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For images, stochastic resonance or useful-noise effects have previously been assessed with low-level pixel-based
informationmeasures. Suchmeasures are not sensitive to coherent spatial structures usually existing in images. As
a result, we show that such measures are not sufficient to properly account for stochastic resonance occurring in
visual perception. We introduce higher-level similarity measures, inspired from visual perception, and based on
local feature descriptors of scale invariant feature transform (SIFT) type. We demonstrate that such SIFT-based
measures allow for an assessment of stochastic resonance that matches the visual perception of images with spatial
structures. Constructive action of noise is registered in this way with both additive noise and multiplicative
speckle noise. Speckle noise, with its grainy appearance, is particularly prone to introducing spurious spatial
structures in images, and the stochastic resonance visually perceived and quantitatively assessed with SIFT-based
measures is specially examined in this context. © 2012 Optical Society of America

OCIS codes: 000.2690, 100.5010, 030.6140, 030.4280, 100.2000, 120.6150.

1. INTRODUCTION
It is nowanestablished fact (see [1] for a recent survey) that the
presence of a nonzero level of noise in nonlinear systems can
sometimes provide a benefit to the information processing by
these systems. Introduced in physics in the 1980s under the
common designation of stochastic resonance, constructive ac-
tion of noise has since been uncovered in many other domains
connected to information sciences, including photonics [2–8],
electronics, or neurosciences (see [1] for a review). Purpose-
ful injection of noise at a controlled level predictable by
theoretical analysis of stochastic resonance is useful in con-
strained situations where a nonlinear system in charge of
information processing is natively positioned in an unfavorable
manner to convey this information. Thanks to theoretical
analysis and physical experiment, the understanding of the
various mechanisms by which stochastic resonance can oper-
ate has greatly progressed over the last years [1]. However, a
central question remaining is whether our neural system,
which performs information processing in the presence of
noise and nonlinearities, actually uses stochastic resonance
in vivo. This question can be considered at different levels
with isolated neurons, with associations of neurons up to the
maximal integration level with the psychosensorial experi-
ment. In this article,wework at the level of the psychosensorial
experiment. We revisit a recent demonstration of visual per-
ception of stochastic resonance, and we demonstrate that the
mechanism at work in those experiments needs to be further
analyzed to understand the influence of spatial structures in
the constructive action of the noise in imaging systems.

2. VISUAL PERCEPTION OF STOCHASTIC
RESONANCE
We consider, as situation of reference, the stochastic reso-
nance effect studied in [9,10], where an initial input binary
image x is corrupted with an additive centered Gaussian
white noise n and transmitted by a two-level quantizer with
threshold θ as

y � g�x� n�; (1)

and

g�x� �
�
0 for x ≤ θ
1 for x > θ : (2)

Figures 1(a)–1(d) show a visual effect of the nonlinear trans-
mission aided by noise as in [7] when the standard deviation of
the noise root mean square (rms) amplitude is raised.

To complement the visual perception involved in Fig. 1,
we assess the nonlinear information transmission between
images x and ywith objective quantitative measures. The non-
linearity g�·� of Eq. (2) operates a pixel to pixel process. Input
image x and output images y are noisy images with object and
background. Both regions’ object and background are con-
trasted by the difference in their statistical properties. A nat-
ural proposal is therefore to begin with low-level pixel-based
information measures. We turn to three measures of similar-
ity, also used in [10], under the form of the normalized
input–output cross-covariance
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C�x; y� � hxyi − hxihyi�����������������������
hx2i − hxi2

p �����������������������
hy2i − hyi2

p ; (3)

and the structural similarity index (SSIM) introduced by [11]

S�x; y� � 4�hxyi − hxihyi�hxihyi
�hx2i − hxi2 � hy2i − hyi2��hxi2 � hyi2� ; (4)

where h·i is an ensemble average over the pixels of the images.
As a complement to C, and S, we add a third measure of
similarity with the Shannon mutual information

I�x; y� � H�y� −H�yjx�; (5)

where H�·� is the standard Shannon entropy

H�y� �
Z
y
−dypy�y�log2�py�y��; (6)

and

H�yjx� �
Z
x
dxpx�x�

Z
y
−dypyjx�y� log2�pyjx�y�� (7)

with the conditional probability density given by pyjx�y�dy �
Prfy ∈ �y; y� dy�jx � xg, and the marginal density py�y� �R
x dx px�x�pyjx�y�. For the input–output binary images x
and y, it is possible to derive analytical expressions for the
similarity measures C, S, I of Eqs. (3), (4), and (5). This gives

