
J.S
tat.M

ech.
(2009)

P
08017

ournal of Statistical Mechanics:
An IOP and SISSA journalJ Theory and Experiment

Enhancing array stochastic resonance in
ensembles of excitable systems

Fabing Duan1, François Chapeau-Blondeau2 and
Derek Abbott3

1 Institute of Complexity Science, Qingdao University, Qingdao 266071,
People’s Republic of China
2 Laboratoire d’Ingénierie des Systèmes Automatisés (LISA),
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Abstract. A summing network of FitzHugh–Nagumo model neurons, immersed
in the background of both external noise and internal noise, is studied in the
context of array stochastic resonance. An aperiodic Gaussian stimulus, assisted
by collective internal array noise, stimulates the summing network for a more
efficient response. This form of array stochastic resonance can be characterized by
a correlation coefficient for an aperiodic input signal. Moreover, the correlation
gain of the ensembles of neuronal models is investigated for finite and infinite
array sizes. The nonmonotonic behavior of the correlation gain and the regions
of the correlation gain beyond unity, i.e. the two main features of array SR, are
demonstrated numerically and theoretically. These results suggest that certain
levels of both external noise and internal noise contribute in a beneficial way to
the neuronal coding strategy.
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1. Introduction

Random perturbations may have dramatic effects on dynamical systems and lead to
the emergence of new dynamical phenomena, e.g. stochastic resonance (SR) [1]–[10].
The conventional definition of the SR concept was initially limited to transmission of
a subthreshold periodic input in a single system mediated via an optimal amount of
noise [1, 3, 8]. Over time, the notion of SR has been widened to include a number
of different mechanisms [8, 12], and SR effects have also been demonstrated in various
systems [8]–[14]. The first non-bistable system, i.e. the FitzHugh–Nagumo (FHN)
neuronal model, was discussed in the context of SR by Longtin [11]. Following this,
aperiodic SR proposed in the FHN model by Collins et al [12] stimulated a number of
numerical and theoretical physiological investigations [8], [13]–[18]. Often quite a number
of neurons have similar properties and respond to the same stimuli [15], the condition of
all neurons in the population having the same pattern of input and output connections
were considered in the context of SR [15]–[22], [25]–[27]. However, it has been debated
whether the functional role of neuronal noise in biological sensory systems is beneficial for
neurons with adaptive capabilities [19, 20]. This discussion was positively answered by an
SR-type observation within a population of noisy neurons in a summing network of sensory
systems [20]–[22]. Stocks et al reported that neuronal noise can have a positive beneficial
role, regardless of stimulus intensity or the adaptive capabilities of neurons [19, 20]. The
appealing notion of suprathreshold SR might be a reasonable strategy for the enhancement
of global correlation in a population of sensory neurons [19]–[22], as SR is only invoked by a
subthreshold signal [15], [19]–[21]. An interesting practical application of SR to biomedical
engineering is also exploited by Collins et al [23, 24], which indicates the noise-enhanced
effect is more than just a laboratory curiosity.
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In real correlation processing systems, a general condition for a summing network
is that each element is driven by not only internal noise, but also a common input
signal contaminated by external noise. This configuration has been investigated in
non-dynamical and dynamical networks, and the role of internal noise is reported for
an improved collective property of the summing network [25]–[30]. In particular, a
form of array SR was found by Chapeau-Blondeau et al [28], and its main feature
is the signal-to-noise ratio gain above unity in a regime of internal noise. In other
words, the most interesting point of array SR is the positive role of noise assisting the
system output to extract more information from the input [27]–[30]. Thus, it is also
of interest to explore how the response of a summing network of sensory systems, to
an aperiodic signal corrupted by given external noise, could be maximally enhanced by
modulating internal noise. In this regard, some positive results are obtained in the signal
transduction by parallel arrays of nonlinear neurons with threshold and saturation [27].
In this paper, we focus on the collective dynamics of a summing network of FHN model
neurons in the presence of both external noise and internal noise in the context of array
SR. Generally, the measures of the signal-to-noise ratio [8, 10] and the residence-time
distribution function [31] are adopted to quantify SR effects in the case of nonlinear
systems driven by a periodic input. However, an excitable system, i.e. the FHN model
we consider in this paper, is stimulated by an aperiodic stimulus, the interspike interval
histogram [11] and the correlation coefficient [12, 13, 15, 16, 32] are commonly employed
in these conditions in SR studies. In the present paper, we use the correlation coefficient
to characterize the information transmission through ensembles of excitable systems. In
order to describe the efficiency of signal transmission through a summing network, we
introduce a dimensionless measure of correlation gain, which is the ratio of the correlation
coefficient at output to the correlation coefficient at input. Here, the correlation coefficient
at output describes the similarity between the aperiodic signal and the network output,
while the correlation coefficient at input indicates how similar the initial given noisy input
of neurons is to the aperiodic input signal. This kind of information measure was also
studied in an array of autoregressive models of order one for a periodic signal [36]. We
here numerically simulate the collective response of an ensemble of FHN neuron models
to a noisy aperiodic stimulus for different network sizes. The rate expression has been
developed by Collins et al [12] for analyzing the SR-type behavior in a summing network.
Based on Kramers’ analysis for the escape rate [12] and our previous study of array SR [30],
we further derive an array SR theory considering both two factors of the external noise
and the internal noise. This array SR theory can describe the nonmonotonic performance
of the correlation gain of an ensemble of FHN neuron models, and also demonstrates a
correlation gain that exceeds unity. Furthermore, we demonstrate two optional strategies
involving an ensemble of neuronal models: (i) for given external noise plus input signal,
the internal noise in a summing network is found to enhance information transmission
with correlation gain larger than unity. This strategy represents the adaptive ability of
a neuronal population via utilizing its own internal noise; (ii) in the second strategy, the
internal noise intensity is fixed, while the external noise can be controlled [25, 26]. As the
external noise level increases, the correlation gain is also observed exceeding unity and
the information transfer can be improved through the summing network. This strategy
indicates that there is an optimal noisy environment for a neuronal population immersed
in a given level of internal noise; (iii) additionally, the numerical results demonstrate that

