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Abstract. We formulate, in general terms, the classical theory of optimal
detection and optimal estimation of signal in noise. In this framework, we
exhibit specific examples of optimal detectors and optimal estimators endowed
with a performance which can be improved by injecting more noise. From
this proof of feasibility by examples, we suggest a general mechanism by which
noise improvement of optimal processing, although seemingly paradoxical, may
indeed occur. Beyond specific examples, this leads us to the formulation of
open problems concerning the general characterization, including the conditions
of formal feasibility and of practical realizability, of such situations of optimal
processing improved by noise.
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1. Introduction

Signal and information processing very often has to cope with noise. Noise commonly
acts as a nuisance. However, specific phenomena such as those related to stochastic
resonance, and currently under investigation, tend to show that noise can sometimes play
a beneficial role [1]–[3]. Many situations of stochastic resonance or useful-noise effects
have been reported for signal and information processing. This included demonstration
of the possibilities of improvement by noise in standard signal processing operations like
detection [4]–[13] or estimation [14]–[22] of signal in noise. However, most of these studies
have focused on improvement by noise of suboptimal signal processors. By contrast, the
present paper will focus on optimal processors. Examples of optimal processing improved
by noise will be described, so as to exhibit some concrete proofs of feasibility. Next,
a general mechanism will be uncovered which explains how improvement by noise of
optimal processing can indeed occur, however paradoxical it may seem at first sight.
Open questions will then be formulated concerning the general characterization of the
optimal processing problems and their solutions, that can take advantage of improvement
by noise.

This paper takes place within the classical frameworks of optimal detection and
optimal estimation of signal in noise. For self-completeness of the paper, the classical
theory of these frameworks will be briefly recalled. This will also serve to explicitly
visualize the place of the classical derivations where the (unexpected) possibility of
improvement by noise can make its way in. We will be considering a general optimal
processing situation under the classical form as follows: an input signal s(t) is coupled to
a random noise ξ(t) by some physical process, so as to produce an observable signal x(t).
At N distinct times tk which are given, N observations are collected x(tk) = xk, for k = 1
to N . From the N observations (x1, . . . , xN ) = x, one wants to perform, about the input
signal s(t), some inference that would be optimal in the sense of a meaningful criterion of
performance.
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2. Optimal detection

2.1. Classical theory of optimal detection

As an embodiment of the general situation of section 1, we consider a standard two-
hypotheses detection problem, where the input signal s(t) can be any one of two known
signals, i.e. s(t) ≡ s0(t) with known prior probability P0 or s(t) ≡ s1(t) with prior
probability P1 = 1−P0. The input signal s(t) is mixed in some way with the ‘corrupting’
noise ξ(t) to yield the observable signal x(t). From the observations x = (x1, . . . , xN) one
has then to detect whether s(t) ≡ s0(t) (hypothesis H0) or s(t) ≡ s1(t) (hypothesis H1)
holds.

Following classical detection theory [23, 24], any detection procedure can be formalized
by specifying that the detector will decide s(t) ≡ s0(t) whenever the data x = (x1, . . . , xN)
falls in the region R0 of R

N , and it will decide s(t) ≡ s1(t) when x falls in the
complementary region R1 of R

N . In this context, a meaningful criterion of performance is
(other criteria of Neyman–Pearson or minimax types are also possible) the probability of
detection error Per = Pr{s1 decided|H0 true}P0+Pr{s0 decided|H1 true}P1, also expressible
as

Per = P1

∫
R0

p(x|H1) dx + P0

∫
R1

p(x|H0) dx, (1)

where p(x|Hj) is the probability density for observing x when hypothesis Hj holds,
with j ∈ {0, 1}, and the notation

∫
. dx stands for the N -dimensional integral∫ · · ·∫ . dx1 · · ·dxN .