C�x; y� � p1� p11 − q1�������������������������������������������
p1�1 − p1�q1�1 − q1�

p ; (8)

S�x; y� � 4� p1p11 − p1q1�p1q1
� p1 − p21 � q1 − q21�� p21 � q21�

; (9)

and

I�x;y��h� p11p1��1−p00��1−p1���h��1−p11�p1�p00�1−p1��
− �1−p1��h�p00��h�1−p00���p1�h�p11��h�1−p11��;

(10)

where the input binary image x having two levels fx0; x1g with
x0 < x1, for which the probability to have a pixel with level x1
is Prfx � x1g � p1 and Prfx � x0g � 1 − p1, the conditional
probabilities p1k � Prfy � 1 jx � xkg and q1 � Prfy � 1g �
p1p11 � �1 − p1�p10 and function h�u� � −ulog2�u�.

We are now ready to study the evolution of the similarity
measures C, S, and I when the rms σn of the centered
Gaussian white noise n increases. As visible in Fig. 2, a non-
monotonic evolution of the measures is observed. This is the
signature of a stochastic resonance effect or nonlinear image
transmission aided by noise. Optimal noise levels, maximizing
the similarity measures, are observed in each case with C, S,
and I. These optimal noise levels are close for the three
measures and located around the noise level of Fig. 1(c) in
accordance with the visual perception at σopt ≈ 0.5.

We now consider the sequence of images of Figs. 1(e)–1(h).
In Figs. 1(f)–1(h), and specifically in Fig. 1(g), the visual inspec-
tion does not perceive any noise aided image transmission, by
contrast with Figs. 1(b)–1(d). However, in Figs. 1(e)–1(h),
as in Figs. 1(a)–1(d), we deal with input images x in (a) and
in (e), which present the same proportion p1 � 0.84 of white
pixels. As a consequence, the quantitative pixel to pixel
measures of similarity of Fig. 2 characterize the situation in
Figs. 1(e)–1(h) as well as in Figs. 1(a)–1(d) since they are
sensitive only to the first-order statistics of the images, as
conveyed by pi. On the basis of these measures of Fig. 2, a
stochastic resonance effect equivalent in Figs. 1(e)–1(h) and
in Figs. 1(a)–1(d) is predicted, while the visual perception in
Figs. 1(e)–1(h) does not record any stochastic resonance
effect. The visual perception in Figs. 1(a)–1(d) operates on
single realizations of the noise n in each successive image. This
is by contrast with the quantitative measures of Fig. 2, which
are ensemble averages over the noise n. In the early study of
stochastic resonance in visual perception [9], it was chosen to
consider images with minimal structures (a frequency modu-
lated sine)with a temporal variation of additive noise in images
submitted to a group of human observers. The stochastic
resonance effects recorded in [9] are obtained on average.
Nonetheless, as shown in Figs. 1(a)–1(d), the nonlinear trans-
mission aided by noise is perceivable by a human observer on
a single realization, without the need to resort to ensemble
averages over the noise as performed by the quantitative

Fig. 1. (a) Initial binary input image xwith gray levels x0 � 0 and x1 � 1. (b)–(d) Binary images y at the output of the two-level quantizer of Eqs. (1)
and (2) with threshold θ � 1.1, with the additive white noise n taken centered with a Gaussian distribution with standard deviation σn � 0.07 (b),
σn � 0.49 (c), and σn � 1.5 (d). (f)–(h) are identical to (b)–(d) with the input binary image (e) having the same proportions of black and white
pixels as (a).
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measures of Fig. 2. If the visual perception identifies a useful-
noise effect in Figs. 1(a)–1(d) and not in Figs. 1(e)–1(f), it is
probably by exploiting spatial structures present in the images
of Figs. 1(a)–1(d) and absent in images of Figs. 1(e)–1(h). The
consideration of the spatial structures in images therefore
constitutes a new direction of investigation in the quantitative
analysis of stochastic resonance, which we propose to initiate
in the following sections.