doi:10.1088/1742-5468/2009/08/P08017 3

http://dx.doi.org/10.1088/1742-5468/2009/08/P08017


J.S
tat.M

ech.
(2009)

P
08017

Enhancing array stochastic resonance in ensembles of excitable systems

a suprathreshold stimulus can exploit the constructive role of internal noise for obtaining
increased information from the response of summing networks. This result agrees with
the view of neuronal noise having a positive role for information transmission, regardless
of stimulus intensity or the adaptive capabilities of neurons [20].

We assemble the FHN neuron models into a parallel array and investigate the
collective response of arrays to a noisy stimulus. The configuration considered in this paper
could mimic a sensory neuronal array in building a neural representation of an analog
stimulus from the environment. This neural representation is closely related to neuronal
inherent nonlinearity, action potentials with short-term firing rate offering a support for
signal coding, neuronal ability to operate in arrays, the existence of internal noise, etc.
We show that the sensing process can be enhanced by the internal noise in a parallel array.
At this sensory level, the performance of the neuronal representation is measured by its
ability to obtain a high correlation with the analog stimuli of the environment. We also
show that at the optimum point of array SR effect, the array is capable of producing a
neural representation that restores a stronger correlation with the information stimulus
at the input when this correlation is initially degraded by an external input noise. The
present results expressed by the correlation gain are novel and not reported in previous
studies of excitable systems [11]–[13], [15]–[20]. Although this process we describe in the
present paper is at an early stage of the neural information processing chain, we argue
that it is an important part of the neuronal information processing at the sensory level.

2. Dynamics of the FitzHugh–Nagumo model and the correlation gain

We consider a summing network of identical FHN model neurons given as

ε
dvi

dt
= f(vi) − wi + A + b + s(t) + ξ(t) + ηi(t),

dwi

dt
= vi − γwi,

(1)

where f(v) = v(a−v)(v−1), γ, ε > 0, 0 < a < 1 and i = 1, 2, . . . , N . Here, v(t) models the
membrane potential and w(t) plays the role of a recovery variable incorporating channel
gating dynamics. All neurons are subjected to the same aperiodic Gaussian signal s(t)
plus external noise ξ(t), given that real-world external signals are often aperiodic [15].
Here, s(t) is formed by prefiltering a Gaussian random signal with correlation time τs

and average signal variance σ2
s , as shown in figure 3(a). The autocorrelation of s(t) is