Since R0 and R1 are complementary in R
N , one has∫

R0

p(x|H1) dx = 1 −
∫
R1

p(x|H1) dx, (2)

which, substituted in equation (1), yields

Per = P1 +

∫
R1

[P0p(x|H0) − P1p(x|H1)] dx. (3)

Following classical detection theory [23, 24], the detector that minimizes Per can be
obtained by making the integral over R1 on the right-hand side of equation (3) the more
negative possible. This is realized by including in R1 all and only those points x for which
the integrand P0p(x|H0)−P1p(x|H1) is negative. This yields the optimal detector, which
tests the likelihood ratio L(x) = p(x|H1)/p(x|H0) according to

L(x) =
p(x|H1)

p(x|H0)

H1

≷
H0

P0

P1
. (4)

When the decision regions R0 and R1 are defined according to the optimal test of
equation (4), then on the right-hand side of Per in equation (1), the two quantities to be
integrated over R0 or R1 can be uniformly expressed, simultaneously over R0 and R1,
as min[P0p(x|H0), P1p(x|H1)]. It results that the minimal Per reached by the optimal
detector of equation (4) is expressible as

Pmin
er =

∫
RN

min[P0p(x|H0), P1p(x|H1)] dx. (5)
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Since min(a, b) = (a + b − |a − b|)/2, the minimal probability of error of equation (5)
reduces to

Pmin
er = 1

2
− 1

2

∫
RN

|P1p(x|H1) − P0p(x|H0)| dx. (6)

The classical theory of optimal detection, as reviewed in this section 2.1, thus specifies,
through equation (4), the best exploitation of the data x in order to reach the minimal
probability of detection error P min

er given by equation (6). This theory is general in the
sense that it applies for the detection of any two arbitrary known signals s(t) ≡ s0(t) and
s(t) ≡ s1(t), mixed in any way, to any definite noise ξ(t). The specificity of each problem
is essentially coded in the two conditional probability densities p(x|Hj), for j ∈ {0, 1},
which express the probabilization induced by the noise ξ(t) once defined.

2.2. A classical detection example

For an application of the optimal detection procedure of section 2.1, we now consider that
the signal–noise mixture x(t) is the additive mixture

x(t) = s(t) + ξ(t), (7)

with ξ(t) a stationary white noise of cumulative distribution function Fξ(u) and probability
density function fξ(u) = dFξ/du. The level of the noise ξ(t) is quantified by its root
mean squared (rms) amplitude σ. The white noise assumption here means that, at any
distinct observation times tk, the noise samples ξ(tk), and consequently the observations
xk = x(tk), are statistically independent. It then follows that the conditional densities

factorize as p(x|Hj) =
∏N

k=1 p(xk|Hj), with

p(xk|Hj) = fξ[xk − sj(tk)], (8)

for j ∈ {0, 1}. We further consider the simple situation where the signals to be detected
are the constant signals s0(t) = s0 and s1(t) = s1, for all t, with two constants s0 < s1.

In the common case where the white noise ξ(t) in equation (7) is zero-mean Gaussian,
it is well known that the optimal detector of equation (4) reduces to

1

N

N∑
k=1

xk

H1

≷
H0

s0 + s1

2
+

σ2/N

s1 − s0
ln

(
P0

P1

)
= xT . (9)

This optimal test of equation (9) achieves the probability of error of equation (6)
which is also

Pmin
er =

1

2

[
1 + P1 erf

(√
N

xT − s1√
2σ

)
− P0 erf

(√
N

xT − s0√
2σ

)]
. (10)

It is easy to verify that this minimal probability of detection error P min
er of equation (10)

monotonically increases when the noise level σ increases. This is depicted in some
illustrative conditions by figure 1.

Figure 1 illustrates a common behavior which can be intuitively expected: the
performance P min

er of the optimal detector monotonically degrades as the noise level σ
increases. Such an expectation matches the a priori intuition that noise usually has a
detrimental effect on information processing. However, this may not be the rule in general,
and we show next that improvement by noise can sometimes apply to optimal detectors.
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Figure 1. Minimal probability of error Pmin
er of equation (10) for the optimal

detector of equation (9), as a function of the rms amplitude σ of the zero-mean
Gaussian noise ξ(t) with N = 1 and N = 2 data points. Also, s0(t) ≡ s0 = −1,
s1(t) ≡ s1 = 1 and P0 = 1/2.