3. INFLUENCE OF SPATIAL STRUCTURES
IN IMAGES
The similarity measures used in Fig. 2 realize ensemble
averages that give the same importance to each pixel and
do not take into account salient regions in structured images.
Such regions, salient in orientation or in gray-level contrast,
are known [12] to fix the visual attention, i.e., to assign a great-
er informational importance to certain groups of pixels. In im-
age processing, image structures are classically characterized
with morphological attributes. Standard families of morpholo-
gical attributes are contours, homogeneous regions, textures,
and local features. Because they extract salient points in
images, local features are good candidates to constitute
measures of similarity inspired from the visual system, for
objective study of the influence of spatial structures in the
constructive action of the noise in imaging. A large variety
of strategies for extraction of local features have been re-
ported in the literature, from the early corner detectors up
to the recent developments (see [13] for a recent review).
Variations concern the invariance properties of these local
features in terms of rotation, affine transformation, or scale.
For illustration, in this article we use the scale invariant fea-
ture transform (SIFT), as originally introduced in [14], which
we implement under the didactic soft version freely available
at [15]. SIFT searches for keypoints, i.e., specific locations in
space, corresponding to scale invariant extremas in the gra-
dient of series of smoothed and resampled version of the
original image. For each keypoint, a description vector is
computed through measures achieved over the spatial neigh-
borhood of the gradient. The keypoints and the associated de-
scription vectors can then be used to compare two images.
SIFT searches for pairs of keypoints with similar description

vectors, which are called SIFT matches. The similarity mea-
sure is based on a simple scalar product of the two vectors.
The higher the scalar product, the closer the local structures
of the salient points. A threshold is then applied on these
scalar products to decide if the local structures match or
not. In this manuscript, we have used the default threshold
setting given in [15]. (We have verified that the choice of this
decision threshold does not affect the qualitative nonmono-
tonic SIFT matches evolution nor the value of the optimal
noise level maximizing the number of SIFT matches in Fig. 3.)
The description vector captures the local structure of salient
points. Therefore, the number of SIFT matches between the
input and output image stands as a good candidate for a mea-
sure of similarity, taking into account the spatial structures in
images. Since the nonlinear image transmission we consider
here in Eqs. (1) and (2) is a pixel to pixel transformation, we
measure only the number of colocalized SIFT matches, i.e.,
SIFT matches corresponding to two keypoints in a pair with
the same spatial localization in the output image y and the
initial input image x. A demonstration of our SIFT matches
counting procedure applied to images of Fig. 1 is given in
Fig. 3. As visible in Fig. 3, when the level of the noise in-
creases, a nonmonotonic evolution of the number of coloca-
lized SIFT matches is obtained only for the input image
Fig. 1(a) spatially structured. Meanwhile in Fig. 3, the number
of colocalized SIFT matches identified in the nonstructured
input image Fig. 1(e) remains at an artifactually low and quasi
constant level. This stochastic resonance signature is con-
firmed in Fig. 4, as the number of SIFT matches counted is
plotted as a function of the noise rms amplitude.

For the input image Fig. 1(a) spatially structured, the mea-
sure of similarity of Fig. 4 based on SIFT is maximized for an
optimal nonzero level of noise σopt. The stochastic resonance
visually perceived in Fig. 1 is quantitatively assessed via SIFT,
andmoreover σopt ≈ 0.5 remains unchanged and in accordance
with the similarity measures C, S, I of Fig. 2. By contrast, for
the input image Fig. 1(e) spatially unstructured, themeasure of
similarity based on SIFT remains at zero. This is also in accor-
dancewith the visual perception, while the similaritymeasures
C, S, I failed to discriminate between structured and unstruc-
tured images having the same first-order statistics as Figs. 1(a)
and 1(e). The comparison of Figs. 2 and 4 shows the relevance
of our approach to account quantitatively and in terms of a
psychovisual mechanism of local saliency, for the observable
difference between Figs. 1(a)–1(d) and Figs. 1(e)–1(f).