〈s(t)s(t′)〉 = σ2
s exp(−|t − t′|/τs), and the brackets 〈·〉 denote an ensemble average. The

exact form of s(t) is unimportant, provided its variations occur on a timescale which is
slower than the characteristic time of the FHN system under study [11, 15]. According
to the original study of SR in the FHN model, the timescale of input stimulus should
be much larger than the timescale of the membrane potential v(t), i.e. the timescale of
ε [11]. In the following numerical simulations, s(t) can be viewed as a slow stimulus with
the correlation time τs = 20 s, in comparison with the timescale parameter of ε = 0.05 s.
Here, ξ(t) is zero-mean Gaussian white noise with intensity 2Dξ. At the same time, zero-
mean Gaussian white internal noise ηi(t), together with and independent of s(t) + ξ(t), is
applied to each element of the summing network of size N . The N internal noise terms
ηi(t) are mutually independent and have autocorrelation 〈ηi(t)ηi(0)〉 = 2Dηδ(t) with the
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Figure 1. The dependence of the trajectories and the appearance of Canard
trajectories on the parameter b in the FHN model in the absence of noise and
input signal. The dashed lines are the two nullclines of w = f(v) + Ac + b and
w = v/γ. The trajectories for b = 0.1108 < bth and b = 0.1138 > bth are pointed
by arrows, respectively.

same noise intensity 2Dη. Note that, if a sampling time Δt is adopted, the Gaussian
white noise terms ξ(t) and ηi(t) have a variance of σ2

ξ = 2Dξ/Δt and σ2
η = 2Dη/Δt,

respectively [28, 29].

2.1. Dynamics of the FitzHugh–Nagumo model in the absence of noisy input

In the absence of the noise and the input signal, we assume a unique fixed point (v∗, w∗),
i.e. the real solution of the cubic equation of f(v∗) − w∗ + A = 0 and w∗ = v∗/γ. The
stability of the equilibrium point is determined by the Jacobian matrix

J =

(
f ′(v∗)/ε −1/ε

1 −γ

)
. (2)

The constant activation signal A is chosen at the Hopf bifurcation point defined by
Tr(J) = 0 and det(J) > 0, which yields f ′(v∗) = εγ and the fixed point (v∗ =
[(a + 1) − (a2 − a + 1 − 3εγ)1/2 ]/3, w∗ = v∗/γ). Thus, a supercritical Hopf bifurcation
point of the activation signal A is at

Ac = [(a2 − a + 1 − 3εγ)1/2 × (2γa2 − 2γa + 2γ + 3εγ2 − 9) + 9a + 9

+ γ(−2a3 + 3a2 + 3a − 2)]/(27γ). (3)

Throughout this paper, the value of A = Ac. However, a spike is only deemed to be
transmitted if the oscillations (spikes) grow beyond a given level of vth, otherwise the
transmitted response is taken to be zero [12, 15, 20]. In this paper, the given threshold
level vth = a and firing events only occur when b is above the threshold bth. In this

doi:10.1088/1742-5468/2009/08/P08017 5

http://dx.doi.org/10.1088/1742-5468/2009/08/P08017


J.S
tat.M

ech.
(2009)

P
08017

Enhancing array stochastic resonance in ensembles of excitable systems

situation, the input signal s(t) is defined as a suprathreshold signal in the sense that a
deterministic threshold crossing occurs [12], i.e. b + s(t) ≥ bth, otherwise the input signal
is subthreshold. In order to estimate the crossing threshold bth, the FHN model (1) can
be transformed as

ε
dv′

dt
= f(v′) − w′ + b′,

dw′

dt
= v′ − γw′ − (1 − γ)a, (4)

using the following transformations:

v → v′ + a, w → w′ + a, b → b′ − Ac + a. (5)

Like the above linear stability analysis of the activation signal Ac, we determine the
minimum of the nullcline occurring at v− = −

√
1 − 4ε/(2

√
3), and the threshold voltage

b′th = −(5 − 2ε)
√

1 − 4ε/(12
√

3). Throughout this paper, each FHN neuron model of the
summing network takes a = 0.5, γ = 1, ε = 0.005, Ac = 0.1512 and the sampling time
Δt = 0.001 s in simulation tests. Then, the threshold b′th = −0.2377 and bth = b′th−Ac +a
takes as 0.1111.

When the constant activation signal A is chosen at the Hopf bifurcation point
Ac = 0.1512, a Canard-like behavior of FHN neuron model is crucially dependent on
the parameter b [13, 34]. Two examples of Canard trajectories on the parameter b in the
FHN model are depicted in the phase plane of (v, w) in figure 1. The dashed lines are the
two nullclines of w = f(v) + Ac + b and w = v/γ. The trajectories for b < bth and b > bth

are indicated by arrows in figure 1, respectively. When the parameter b = 0.1108 < bth,
a Canard solution of the FHN neuronal model follows a repelling slow manifold for a
considerable amount of time [13, 34]. In this case, the membrane potential v(t) is below
the assumed threshold vth = 0.5. As b = 0.1138 > bth, a large excursion loop is excited,
as shown in figure 1, and a spike train comes into being as the membrane potential v(t)
exceeds vth = 0.5 circularly [13, 34, 35].