2.3. Beneficial role of noise

We now turn for the additive white noise ξ(t) in equation (7) to a non-Gaussian case by
way of the family of zero-mean Gaussian mixture with standardized probability density
(with 0 < m < 1):

fgm(u) =
1

2
√

2π
√

1 − m2

{
exp

[
− (u + m)2

2(1 − m2)

]
+ exp

[
− (u − m)2

2(1 − m2)

]}
, (11)

and cumulative distribution function:

Fgm(u) =
1

2
+

1

4

[
erf

(
u + m√

2
√

1 − m2

)
+ erf

(
u − m√

2
√

1 − m2

)]
. (12)

As m → 0, equation (11) approaches the zero-mean unit-variance Gaussian density; as
m → 1, equation (11) approaches the zero-mean unit-variance dichotomic density at ±1,
as in [25]. We consider for ξ(t) the density fξ(u) = fgm(u/σ)/σ which is a zero-mean
Gaussian-mixture density with standard deviation σ. This density fξ(u) is plugged into
equation (8), and then via equation (6) it yields the performance Pmin

er of the optimal
detection with Gaussian-mixture noise. Figure 2 represents different evolutions of the
performance Pmin

er in equation (6) of the optimal detector as the noise rms amplitude σ
increases.

Figure 2 exhibits the possibility, as also found in [26], of nonmonotonic evolutions of
the performance P min

er of the optimal detector, as the level σ of the Gaussian-mixture noise
is raised. When the noise level σ starts to rise above zero in figure 2, the probability of
error Pmin

er starts to gradually degrade (to increase), manifesting here a detrimental action
of the noise. However, this degradation of Pmin

er does not always proceed monotonically
as σ is further increased. Conditions exist in figure 2, where the probability of error Pmin

er

improves (decreases) when the noise level σ is further raised over some ranges. At even
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Figure 2. Minimal probability of error Pmin
er of equation (6) for the optimal

detector of equation (4), as a function of the rms amplitude σ of the zero-
mean Gaussian-mixture noise ξ(t) from equation (11) at different m. Also,
s0(t) ≡ s0 = −1, s1(t) ≡ s1 = 1 and P0 = 1/2; N = 1 (panel A) or N = 2
(panel B).

larger levels of σ, the detrimental action of the noise resumes and P min
er degrades again by

increasing towards the least favorable value of min(P0, P1) which is 1/2 in figure 2.

The results of figure 2 demonstrate by example that the performance P min
er of an

optimal detector does not necessarily degrade as the noise level increases. On the contrary,
figure 2 shows conditions where, for an optimal detector initially operating at a noise level
σ ≈ 1, the optimal performance P min

er improves if the optimal detector is taken to operate
at a higher noise level σ ≈ 1.5. In the example of figure 2, the beneficial action of
noise occurs when the noise ξ(t) departs sufficiently from a Gaussian noise, i.e. when m in
equation (11) is sufficiently close to 1. In contrast, values of m approaching zero in figure 2
lead to the Gaussian case of figure 1, where increase of the noise level σ monotonically
degrades the performance P min

er . Qualitatively, it can be realized that the non-Gaussian
density fξ(·) at m close to 1 has two peaks which make the two noisy constants s0 and s1

more distinguishable as the noise level σ is raised over some range, as depicted in figure 3.
Quantitatively, this translates into the improvement by noise of the performance P min

er in
optimal detection, as visible in figure 2.

From a practical point of view, if one wants to take advantage of a beneficial increase
in the noise level as it exists in figure 2, one cannot increase the noise level simply by
adding an independent white noise η(t) to the observation signal x(t) of equation (7)
so as to realize x(t) + η(t) = s(t) + ξ(t) + η(t). In this way, the probability density of
the augmented noise ξ(t) + η(t) would no longer follow the initial non-Gaussian density
fξ(·). The process would no longer adhere to the conditions of figure 2 which assume an
invariant non-Gaussian density as the noise level is raised. The theoretical analysis of
figure 2 should be extended to replace the initial density fξ(·) by the composite convolved
density fξ(·)∗fη(·) as the noise η(t) with density fη(·) is added. An alternative though, to
raise the noise ξ(t) while adhering to the conditions of figure 2, is to assume the possibility
of a more internal physical parameter, like a temperature, which would allow to increase
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Figure 3. For a measurement xk, probability densities from equation (8) under
both hypotheses: p(xk|H0) = fξ(xk − s0) (blue dashed line) and p(xk|H1) =
fξ(xk − s1) (red solid line). The noise probability density fξ(u) = fgm(u/σ)/σ is
the zero-mean Gaussian mixture from equation (11) at m = 0.95 with standard
deviation σ. The signals to be detected are the constant s0(t) ≡ s0 = −1
and s1(t) ≡ s1 = 1; and P0 = 1/2. At σ = 1 (middle panel), the densities
p(xk|H0) and p(xk|H1) have a relatively strong overlap, and consequently, based
on the measurement xk, the signals s0 = −1 and s1 = 1 are more likely to be
confused. Henceforth, this noise level σ = 1 is associated with a large probability
of detection error Pmin