4. INFLUENCE OF SPATIAL STRUCTURES
IN NOISE
So far in this report, we have quantified with SIFT the influ-
ence of spatial structures in input image x on the visual per-
ception of stochastic resonance. Noise can also carry spurious
spatial structures. And it would be interesting to study the
influence of those spurious spatial structures on the visual
perception of stochastic resonance. A noise that is naturally
found with spurious spatial structures is the speckle noise ap-
pearing in coherent imaging. The speckle noise, generated by
the irregularities of the scene at the wavelength scale, is not
white noise but colored noise with strong spatial correlation
over the speckle grain size [16]. In the following, we propose
to study the influence of the size of the speckle grain on the
visual perception of the stochastic resonance.
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Fig. 2. Similarity measure between the input binary image x of
Fig. 1(a) or Fig. 1(e) and the binary output image y as a function
of the rms amplitude σn of the noise n taken zero-mean Gaussian.
The normalized cross-covariance C�x; y� of Eq. (3), the SSIM index
S�x; y� of Eq. (4), and the Shannon mutual information I�x; y� of
Eq. (5) are identical for Figs. 1(a) and 1(e).
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Let the speckle noise n take the form of fully developed
speckle, which is commonly modeled [16] as a multiplicative
noise, with first-order statistics given by an exponential
probability density pn� j�

pn� j� �
1
σn

exp
�
−

j
σn

�
; j ≥ 0 (11)

with mean and standard deviation σn and rms amplitude
���
2

p
σn.

The conditional probability p1k amounts to Prfn > θ∕xkg �
1 − Fn�θ∕xk�, with k ∈ f0; 1g, where Fn�j� �

R
j
−∞

pn�j0�dj0 is
the cumulative distribution of the noise n. When the probability
density pn�j� of the speckle noise is given by Eq. (11), we have

Fn� j� � 1 − exp
�
−

j
σn

�
; j ≥ 0: (12)

We then consider the same input–output image transmission
schemewith a binary image x corruptedwith themultiplicative
speckle noise n

y � g�x × n�; (13)

and transmitted by the same two-level quantizerwith threshold
θ of Eq. (2). Equations (3)–(5) expressed for binary input
images and binary output similarity measures C, S, I remain
valid with only the p1k, which depends on the signal-noise cou-
pling. As illustrated in Fig. 5, the stochastic resonance effect is
predicted by the pixel-based similarity measure with multipli-
cative speckle noise coupling. This has been first shown in
[7,8]. It appears from [7,8] that stochastic resonancewithmulti-
plicative speckle noise is recorded also by human visual
perception and in good accordance with pixel-based similarity
measures C, S, I as long as the speckle grain is small in

Fig. 3. (Color online) Input–output similarity based on the number of colocalized SIFT matches counted in the images of Fig. 1. Lines materialize
the keypoints detected as matching in the input and in the output image. Dashed horizontal lines are for colocalized SIFT matches associating pairs
of keypoints with same spatial location in input and output images. Solid lines, mainly oblique, are for SIFT matches with wrong locations. The left
column corresponds to the structured image of Fig. 1(a), and the right column to the unstructured image of Fig. 1(e).

Noise rms amplitude

sehcta
m

T
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S

Fig. 4. Average number of colocalized SIFT matches found over
100 realizations between initial input binary images x [Fig. 1(a) or
Fig. 1(e)] and the output binary image y, as a function of the noise
level. By contrast with the similarity measures of Fig. 2, the number of
colocalized SIFT matches differs for the structured image of Fig. 1(a)
and the unstructured image Fig. 1(e), for which the number of coloca-
lized SIFT matches detected is artifactually low and constant.
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Fig. 5. Same input binary images as in Fig. 1 with gray levels
x0 � 0.5, x1 � 1 and threshold θ � 1. The multiplicative speckle noise
n is exponentially distributed as in Eq. (11) with rms amplitude

���
2

p
σn.

Solid lines stand for the normalized cross-covariance C�x; y� of
Eq. (3), and the SSIM index S�x; y� of Eq. (4) and the Shannon mutual
information I�x; y� of Eq. (5) are identical for Figs. 1(a) and 1(e). The
discrete set of points stands for the numerical average over 100
realizations with the speckle grain size of Fig. 6(b)—circles and
Fig. 6(d)—crosses.
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comparison to the informative structures carried by the
input image.