2.2. Noise-induced spikes in the FitzHugh–Nagumo model

Noise permeates every level of the nervous system and poses a fundamental problem for
information processing. In contrast to the linear systems, noise is regarded as a beneficial
factor that affects the performance of nonlinear systems. The constructive role of noise in
the FHN model has been extensively investigated in the context of stochastic resonance or
coherence resonance [8], [10]–[13], [15]–[18], [20, 33]. For a given amount of internal noise
ηi(t) only (2Dη = 10−7, Dξ = 0 and s(t) ≡ 0), a stochastic realization of noise-induced
excursions of a single FHN model through the phase plane is shown in figure 2(a) and
the corresponding spike train in the membrane potential v(t) is illustrated in figure 2(b).
For comparison, the oscillation of the FHN model without noise is also plotted by solid
lines in figure 2. It is seen that, even as b = 0.1108 < bth and a deterministic trajectory
in the phase plane is below the threshold vth = 0.5, the injection of noise ηi(t) helps
the membrane potential v(t) cross the threshold vth. Thus, due to noise fluctuation,
the corresponding crossing events become possible, which are recoded as a spike train
resembling the spontaneous activity of an FHN model [13].

In the presence of both input signal and noise, the occurrence of spikes will be
correlated with this input signal. In section 2.3, we will study this correlation between
the FHN model response and the noisy input, yielding the resonance-like behavior of the
correlation gain versus the noise intensity.
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0

Figure 2. (a) Occurrence of spike in a noise-driven FHN model (dashed line) and
oscillation of FHN model without noise (solid line) in the phase plane of (v,w);
(b) the corresponding time evolution of membrane potential v(t) to the presence
of noise (dashed line) and the absence of noise (solid line). Here, the noise density
2Dη = 10−7 and b = 0.1108.

2.3. Correlation gain for the FitzHugh–Nagumo model in the presence of noisy input

In the presence of the noisy input signal s(t) + ξ(t) + ηi(t), each FHN model of (1)
presents its response vi(t). These outputs of a summing network of FHN neurons are

summed together to yield the network response r̃(t) =
∑N

i=1 vi(t)/N . The response r̃(t)
is filtered by a 10 s unit-area symmetric Hanning window for obtaining the firing rate
r(t) [12, 37], e.g. figures 3(b) and (c).

We characterize the global information transmission through the network by the
correlation coefficient of the input s(t) and the firing rate r(t) [12, 28]:

ρs,r =
(s(t) − s(t))(r(t) − r(t))

σs

[
(r(t) − r(t))2

]1/2
=

s(t)r(t)

σs

[
(r(t) − r(t))2

]1/2
, (6)

where the overbar indicates an average value of a random variable over time and the
deterministic signal s(t) is with s(t) = 0 [12, 28]. We also consider the correlation
coefficient of the net input signal s(t) and the initial given noisy input s(t) + λ(t) as

ρs,s+λ =
σs

(σ2
s + σ2

λ)1/2
, (7)

where the term λ(t) represents the controllable noise term, for example, λ(t) is ξ(t) if
ηi(t) is fixed, or vice versa. Here, we emphasize that the correlation coefficient ρs,s+η can
be computed by any internal noise ηi(t), since each initial given noise ηi(t) has the same
noise density of 2Dη, as discussed in figure 4. Thus, we define the correlation gain G as

G =
ρs,r

ρs,s+λ
=

s(t)r(t)[(
r(t) − r(t)

)2
]1/2

× (σ2
s + σ2

λ)1/2

σ2
s

, (8)
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(  ) (  )

(  )(  )

Figure 3. (a) An aperiodic Gaussian signal s(t) formed by prefiltering Gaussian
noise with correlation time τs = 20 s. Here, the average signal variance
σ2

s = 1.5 × 10−5 and total time length 300 s; (b) ensemble-average values
of the firing rate r(t), at the point p of (d) (as indicated by the arrow), is
obtained by filtering the response r̃(t) =