er in figure 2. By contrast, at σ = 0.5 (upper panel) and at
σ = 1.8 (lower panel), the densities p(xk|H0) and p(xk|H1) have smaller overlap,
and consequently, based on the measurement xk, the signals s0 = −1 and s1 = 1
are less likely to be confused. This is associated with a smaller probability of
detection error Pmin

er in figure 2 at these noise levels σ = 0.5 and 1.8. This
illustrates the nonmonotonic action of an increase of the noise level σ on the
performance Pmin

er .

the noise level σ while maintaining the non-Gaussian density fξ(·) invariant in shape.
The noise ξ(t) at the level σ where it is, is certainly ruled by some definite physical
process fixing σ, and a control is assumed in this process allowing us to raise σ. Also,
to complement this practical perspective, noise bearing some similarity with the bimodal
noise of this section 2.3 could be found in practice with a ‘logical’ noise formed as follows.
A logical device or a random telegraphic signal would randomly switch between two fixed
values coding the logical states 0 and 1; in addition, each of these two states would be
corrupted by an additive Gaussian noise. The result then would be a bimodal noise with
two Gaussian peaks, as could exist in the environment of logical or telegraphic devices.

doi:10.1088/1742-5468/2009/01/P01003 7
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Aside from these practical aspects and the specific mechanism depicted in figure 3,
the main message we want to retain here from the results of figure 2 is in principle: the
performance of an optimal detector can sometimes improve when the noise level increases.
This property is demonstrated by an example in this section 2.3, which involves an additive
signal–noise mixture with non-Gaussian noise. Other examples further demonstrate the
same property for detection on non-additive signal–noise mixture [27, 28] with Gaussian
noise [29]. Later in this paper, beyond demonstration by examples, we will address the
open problem of a general characterization of such optimal detection tasks which can
benefit from an increase in the noise. Before, we show next that improvement by noise of
optimal processing can also be observed in optimal estimation.

3. Optimal estimation

3.1. Classical theory of optimal estimation

Another embodiment of the general situation of section 1 is a standard parameter
estimation problem, where the input signal s(t) is dependent upon an unknown parameter
ν, i.e. s(t) ≡ sν(t). The input signal sν(t) is mixed to the noise ξ(t) to yield the observable
signal x(t). From the observations x = (x1, . . . , xN) one has then to estimate a value ν̂(x)
for the unknown parameter. In this context [23, 30], a meaningful criterion of performance
can be the rms estimation error

E =
√

E{[ν̂(x) − ν]2}. (13)

When ν is a deterministic unknown parameter, the random noise ξ(t) mixed to the
input signal sν(t) induces a probability density p(x; ν) for the data x. The expectation
E(·), defining in equation (13) the rms estimation error E of estimator ν̂(x), then comes
out as

E =
√∫

RN

[ν̂(x) − ν]2 p(x; ν) dx. (14)

An estimator with interesting properties is the maximum likelihood estimator defined
as [23, 30]

ν̂ML(x) = arg max
ν

p(x; ν). (15)

In the asymptotic regime N → ∞ of a large data set, the maximum likelihood estimator
ν̂ML(x) is the optimal estimator that minimizes the rms estimation error of equation (14),
achieving a minimal rms error expressible as

Emin =

√
1

J(x)
, (16)

where J(x) is the Fisher information contained in the data x about the unknown
parameter ν and is defined as

J(x) =

∫
RN

1

p(x; ν)

[
∂

∂ν
p(x; ν)

]2

dx. (17)

