examine the situation of binary input images S(u,v).
This class of images represents, for instance, a basic
model for images characterized by only two regions with
very narrow probability density functions in each region.
One can think of an object with an almost uniform gray
level centered around I; =0, standing over a background
with an almost uniform gray level centered around I,
=(. Such a scene would be fairly approximated by its bi-
nary version containing only levels I; and I,. In addition,
the simple choice of a binary input image S(u,v) with lev-
els I, and I, will allow us to carry further the analytical
treatment of our theoretical model. With Dirac delta func-
tions, the probability density function associated with a
binary image is
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ps(s)=p18(s —I1) + (1 - pq)&(s - 1), (21)

where p; is the fraction of pixels at I; in image S(u,v). It
results from Eq. (21) that (S)=p;I;+(1-p1)I, and (S?)
=p11%+(1—p1)lg. One then obtains for Eq. (18)

0 0
(Y)=0(S) - U[P1I1 exp(— I_> +(1-pyl exp(— I_ﬂ ,

10 0o
(22)
for Eq. (19)
%
(SY) = o(S?) - a[pﬂ% exp(— —)
110'
6
+(1-pyI; exp(— —)} (23)
Io(T
and for Eq. (20)
6
(Y?) =26%(S?) - 20’|:p1(0'1% + Gll)exp(— —)
110'
6
+(1—p1)(¢rI(2)+ Glo)exp<— —)] (24)
100'

Equations (22)-(24) now make possible an explicit
evaluation of the input—output similarity measures Cgy
and Qgy of Eqgs. (3) and (4).

Figures 1(A) and 1(B) give an illustration, showing con-
ditions of nonmonotonic evolutions of the performance
measures Cgy and Qgy, which can be improved when the
level of the speckle noise increases. Figures 1(A) and 1(B)
demonstrate that the performance measures Cgy and Qgy
are maximized when the level o of the speckle noise is
tuned at an optimal nonzero value, which can be com-
puted with the present theory. In practice, the level o of
the speckle noise can be controlled by experimentally
varying the intensity of the coherent source. This way of
controlling o makes possible a confrontation of the theo-
retical and experimental evolutions for the performance
measures Cgy and Qgy. This confrontation has been per-
formed, and the results are also presented in Figs. 1(A)
and 1(B). We briefly describe the experimental setup in
the following section.

6. EXPERIMENTAL VALIDATION

An optical version of the theoretical coherent imaging sys-
tem described in Section 2 has been realized in the follow-
ing way. A laser beam of tunable intensity goes through a
static diffuser to create a speckle field, which illuminates
a slide with calibrated transparency levels carrying the
contrast of the input image S(u,v). A lens then images the
slide plane on a camera CCD matrix to produce the out-
put image Y(u,v). This experimental setup was used in
[8] with an image acquisition device reduced to a simple
1-bit quantizer. By contrast, here the input-output char-
acteristic of the image acquisition device presents the
more realistic characteristic given by Eq. (5). A digital
representation of the binary input image S(u,v) used to
realize this experiment is shown in Fig. 2 (left), with the
object representing an airplane surrounded by a dark
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Fig. 1. Normalized cross covariance Cgy (A) and rms error Qgy (B) as a function of the rms amplitude V@U of the exponential speckle
noise when =1, p;=0.27, and I,=0.5 at various I;. The solid curve stands for the theoretical expressions of Egs. (3) and (4). The discrete
data sets (circles) are obtained by injecting into Eq. (1) real speckle images collected from the experimental setup of [8].

background. Some specific conditions arise to operate the
experimental setup in the domain of validity of the
speckle noise model of Eqs. (1) and (14). As is visible in
Fig. 2, the experimental image appears with grains typi-
cal of speckle. The probability density of Eq. (14) de-
scribes the fluctuations of gray levels in the speckle at
scales below the grain size, and it does not suffer from av-
erages over several neighboring grains [11]. As such, the
speckle noise model of Egs. (1) and (14) is adequate to de-
scribe the situation where the detector pixel size is
smaller than the speckle grain size [11]. At the same time,
the statistical modeling based on the probability density
of Eq. (14) is meaningful if the acquired image Y(u,v) con-
tains a large number of speckle grains for the statistics.
Thus, the speckle grain size has to be controlled, like in
Fig. 2 (right), in order to be much larger than the pixel
size and much smaller than the CCD matrix. This control
is obtained experimentally by adjusting the focus of the
laser beam on the diffuser with a micrometer-scale sensi-
tivity linear stage. Nevertheless, the speckle grain size is
not a critical parameter, since it does not qualitatively af-
fect the existence of the nonmonotonic evolution of the im-
age acquisition performance with the speckle noise level.
Quantitatively, too small a speckle grain size would