∑N
i=1 vi(t)/N with a 10 s unit-area

symmetric Hanning window for the neuron array size N = 120. Here, the
resonance point p corresponds to the internal noise density 2Dη = 8 × 10−7;
(c) ensemble-average values of the firing rate r(t) as the neuron array size
N → ∞ at the point p indicated in (d). In numerical simulations, we take
(
∑K

i=1 ri(t)
∑2K

j=K+1 rj(t)/K2)1/2 as the approximate ensemble-average value of
the firing rate r(t) of the infinite neuron array with size N → ∞. Here, we take
K = 120; (d) ensemble-average values of the correlation gain G = ρs,r/ρs,s+ξ as a
function of the internal noise density Dη for the network with N = 1, 2, 3, 5, 10,
60, 120 and ∞ neurons (from the bottom up). Here, the external noise density
2Dξ = 3× 10−7, Ac = 0.1512, b = 0.07 and the sampling time Δt = 0.001 s. The
input signal s(t) is then subthreshold as b + s(t) < bth = 0.1111. For simplicity,
we represent the origin tick 10−8 of the logarithmic x axis as zero, and all curves
of the correlation gain G start at Dη = 0 actually. It is shown that the correlation
gain G ∼ 0.098 at Dη = 0, because a small dose of external noise ξ(t) is already
added (2Dξ = 3×10−7). Each point was averaged by 200 trials in the realization
of simulations and the Gaussian white noise is generated with different seeds.
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Figure 4. Ensemble-average values of the correlation gain G = ρs,r/ρs,s+η as a
function of the internal noise density Dξ for the network with N = 1, 2, 3, 5, 10,
60, 120 and ∞ neurons (from the bottom up). Here, the internal noise density
2Dη = 3 × 10−7 is fixed and other parameters are the same as in figure 3. For
simplicity, we represent the origin tick 10−8 of the logarithmic x axis as zero, and
all curves of the correlation gain G start at Dξ = 0 actually.

for evaluating the positive role of internal or external noise in the summing network of
FHN model neurons.

3. Performance of the neuron arrays with infinite size N → ∞

Assume the impulse function of filter is h(t), each neuron output vi(t) is then filtered
as its firing rate ri(t) = h(t)vi(t), and the firing rate of the summing network r(t) =∑N

i=1 ri(t)/N . Equation (6) can be further deduced as

ρs,r =
s(t)

∑N
i=1 ri(t)/N

σs

[(∑N
i=1 ri(t)/N −

∑N
i=1 ri(t)/N

)2]1/2

=
s(t)ri(t)

σs

[
(Nr2

i (t) + N(N − 1)ri(t)rj(t))/N2 − (Nri(t)
2
)/N2

]1/2

=
s(t)ri(t)

σs

[
(r2

i (t) − ri(t)
2 − ri(t)rj(t))/N + ri(t)rj(t)

]1/2
, (9)
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Figure 5. Ensemble-average values of the correlation gain G = ρs,r/ρs,s+ξ as a
function of the internal noise density Dη for the network with N = 1, 2, 3, 5,
10, 60, 120 and ∞ neurons (from the bottom up) with a given external noise
density (a) 2Dξ = 10−7 and (b) 2Dξ = 3 × 10−7. Here, b = 0.1217 and s(t) is a
suprathreshold signal as b + s(t) > bth = 0.1111. Other parameters are the same
as in figure 3. For simplicity, we represent the origin tick 10−9 in (a) (10−8 in
(b)) of the logarithmic x axis as zero, and all curves of the correlation gain G
start at Dη = 0 actually.

with i 
= j and i, j = 1, 2, . . . , N . Thus, for the infinite array size N → ∞, we have the
correlation coefficient of the input s(t) and the firing rate r(t) as

lim
N→∞

ρs,r =
s(t)ri(t)

σs

[
ri(t)rj(t)

]1/2
, (10)

and the correlation gain G as

lim
N→∞

G =
ρs,r

ρs,s+λ

=
s(t)ri(t)

σ2
s

× (σ2
s + σ2

λ)
1/2

[
ri(t)rj(t)

]1/2
. (11)

Since the indices i and j are different, but arbitrary in (10) and (11), we can adopt two
different FHN neuron models, each embedded with independent internal noise ηi(t) (ηj(t)),
to evaluate the correlation coefficient or gain of the ensemble of neuron arrays with size
N → ∞, as shown in figures 3–5. This method is tractable and effective in simulation
tests and has been testified in evaluating the signal-to-noise ratio gain [29].