The classical theory of optimal estimation, as reviewed in this section 3.1, applies for
parameter estimation on any parametric signal sν(t), mixed in any way, to any definite
noise ξ(t). The specificity of each problem is essentially coded in the probability density
p(x; ν), which expresses the probabilization induced by the noise ξ(t) once defined.
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3.2. Estimation with phase noise

For an application of the optimal estimation procedure of section 3.1, we now consider our
input signal sν(t) under the form of a periodic wave sν(t) = w(νt) of unknown frequency
ν, where w(t) is a known periodic ‘mother’ waveform of period unity. The noise ξ(t) acts
on the phase of the wave so as to form the observable signal

x(t) = w[νt + ξ(t)]. (18)

Such a periodic signal corrupted by a phase noise will be seen, for instance, by a sensor
receiving a periodic wave which traveled through a fluctuating or turbulent propagation
medium producing the phase noise. Based on the data x = (x1, . . . , xN) observed on the
noisy signal x(t), the frequency ν is to be estimated.

We assume a white noise ξ(t), meaning that at distinct times tk the noise samples ξ(tk),
and therefore the data xk = x(tk), are statistically independent, so that the probability

density p(x; ν) factorizes as p(x; ν) =
∏N

k=1 p(xk; ν). Also, the samples ξ(tk) are identically
distributed, with cumulative distribution function Fξ(u) and probability density function
fξ(u) = dFξ/du. We further consider the simple situation where w(t) is a square wave of
period 1 with w(t) = 1 when t ∈ [0, 1/2) and w(t) = −1 when t ∈ [1/2, 1). With δ(·) the
Dirac delta function, we have the density

p(xk; ν) = Pr{xk = −1; ν}δ(xk + 1) + Pr{xk = 1; ν}δ(xk − 1), (19)

with the probability

Pr{xk = 1; ν} = Pr{w[νtk + ξ(tk)] = 1} (20)

= Pr
{

νtk + ξ(tk) ∈
⋃
�

[	, 	 + 1/2)
}

(21)

= Pr
{

ξ(tk) ∈
⋃
�

[	 − νtk, 	 − νtk + 1/2)
}

(22)

=

+∞∑
�=−∞

∫ �−νtk+1/2

�−νtk

fξ(u) du (23)

=
+∞∑

�=−∞
[Fξ(	 − νtk + 1/2) − Fξ(	 − νtk)], (24)

	 integer, and the probability

Pr{xk = −1; ν} = 1 − Pr{xk = 1; ν}. (25)

Under the white noise assumption, Fisher information is additive and one has J(x) =∑N
k=1 J(xk), with

J(xk) =
∑

xk=−1,1

1

Pr{xk; ν}
[

∂

∂ν
Pr{xk; ν}

]2

(26)

doi:10.1088/1742-5468/2009/01/P01003 9
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Figure 4. Minimal rms estimation error Emin from equation (16) for the
asymptotically optimal estimator formed by the maximum likelihood estimator
of equation (15) at large N as a function of the rms amplitude σ of the zero-
mean Gaussian noise ξ(t). Estimation of the frequency ν = 1 of a square
wave is performed from N observations at times t = (t1, t2, . . . , tN ) selected
between t1 and tN with step Δt, which we denote t = [t1 : Δt : tN ]. Panel A:
t = [0 : 5 × 10−2 : 2] for N = 41 (solid line), t = [0 : 5 × 10−3 : 2] for N = 401
(dashed line). Panel B: t = [0.25 : 2.5 × 10−3 : 0.35] for N = 41 (solid line),
t = [0.25 : 2.5 × 10−4 : 0.35] for N = 401 (dashed line).

the Fisher information contained in the observation xk = x(tk). In addition, from
equation (24) one has the derivative

∂

∂ν
Pr{xk = 1; ν} = −tk

+∞∑
�=−∞

[fξ(	 − νtk + 1/2) − fξ(	 − νtk)]. (27)

To complete the specification of the problem, we choose ξ(t) as a zero-mean Gaussian noise
with standard deviation σ. Figure 4 then represents the evolution of the performance Emin

from equation (16), at large N , in different conditions of estimation.
Figure 4(A) corresponds to a favorable configuration of the N given observation times