N

74

change the speckle noise probability density function,
since it would result from the integration over a pixel of
multiple grains. Such probability density functions would
be narrower than the exponential model considered here
[11]. Too small a speckle grain size would therefore pre-
serve and even enhance the nonmonotonic evolution of
the image acquisition performance with the speckle noise
level. Alternatively, too large a speckle grain size would
not modify the speckle noise distribution but would im-
pose a larger sensor CCD matrix in order to preserve
similar efficacy in the estimation of the statistical aver-
ages, as in Fig. 1. Also, in the speckle noise model of Eq.
(14), a single standard deviation o is assumed for the
speckle over the whole image N(u,v). Therefore, special
attention has to be devoted to control experimentally the
uniformity of the laser beam. In our case, this is ensured
by a spatial filter designed to obtain a clean laser beam
quasiuniform around its center, covering the CCD matrix.
Experimental results produced by the setup described
above are also presented in Fig. 1 for comparison with the
theoretical predictions. The results of Figs. 1(A) and 1(B)
demonstrate, under the conditions indicated, a good
agreement with the theoretical calculation of the perfor-
mance measures Cgy and Qgy-

Fig. 2. (Left) Input image S(u,v), with size 1024 X1024 pixels, used for the experimental validation presented in Fig. 1, where the
object is occupying p;=27% of the image surface and parameters 1,=0.5, I;=1.5. (Right) Corresponding intermediate image X(u,v) ob-

tained with a speckle noise rms amplitude y20=0.42.
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7. INTERPRETATION

Figure 1 illustrates how an image can be acquired with
maximum efficacy when a sufficient amount of speckle
noise is injected in the present coherent imaging system.
This feature can be interpreted as a form of stochastic
resonance or a useful-noise effect. Stochastic resonance is
an a priori counterintuitive phenomenon in a purely lin-
ear context, and it generally requires the presence of a
nonlinear system in order to occur. The nonlinearity here
is the saturating part in the response of the image acqui-
sition device. As depicted in Fig. 3, at the optimal level of
speckle noise, the saturation of the acquisition device af-
fects almost only the pixels of one of the two regions
(background and object) of the image. In Fig. 3, since I;
>, the pixels saturated in the acquired image Y(u,v) al-
most all belong to the object region. Therefore, under the
optimal speckle noise conditions of Fig. 3, the object re-
gion in the acquired image is somehow denoised by the
saturation of the acquisition device. For too low a level of
speckle noise, the acquired image is not saturated at all
and cannot benefit from this denoising by saturation. For
too high a level of the speckle noise, saturation progres-
sively affects both regions of the acquired image, which
loses its contrast and thus its similarity with the input bi-
nary image S(u,v). This provides a qualitative interpre-
tation for the nonmonotonic evolutions of the performance
measures quantified in Fig. 1 when the level of the
speckle noise is raised.

Based on the results of [9], it can be expected that the
possibility of a beneficial exploitation of speckle noise in
the presence of saturation will carry over to images with
distributed gray levels. In essence, the effect is not criti-
cally dependent on the discrete binary nature of the
information-carrying signal. In general terms, the start-
ing point is an information-carrying signal at a given ini-
tial level of noise that places the sensor to operate essen-
tially in the linear part of its input—output characteristic.
Then, from this point, a sufficient increase in the level of
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noise at the input causes the sensor to operate in the
saturation part of its response. As explained below, the
saturation implements a clipping mechanism that has the
ability to reduce the noise. With adequate control, this
can lead to a situation at the output of the clipping device
that is more favorable for the information-carrying signal
than its initial situation with no clipping. The feasibility
of such an effect was shown in [9] for continuously distrib-
uted 1D temporal signals with additive noise. Here we
have demonstrated the feasibility of the effect on binary
2D spatial signals (images) with multiplicative speckle
noise.