Note that the neuronal spikes are depicted and counted when v(t) crosses the given
threshold voltage vth = a (a > 0), so the network response r(t) ≥ 0 after filtering the
neuronal spikes by a 10 s unit-area symmetric Hanning window. Furthermore, following
the deduction of the infinite array size N → ∞, we can extract r(t) of an infinite neuronal
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array as

lim
N→∞

r(t) = lim
N→∞

N∑
i=1

ri(t)/N

= lim
N→∞

[∑N
i=1 ri(t)

∑N
i=1 ri(t)

N2

]1/2

= lim
N→∞

[
r2
i (t) + (N − 1)ri(t)rj(t)

N

]1/2

= [ri(t)rj(t)]
1/2 , (12)

with i 
= j and i, j = 1, 2, . . . , N . Therefore, we can also obtain the ensemble-averaged
firing rate of an infinite neuronal array by utilizing two arbitrary but different response of
neuronal models, e.g. an ensemble-averaged example of firing rate illustrated in figure 3(c).

In numerical simulations, we can take (
∑K

i=1 ri(t)
∑2K

j=K+1 rj(t)/K
2)1/2 as the approximate

ensemble-average value of the firing rate r(t) for an infinite array with size N → ∞, as
shown in figure 3(c).

4. Simulation results

The input signal s(t), as shown in figure 3(a), is subthreshold for bth = 0.1111, since
b = 0.07 and σ2

s = 1.5 × 10−5. Note that s(t) is corrupted by a given external noise
ξ(t) with density 2Dξ = 3 × 10−7, yielding the correlation coefficient ρs,s+ξ = 0.2182.
Figure 3(d) plots the correlation gain G = ρs,r/ρs,s+ξ as a function of internal noise
density Dη for different array sizes N = 1, 2, 3, 5, 10, 60, 120 and ∞ (from the bottom
up). As the level of internal noise ηi(t) increases from zero, the feature of array SR is
obvious, i.e. the bell-type curve of G versus Dη, as illustrated in figure 3(d). Moreover,
the collective property of the internal noise enhances array SR as the neuronal array size
N increases. We emphasize these characteristics: (i) the correlation gain G is larger than
unity in certain regimes of internal noise density of Dη, as shown in figure 3(d). This
indicates the neuronal array has an optional route to maximize the global information
transmission via array SR; (ii) when the internal noise increases from zero, the correlation
gain G of the summing network with different size N comes from a same but nonzero
value. At the zero value of internal noise density (Dη = 0), all neurons receive a common
noise input s(t) + ξ(t), and the collective effect of the summing network is invalid. This
property is not limited to the subthreshold input signal s(t) shown in figure 3(d) and is
also observed for the suprathreshold signal s(t) in figure 5. (iii) When the neuronal array
size N → ∞, the firing rate r(t) is numerically shown in figure 3(c). With the help of
internal array noise ηi(t), the ensemble-average value of the correlation coefficient ρs,r can
reach as high as 0.9528 and the correlation gain G ∼ 4.3666 at the resonant point of
2Dη = 8 × 10−7, as illustrated in figure 3(d).

Figure 3(d) manifests an adaptive strategy for a neuronal population in a given noisy
environment, i.e. adjusting the intensity of internal noise ηi(t) to improve the global
information transmission. Another important case is when the level of internal noise of a
neuronal population is fixed, while the external noise ξ(t) acts as a controllable variable for
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optimizing the global correlation transmission [25, 26], as shown in figure 4. From figure 4,
the correlation gain G also shows the resonance curve as a function of the external noise
density Dξ. This effect is also enlarged by increasing the size of the summing network
N . But a crucial difference is that each resonance curve starts at different points for
different array sizes N . At the start, Dξ = 0 and the mutual independent internal noise
ηi(t) enhances the collective effect as N increases; this reduces to the cases considered
in [15, 20]. In other words, the spike events, invoked by internal noise ηi(t), assemble at
the output for obtaining more pronounced correlation. As the external noise density Dξ

increases, the presence of both external and internal noise leads to array SR, as plotted
in figure 4.

A criticism of SR was that an adaptive neuron can adjust its threshold for improving
information transmission, and this fact leads to the conclusion of SR being redundant
in a single neuron. This argument is addressed by the mechanism of suprathreshold SR
in [19, 20]. Namely, the internal noise, independent of the threshold setting, is observed to
be of benefit for both subthreshold and suprathreshold signals [19, 20]. For the appearance
of both external and internal noise considered in this paper, this kind of observation is
affirmed again. Figure 5 shows the noise dependence of the global correlation transmission
for the suprathreshold stimulus corrupted by the given external noise ξ(t). It is interesting
to note that the correlation gain G can also be larger than unity and enhanced by the
array size N . Array SR enables the constructive role of internal noise to manifest for
suprathreshold signal, even if the SR effect disappears in a single neuron model (N = 1).
It is observed in figure 5 that array SR appears as the size of summing network N
increases, and the positive beneficial role neuronal internal noise does play in the neuronal
population, regardless of the adaptive capabilities of single neurons [19, 20].