(t1, t2, . . . , tN) = t that are well distributed in relation to the period 1/ν of the wave. In
this case, the phase noise ξ(t) is felt as a nuisance and the optimal estimation error Emin

monotonically degrades (increases) as the noise level σ increases. By contrast, figure 4(B)
corresponds to a less favorable configuration of the N observation times t = (t1, t2, . . . , tN)
that concentrate over a duration less than one period 1/ν of the wave. In this case,
qualitatively, the phase noise ξ(t) plays a constructive role as it allows more variability
in the values accessible to the data x = (x1, . . . , xN ) observed from the noisy signal of
equation (18). This is manifested quantitatively in figure 4(B) by an optimal estimation
error Emin experiencing a nonmonotonic evolution as the level σ of the phase noise grows,
with ranges where the error Emin decreases when the noise level σ increases.

The beneficial action in figure 4(B) is obtained with Gaussian noise. This means that
the noise level σ can be increased by addition of an independent Gaussian noise η(t) to
a pre-existing initial Gaussian phase noise ξ(t). This, from equation (18), realizes the
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observable signal x(t) = w[νt + ξ(t) + η(t)], with the augmented noise ξ(t) + η(t) which
remains Gaussian, as in figure 4, while its rms amplitude increases. In practice, for the
periodic wave traveling through a fluctuating medium, as evoked just after equation (18),
the initial phase noise ξ(t) in equation (18) is due to random fluctuations in the
propagating medium. Then, a receiving sensor subjected to random vibrations according
to the additional noise η(t) will produce the observable signal x(t) = w[νt + ξ(t) + η(t)].
In outline, optimal estimation on a periodic wave traveling through a fluctuating medium
could be improved by randomly shaking the receiver in an appropriate way.

The results of this section 3.2 demonstrate, with an example, the possibility of
improving the performance of an optimal estimator when the noise level increases.
Section 3.2 addresses the estimation of a deterministic unknown parameter ν and it gives
new results on noise-aided optimal estimation. A comparable property of improvement by
noise in optimal estimation was demonstrated with another example in [31]. Reference [31]
addresses estimation of a stochastic unknown parameter ν, with a classic Bayesian
estimator minimizing the rms error of equation (13), when the expectation E(·) in
equation (13) is according to the probabilization established in conjunction by the noise
ξ(t) and the prior probability on ν.

4. The basic mechanism

Sections 2.3 and 3.2, as well as [27]–[29], [31], report examples of improvement by noise
in optimal processing. We are dealing here with optimal processing (optimal detection
and optimal estimation) in a classical sense, as defined by classical optimal detection
and estimation theories [23, 24, 30]. The measures of performance which are analyzed are
standard measures for detection and estimation, i.e. the probability of detection error
Per defined in equation (1) and the rms estimation error E of equation (13). These
quantities are measures commonly used for performance evaluation in the classical theories
of statistical detection and estimation, and they represent the performance that is reached
in practice through ensemble average over a large number of realizations of the random
signal x(t) which is optimally processed. The results of figures 2 and 4 are ensemble
averages in this sense, and they demonstrate in concrete examples the possibility of
improvement by noise of the performance of optimal processors. In practice, as we briefly
indicated, the example of figure 2 could be relevant, for instance, to the detection of signals
in bimodal ‘logical’ noise, while the example of figure 4 could be relevant, for instance,
to the estimation on periodic waves traveling through fluctuating media. However, our
main purpose here is not to argue about the practical usefulness of these examples, but
rather we want to focus on their meaning in principle. These examples stand as proofs of
feasibility in principle that it is possible to improve the performance of optimal processors
by increasing the noise. It may then seem paradoxical that optimal processors, in the
classical sense, can be improved by raising the noise. If they are truly optimal, how can
they be improved?