8. CONCLUSION

For coherent imaging, we have demonstrated that satura-
tion of an acquisition device can be exploited to perform a
signal transmission more efficient than that of a purely
linear sensor. Optimal transmission is obtained by adjust-
ing the speckle noise at a sufficient level, which deliber-
ately operates the acquisition device in its saturating
part. This constructive action of speckle noise cooperating
with saturation is interpreted as a novel instance of sto-
chastic resonance. The possibility of a constructive action
of the multiplicative speckle noise has been illustrated
with an exponential speckle probability density and bi-
nary images. Under these conditions, we have shown good
agreement between theoretical and experimental results
in relation to influence of speckle noise grain size. A quali-
tative explanation of the mechanism at the root of the im-
provement by the speckle noise has also been proposed. It
appears in this way that, with binary images buried in
speckle noise, clipping in the acquired images can be a
useful operation that acts as a denoising stage, which can
be, as demonstrated here, optimally controlled by tuning
the speckle noise at a sufficient level. Because of the prac-
tical importance of saturating sensor characteristics, this
result constitutes an interesting extension of [8], where

histogram

0 0.5 1 1.5 2 25
X(u,v) gray level

Fig. 3. (Left) Histogram of background ({J) and object (:) regions in intermediate image X(u,v) of Eq. (1) on a logarithmic scale. Input
image S(u,v) is the same as in Fig. 2 (left). The solid curves are the theoretical histograms calculated from the exponential model of Eq.
(14). The dashed curve stands for the saturating level #=1 of the acquisition image device. Speckle noise is obtained from the experi-

mental setup of [8] with an rms amplitude \5‘50':0.42, corresponding to the optimal value of normalized cross covariance Cgy. (Right)
Binary image representing only the pixel saturated in the acquired image Y(u,v) under the acquisition conditions of the left panel of this

figure.
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the possibility of nonmonotonic evolutions of image acqui-
sition performance as a function of the speckle noise am-
plitude was shown with a simple 1-bit quantizer.
Acquisition, usually seen as the very first step in an in-
formation processing chain, is conventionally designed to
reproduce a faithful representation of the physical signal
with the highest linear fidelity. Here we have shown how
the nonlinear saturating part of an acquisition device can
also be used as a preprocessor capable of denoising prop-
erties usually undertaken at higher levels in the informa-
tion processing chain. Comparable situations where the
clipping effect of a saturating device can benefit from the
processing of an information-carrying signal can also be
found in other contexts. In signal detection [12], the effect
can be used to reduce the detrimental impact on the per-
formance of detectors of spikes due to non-Gaussian
heavy-tailed additive noises. Some distinct nonlinear ef-
fects, bearing some similarity with the present clipping
effect, have also been reported in other areas of coherent
imaging [13-15]. Some benefits of clipping are shown in
[13-15] for real-time image processing. Yet in these refer-
ences, the clipping that is used is meant as hard clipping,
which is, in fact, a 1-bit quantization of the image. This
differs in essence from the type of clipping we consider
here, arising from the linear response of a sensor that
reaches saturation. Moreover, the processes addressed in
[13-15] are postacquisition processes distinct from the ac-
quisition task investigated here at the sensor level.
Results of this report could be extended in several di-
rections. For example, more sophisticated images with
distributed gray levels, instead of binary images, could be
tested. The case of coherent images with distributed gray
levels can be investigated by means of the general theo-
retical framework developed here, which is valid for any
type of speckle noise and input image distribution. As dis-
cussed in Section 7, the stochastic resonance or useful-
noise effect reported here is expected to carry over to im-
ages containing more than two gray levels. Therefore, it
would be interesting to confront, as done here, theoretical
and experimental results and to examine how the benefi-
cial action of speckle noise in association with saturation
evolves in these other conditions of coherent imaging. One
could also consider image processing tasks other than the
acquisition task treated here. Image processing tech-
niques for coherent imaging that take into account the
statistical properties of the noisy images are commonly
implemented, for instance, for detection [16], segmenta-
tion [17], or parameter estimation [18] purposes. These
techniques usually assume a perfectly linear model for
the acquisition device, and the experimental images ac-
quired for the validation of their theoretical performance
are made at a low level of speckle noise to minimize the
saturation that always exists in practice. Therefore, it
would be interesting to investigate the performance of
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such detection, segmentation, or parameter estimation
techniques as described in [16-18], with the presence of a
saturating part in the response of the acquisition device,
and in the light of the present results that predict an in-
creased benefit that can be drawn from saturation.
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