In simulation, the spatial correlation of the speckle noise
can be controlled by choosing the number of random phasors,
representing the number of irregularities at the wavelength
scale, used to generate the speckle pattern (see [16] for de-
tailed procedure). A small number of random phasors result
in a spatially colored speckle noise with large grains, while a
large number of random phasors produces an almost white
speckle noise. Choosing the number of random phasors only
affects the second-order statistics, while the gray level re-
mains exponentially distributed as in Eq. (11). Consequently,
the size of the speckle grain has no influence on the first-order
statistics-based similarity measures C, S, and I, as numerically
demonstrated in Fig. 5 with an almost perfect agreement be-
tween theory and numerical simulation with various speckle
grain size. In Fig. 6, we provide, for the same input binary
image, output binary images with a fixed speckle noise level
while increasing the size of the speckle grain. As perceivable
in Fig. 6, our visual capability to extract the informative
structures carried by the input binary image in the output bin-
ary image is strongly affected by the apparition of the spurious
structures carried by the speckle noise. This is especially the
case when the speckle grain size increases up to the point
where it becomes of size similar to the informative structures
as in Fig. 6(d). Yet, since the first-order statistics of images of
Fig. 6 are identical, the pixel-based measures C, S, I fail to
record the impact of the spurious structures of speckle on
the visual perception of the stochastic resonance effect.

This is by contrast with the colocalized SIFT matches of the
previous section, which show in Fig. 7 in good agreement with
the visual perception. In Fig. 7, the nonmonotonic evolution of

the number of colocalized SIFT matches as a function of the
speckle noise level is preserved for not-too-large speckle grain
size. The optimal level of noise in the stochastic resonance
effect is not affected, and only the peak is reduced when
the speckle grain size is raised. This again demonstrates
the interest of our local-feature-based similarity measure to
assess stochastic resonance in visual perception of spatially
structured images.

5. CONCLUSION AND PERSPECTIVES
We have demonstrated that pixel-based measures from first-
order statistics are not sufficient to asses the visual perception
of stochastic resonance. We have then introduced a higher-
order new measure based on spatially colocalized SIFT to
take into account the spatial structures in images. We have
demonstrated the ability of this measure to quantify the influ-
ence of the structures of the information carrying images and
the influence of a grainy speckle noise in the visual perception
of the stochastic resonance with coherent imaging. This ap-
proach opens multiple perspectives for further investigation.

There existmanyothermeasuresmodeling various aspect of
the human psychovisual system, and it would be interesting to
test their ability to respond in accordance with the human per-
ception of stochastic resonance. Psychovisual saliency maps
[12] modeling visual attention could be, for instance, an inter-
esting candidate. Also, at the level of the eye itself, the effect of
stochastic resonance has been studied experimentally and in
numerical simulations at time scales of microseconds where
microtremors of the gaze on the retina can be acquired. Sto-
chastic resonance has also been shown in response to visual
stimuli of a duration of 1∕10 second [17]. Intermediate time
scales could also be investigated by using eye tracking systems
that follow the fixations of the eye at time scale of milliseconds
[18]. A specific informational task would have to be defined to
allow a quantification. One could think of following the edge of
an object, for instance. The perceived statistical properties
of the images are expected to be also impacted by the observa-
tion scale of images [19]. The impact of the distance of obser-
vation of images on the visual perception of stochastic
resonance would therefore be another possible direction of in-
vestigation. Finally, for unstructured images, as demonstrated
byourwork, first-order statistics-based similaritymeasures fail
to report the absence of perceived stochastic resonance. The
quantification of the frontier between a structured and an
unstructured image with regard to stochastic resonance is
now an open question. Considerations at the pixel level quan-
tifying the compressibility or sparsity, as in compressive sen-
sing [20] of the input image, could constitute a direction. At the
spatial frequency level, considerations could also be made to
quantify the presence or absence of structures characterized

Fig. 6. Output images with the same speckle noise rms amplitude taken at
���
2

p
σn � 1.5. Input image is the binary image of Fig. 1(a) with gray levels

x0 � 0.5, x1 � 1, threshold θ � 1. From left to right, the size of the speckle grain is increased.

Fig. 7. Average number of colocalized SIFT matches found over 100
realizations between the initial input binary image x [Fig. 1(a)] and the
output binary image y, as a function of the speckle noise level. Gray
levels x0 � 0.5, x1 � 1, threshold θ � 1. Plots (a), (b), (c), and (d) are
obtained with grain sizes increasing for the speckle as in Fig. 6.
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by the statistical power-law signature of natural images in the
Fourier domain [21]. More elaborate measures at the semantic
level could quantify the amount of “memorability” of the struc-
tures in the input image [22] proposed for visual perception in
stochastic resonance experiments.
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