The point is that these processors are optimal in the sense that they represent the
best possible deterministic processing that can be done on the data x to optimize a fixed
given measure of performance Q (for instance, Per of equation (1) or E of equation (13)).
In the classical theory of these optimal processors, the performance Q is a functional of the
probabilization established by the initial noise ξ(t). This probabilization is expressed by
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p(x|Hj) in Per of equation (1), and by p(x; ν) in E of equation (14). In the optimization of
the performance Q, this probabilization is kept fixed: p(x|Hj) and p(x; ν) are fixed given
functions of the variable x. Classical optimal theory then derives the best deterministic
processing of the data x to optimize the performance Q at a level Q1. This level Q1

is therefore the best value of the performance that can be achieved by deterministic
processing of the data x in the presence of a fixed probabilization of the problem and
of the functional Q. What is realized by injection of more noise is a change of this
probabilization of the problem. If the probabilization in the functional Q is changed, then
the optimal processor, which is now optimal in the presence of the new probabilization of
the functional Q, may achieve an improved performance Q2 strictly better than Q1. This
is what happens in the examples of sections 2.3 and 3.2 (and in [27]–[29], [31]). It is even
possible that a suboptimal processor in the sense of Q based on the new probabilization
achieves a performance strictly better than the performance Q1 optimal in the sense of
the initial probabilization. An important point is that, even when the probabilization is
changed by the injection of noise, it is the same detection or estimation problem which
is addressed at the root: which signal s(t) is hidden in the noise? And also, the measure
of performance keeps the same physical signification and quantifies the same thing: the
fraction of error in detection, or the mean squared difference between the estimate and the
true value of the parameter. It is only the functional form of the measure of performance,
as a function of the data, which is changed, not the signification of it.

5. Open problems of noise

We have described a general approach through which the possibility of improvement by
noise of optimal processing can be analyzed. We have shown two specific examples
concretely demonstrating situations of noise-improved optimal processing. We have
argued that, at a general level, the basic mechanism possibly authorizing improvement
by noise in optimal processing is a change of probabilization of the processing problem.
To go further beyond the present proof by examples and the general mechanism we
uncovered, an important step is now in making more explicit the favorable changes of
probabilization that could possibly lead to improved optimal processing. The favorable
changes of probabilization may be specific to any definite processing problems and need be
explored separately. There are, however, several general open problems in this direction
which can be formulated to serve as guidelines, and those we now discuss.

A favorable change of probabilization, to give way to what can be interpreted as
a noise-improved performance, should be a change of probabilization that goes in the
direction of raising the noise, something we can call an ‘overprobabilization’. A formal
change of probabilization that would only amount to reducing the level of the initial noise
ξ(t) would in general trivially lead to an improved performance of the optimal processor.
This is apparent with P min

er of equation (10) which is the best performance achieved by
the optimal deterministic detector of a constant signal in Gaussian white noise. This
Pmin

er is a function of the noise rms amplitude σ assumed fixed in the optimization process
(fixed probabilization) leading to the optimal detector of equation (9). In this Pmin

er of
equation (10), if now σ is reduced (a change in the probabilization), the performance
Pmin

er of the optimal detector is improved, as can be seen in figure 1. Yet, this is a trivial
improvement through a change of probabilization amounting to reducing the initial noise.
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The direction which is interesting to explore is the opposite: an improved performance by
raising the noise. The possibility thereof is exemplified in sections 2.3 and 3.2.

Beyond these proofs of feasibility by examples in sections 2.3 and 3.2, we are thus led
to the following open problem: is it possible to obtain a general characterization of the
optimal processing problems and their solutions for which the optimal processors achieve a
performance improvable by overprobabilization (a change of probabilization by increasing
the noise)?

In this respect, noise-improved optimal processings were obtained in section 2.3
on an additive signal–noise mixture with non-Gaussian white noise (see figure 2) and
in section 3.2 on a non-additive signal–noise mixture with Gaussian white noise (see
figure 4(B)). One is thus led to ask whether general conditions exist concerning the
additive/non-additive and Gaussian/non-Gaussian characteristics of the noise, in order
to authorize improvement by noise in optimal processing.

Also, an important reference in detection and estimation is provided by the case of an
additive signal–noise mixture with Gaussian white noise. Then another specific question
is: is it possible to improve the optimal detection or optimal estimation of a signal in
an additive signal–noise mixture with Gaussian white noise by injecting more noise ?
Formally, this would amount to finding a change in the forms of functions p(x|Hj) in Per

of equation (1), or p(x; ν) in E of equation (14), through an overprobabilization associated
with an improvement of the functional measuring the performance. Alternatively, another
question is: is there a proof of principle that this is not possible? To answer in one way
or the other, a difficulty is that there exists a priori a large (infinite) number of possible
overprobabilizations which can be considered to change, at least formally, the forms of
functions p(x|Hj) in equation (1) or p(x; ν) in equation (14).