5. Array SR theory of an ensemble of FHN neuron models

The theoretical Kramer-type analysis of the ensemble-averaged rate has been developed
by Collins et al for a single excitable system [12] and a summing network of excitable
systems [15]. In the presence of both the external noise and the internal noise, an
approximation theory of array SR was proposed in a parallel array of bistable systems [30].
We here, combining the proposed theories of [12, 30], interpret the aforementioned
numerical results of array SR in the ensemble of FHN neuron models theoretically. This
array SR theory for the ensembles of FHN neuron models can approximately explain the
roles of the external noise and the internal noise, and describes the performance of the
summing network with different array sizes.

We rewrite (4) taking account of the threshold voltage b′th and the stimulus s(t) [12]:

ε
dv′

i

dt
= −v′

i

(
v′

i
2 − 1

4

)
− w′

i + b′th − B + s(t) + ξ(t) + ηi(t),

dw′
i

dt
= v′

i − w′
i,

(13)

with parameters ε = 0.005, a = 1/2 and γ = 1. Here, B = bth − b is a constant parameter
which corresponds to the signal-to-threshold distance. Using the Kramers’ formula, the
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ensemble average of the escape rate of ri(t) of a single neuron is derived as [12]

〈ri(t)〉 ∝ exp
(
−
√

3[B3 − 3B2s(t)]ε/D
)

, (14)

with the assumption of 0 < B − s(t) � 1, D = Dξ + Dη and i = 1, 2, . . . , N . The
ensemble-averaged correlation coefficient 〈ρs,r〉 of a single neuron can be shown [12] that

〈ρs,ri
〉  Δσs

[exp(Δ2σ2
s) − 1 + σ(D) × exp(V − Δ2σ2

s)]
1/2

, (15)

where Δ = 3
√

3εB2/D, V = 2
√

3εB3/D and σ(D) is a monotonically increasing empirical
function of D [12].

According to (9), the variance of the network escape rate r(t) =
∑N

i=1 ri(t)/N is given
by

(
r(t) − r(t)

)2

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
ri(t) − ri(t)

)2

, N = 1,

1

N

[
r2
i (t) − ri(t)

2
]

+
(N − 1)

N
ri(t)rj(t), 1 < N < ∞,

ri(t)rj(t), N = ∞.

Note that ri(t)rj(t) = (ri(t) − ri(t))
2 at the internal noise density Dη = 0, and the

correlation gains of a single neuron and an infinite array all start from the same point, as
shown in figures 3(d) and 5. Thus, we assume

ri(t)rj(t) =
Dξ

D
×

(
ri(t) − ri(t)

)2

, (16)

with a supposed coefficient Dξ/D = Dξ/(Dξ+Dη) and without considering the interaction
of the external noise ξ(t) and the array noise ηi(t) [30]. In this way, we have

(
r(t) − r(t)

)2

=
(
ri(t) − ri(t)

)2

×
(

Dξ

D
+

Dη

ND

)
. (17)

By substituting (17) into equation (9) and considering (15), we have

〈ρs,r〉 =
s(t)ri(t)

σs

[(
ri(t) − ri(t)

)2]1/2
×

(
D

Dξ + (Dη/N)

)1/2

= 〈ρs,ri
〉 ×

(
D

Dξ + (Dη/N)

)1/2

=
Δσs

[exp(Δ2σ2
s) − 1 + σ(D) × exp(V − Δ2σ2

s)]
1/2

×
(

D

Dξ + (Dη/N)

)1/2

, (18)

and the correlation gain G is

〈G〉 =
〈ρs,r〉
〈ρs,s+λ〉

=
Δ [(D/(Dξ + (Dη/N))) × (σ2

s + σ2
λ)]

1/2

[exp(Δ2σ2
s) − 1 + σ(D) × exp(V − Δ2σ2

s)]
1/2

. (19)
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Figure 6. (a) Theoretical ensemble-average values of the correlation gain
G = ρs,r/ρs,s+ξ as a function of the internal noise density Dη for the network
with N = 1, 2, 3, 5, 10, 60, 120,∞ neurons (from the bottom up). Here, the
fixed external noise density 2Dξ = 3 × 10−7. This configuration corresponds
to figure 3(d); (b) theoretical ensemble-average values of the correlation gain
G = ρs,r/ρs,s+η as a function of the external noise density Dξ for the network
with N = 1, 2, 3, 5, 10, 60, 120,∞ neurons (from the bottom up). Here, the
given internal noise density 2Dη = 3 × 10−7. This configuration corresponds
to figure 4. When Dη is fixed (2Dη = 3 × 10−7) and Dξ varies, the term
limN→∞[D/(Dξ + Dη/N)]1/2 = (D/Dξ)1/2 in (19). Thus the correlation gain
G tends to infinity at Dξ = 0. The observable quantitative discrepancies between
the analytical results of figure 4 and the numerical simulations of figures 3 and 4
indicate that this array SR theory needs to be improved in the future. In the
theoretical prediction of (19), b = 0.07, B = bth − b = 0.0411 and the empirical
quadratic function σ(D) = c1D+ c2D

2 as well as [12, 15]. Here, we take constant
coefficients c1 = 4.2 × 105 and c2 = 2.7 × 103 by nonlinear least-squares data
fitting.

Figure 6 shows the theoretical ensemble-average values of the correlation gain G as
a function of the internal or external noise for the neuronal array size N = 1, 2, 3, 5, 10,
60, 120 and ∞. The appearance of array SR is clearly visible in figure 6. For a given
noise density Dη or Dξ, the correlation gain G increases as the array size N increases.
More importantly, the regions of the correlation gain G > 1 can be demonstrated by
the above analytical descriptions of (9)–(19). The observable quantitative discrepancies
between the analytical results of figure 6 and the numerical simulations of figures 3 and 4
are presented. A more accurate theory of array SR deserves to be developed in the future.
However, this array SR theory captures well not only the nonmonotonic behavior of the
correlation gain G as a function of the noise density for different neuronal array size N ,
but also the particular property of array SR, i.e. the correlation gain G > 1. Moreover,
the array SR regions of internal noise density Dη or external noise density Dξ, as shown
in figure 6, agree well the numerical results of figures 3 and 4. When Dξ is fixed and Dη

varies, the correlation gain G starts at a common value at Dη = 0, as shown in figures 3(d)
and 6(a). Dη starts from 10−9 in the logarithmic scale in figure 6(a), but the correlation
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gain G of (19) can be evaluated at Dη = 0 with the same value. On the other hand, if we
fix Dη and tune Dξ, it is seen in figures 4 and 6(b) that the correlation gain G starts at
different values at Dξ = 0. Dξ also starts from 10−9 in the logarithmic scale in figure 6(b).
The correlation gain G of (19) can be evaluated at Dξ = 0 for finite array size N , except
N → ∞, because the term limN→∞[D/(Dξ + Dη/N)]1/2 = (D/Dξ)

1/2 in (19). This array
SR theory then confirms the noise-employed strategies by neuronal populations for a more
efficient information representation. Additionally, the deduction of the escaping rate [12]
requires the parameter B − s(t) > 0, thus this array SR theory does not describe the
SR-type behavior induced by the suprathreshold stimulus (B = bth − b < 0 in figure 5).
However, the numerical results shown in figure 5, as well as [20], confirms that the optimal
coding strategy by tuning noise also plays a positive beneficial role for transmitting the
suprathreshold stimulus through a summing FHN network.

6. Conclusions

In this paper, we studied the collective dynamics of an ensemble of FHN model neurons
in the context of array SR. The performance of neuronal arrays with the finite and infinite
size is investigated, numerically and theoretically. The internal noise in neuronal arrays
plays a beneficial role in transmitting information, for given external environment noise.
Moreover, this effect is also observed for suprathreshold stimuli. The collective dynamics
of the neurons might be an optional strategy for a neuronal population. On the other
hand, if the internal noise is fixed, the environmental noise can also invoke a similar array
SR effect for more efficient information transfer, and this strategy might be adopted by
a neuronal population to adapt to an ‘optimal’ noisy environment. Also, we can tune
the environmental noise to make a neuronal population response more effective. Both
numerical and theoretical results demonstrated the fact of the correlation gain exceeding
unity, and the merit of these strategies for tuning noise deserves to be investigated more
deeply. These results also suggest that certain levels of noise observed in biological sensory
systems are an essential component of an optimal coding strategy, for example, in the
condition of a population of sensory neurons operated to establish a neural representation
of an analog stimulus from the environment.
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