Another issue is to characterize the beneficial overprobabilizations that are compatible
with the underlying physics of the problem. Not all formally conceivable changes of
probabilization are physically realizable in a given process. This issue of the physical
realizability of a beneficial increase of the noise has already been discussed above for both
examples of sections 2.3 and 3.2. Usually, inference about the information signal s(t) is
performed from the processing of an observation signal x(t) resulting from an arbitrary
mixture with the corrupting noise ξ(t). This mixture expresses the underlying physics
realizing the signal–noise coupling, and we shall here formally denote this mixture as
x(t) = M1[s(t), ξ(t)]. Equations (7) and (18) are understood here as two examples of this
initial mixture operation M1(·). Overprobabilization then can be performed by increasing
the noise in several ways. A first possibility is as in figure 2, where the initial signal–noise
mixture x(t) = M1[s(t), ξ(t) ≡ ξ1(t)] is changed to x(t) = M1[s(t), ξ(t) ≡ ξ2(t)] by
increasing the initial noise ξ(t) ≡ ξ1(t) to a higher level ξ(t) ≡ ξ2(t). A second possibility
for overprobabilization is as in figure 4(B), when another independent noise η(t) can
be injected into the process to realize a new mixture M2(·) of the three ingredients
s(t), ξ(t) and η(t), yielding the new observation signal x(t) = M2[s(t), ξ(t), η(t)]. The
example of figure 4(B) is interpretable as the special case where M2[s(t), ξ(t), η(t)] =
M1[s(t), ξ(t) + η(t)]. The above two possibilities of overprobabilization increase the noise
by acting at the level of the underlying physical process that produces the observable
signal x(t). Their practical realizability is dependent upon the specific structure of the
underlying physical process, and the external control available upon it, to authorize or
not the implementation of the intended increase in the noise which has been formally
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proved beneficial. A third possibility for overprobabilization does not assume action on
the underlying physics but directly operates on the initial observation signal M1[s(t), ξ(t)]
to further mix it, by M3(·), to an independent noise η(t) to realize the new observable
mixture signal M3{M1[s(t), ξ(t)], η(t)}, with M3(·) a general mixing operation certainly
not restricted to an additive mixing. Strictly speaking, we did not show any example of
this third kind of improvement by noise in optimal processing. The question remains open
of whether some exist or not.

When considering improvement of optimal processing by mixing with an external
noise η(t), it may be helpful to have gone through the following argument. In optimal
processing, if a mixing with an external noise η(t) is found beneficial, on average, to
improve the performance, then there should exist one specific realization of η(t) which is
especially beneficial. This realization can then be taken as a deterministic set of values
which could be mixed with the data to realize a deterministic processing which would
improve the optimal performance. But this should not be possible, since no deterministic
processing can do better than the initial optimal processor to maximize the performance.
The point is that the measure of performance invoked by this argument is the initial
measure of performance. Yet the measure of performance now has changed: introduction
of the external noise η(t) changes the functional form of the measure of performance. And,
as explained in section 4, nothing prohibits a priori a processing according to this new
measure of performance to improve over the optimal processing according to the initial
measure of performance.

Returning to open questions, for a given optimal processing problem, ultimately one
would like to be able to characterize, when it exists and among those physically realizable,
the optimal overprobabilization, i.e. that yielding the best improvement by raising the
noise.

For a given optimal processing problem, it appears that questions can be posed at
two levels: (i) is it formally possible to find a beneficial overprobabilization of the problem
associated with an improvement of the functional measuring the performance? and (ii) Is
this overprobabilization formally proved beneficial, physically realizable in practice? These
may seem two independent levels, the first one related to the abstract structure of the
processing operations on the signals and the second related to the concrete structure of
the physical processes generating the signals. A final question arises: are these two levels
really independent, or are there connections between these informational and physical
levels, limiting what can be ultimately achieved in optimal processing in the presence of
noise?
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